def __print_set(self, set_): items = list(set_) items.sort(key=cmp_to_key(Basic.compare_pretty)) s = self._print_seq(items, '(', ')') s = prettyForm(*stringPict.next(type(set_).__name__, s)) return s
def __print_set(self, set_): items = list(set_) items.sort( key=cmp_to_key(Basic.compare_pretty) ) s = self._print_seq(items, '(', ')') s = prettyForm(*stringPict.next(type(set_).__name__, s)) return s
def _as_ordered_terms(self, expr, order=None): """A compatibility function for ordering terms in Add. """ order = order or self.order if order == 'old': return sorted(Add.make_args(expr), key=cmp_to_key(Basic._compare_pretty)) else: return expr.as_ordered_terms(order=order)
def _print_dict(self, expr): keys = sorted(expr.keys(), key=cmp_to_key(Basic.compare_pretty)) items = [] for key in keys: item = "%s: %s" % (self._print(key), self._print(expr[key])) items.append(item) return "{%s}"%", ".join(items)
def __print_set(self, expr): items = list(expr) items.sort( key=cmp_to_key(Basic.compare_pretty) ) args = ', '.join(self._print(item) for item in items) if args: args = '[%s]' % args return '%s(%s)' % (type(expr).__name__, args)
def __print_set(self, expr): items = list(expr) items.sort(key=cmp_to_key(Basic.compare_pretty)) args = ', '.join(self._print(item) for item in items) if args: args = '[%s]' % args return '%s(%s)' % (type(expr).__name__, args)
def _print_dict(self, expr): items = [] keys = sorted(expr.keys(), key=cmp_to_key(Basic.compare_pretty)) for key in keys: val = expr[key] items.append("%s : %s" % (self._print(key), self._print(val))) return r"\begin{Bmatrix}%s\end{Bmatrix}" % r", & ".join(items)
def _print_dict(self, expr): keys = expr.keys() keys.sort(key=cmp_to_key(Basic.compare_pretty)) items = [] for key in keys: item = "%s: %s" % (self._print(key), self._print(expr[key])) items.append(item) return "{%s}" % ", ".join(items)
def _print_dict(self, expr): items = [] keys = expr.keys() keys.sort(key=cmp_to_key(Basic.compare_pretty)) for key in keys: val = expr[key] items.append("%s : %s" % (self._print(key), self._print(val))) return r"\begin{Bmatrix}%s\end{Bmatrix}" % r", & ".join(items)
def _print_dict(self, d): items = [] keys = sorted(d.keys(), key=cmp_to_key(Basic.compare_pretty) ) for k in keys: K = self._print(k) V = self._print(d[k]) s = prettyForm(*stringPict.next(K, ': ', V)) items.append(s) return self._print_seq(items, '{', '}')
def __new__(cls, expr, *symbols, **assumptions): expr = sympify(expr).expand() if expr is S.NaN: return S.NaN if symbols: symbols = map(sympify, symbols) if not all(isinstance(s, Symbol) for s in symbols): raise NotImplementedError( 'Order at points other than 0 not supported.') else: symbols = list(expr.free_symbols) if expr.is_Order: new_symbols = list(expr.variables) for s in symbols: if s not in new_symbols: new_symbols.append(s) if len(new_symbols) == len(expr.variables): return expr symbols = new_symbols elif symbols: if expr.is_Add: lst = expr.extract_leading_order(*symbols) expr = Add(*[f.expr for (e, f) in lst]) elif expr: if len(symbols) > 1 or expr.is_commutative is False: # TODO # We cannot use compute_leading_term because that only # works in one symbol. expr = expr.as_leading_term(*symbols) else: expr = expr.compute_leading_term(symbols[0]) terms = expr.as_coeff_mul(*symbols)[1] s = set(symbols) expr = Mul(*[t for t in terms if s & t.free_symbols]) if expr is S.Zero: return expr elif not expr.has(*symbols): expr = S.One # create Order instance: symbols.sort(key=cmp_to_key(Basic.compare)) obj = Expr.__new__(cls, expr, *symbols, **assumptions) return obj
def _print_dict(self, d): items = [] keys = d.keys() keys.sort(key=cmp_to_key(Basic.compare_pretty)) for k in keys: K = self._print(k) V = self._print(d[k]) s = prettyForm(*stringPict.next(K, ': ', V)) items.append(s) return self._print_seq(items, '{', '}')
class Mul(Expr, AssocOp): __slots__ = [] is_Mul = True #identity = S.One # cyclic import, so defined in numbers.py # Key for sorting commutative args in canonical order _args_sortkey = cmp_to_key(Basic.compare) @classmethod def flatten(cls, seq): """Return commutative, noncommutative and order arguments by combining related terms. Notes ===== * In an expression like ``a*b*c``, python process this through sympy as ``Mul(Mul(a, b), c)``. This can have undesirable consequences. - Sometimes terms are not combined as one would like: {c.f. http://code.google.com/p/sympy/issues/detail?id=1497} >>> from sympy import Mul, sqrt >>> from sympy.abc import x, y, z >>> 2*(x + 1) # this is the 2-arg Mul behavior 2*x + 2 >>> y*(x + 1)*2 2*y*(x + 1) >>> 2*(x + 1)*y # 2-arg result will be obtained first y*(2*x + 2) >>> Mul(2, x + 1, y) # all 3 args simultaneously processed 2*y*(x + 1) >>> 2*((x + 1)*y) # parentheses can control this behavior 2*y*(x + 1) Powers with compound bases may not find a single base to combine with unless all arguments are processed at once. Post-processing may be necessary in such cases. {c.f. http://code.google.com/p/sympy/issues/detail?id=2629} >>> a = sqrt(x*sqrt(y)) >>> a**3 (x*sqrt(y))**(3/2) >>> Mul(a,a,a) (x*sqrt(y))**(3/2) >>> a*a*a x*sqrt(y)*sqrt(x*sqrt(y)) >>> _.subs(a.base, z).subs(z, a.base) (x*sqrt(y))**(3/2) - If more than two terms are being multiplied then all the previous terms will be re-processed for each new argument. So if each of ``a``, ``b`` and ``c`` were :class:`Mul` expression, then ``a*b*c`` (or building up the product with ``*=``) will process all the arguments of ``a`` and ``b`` twice: once when ``a*b`` is computed and again when ``c`` is multiplied. Using ``Mul(a, b, c)`` will process all arguments once. * The results of Mul are cached according to arguments, so flatten will only be called once for ``Mul(a, b, c)``. If you can structure a calculation so the arguments are most likely to be repeats then this can save time in computing the answer. For example, say you had a Mul, M, that you wished to divide by ``d[i]`` and multiply by ``n[i]`` and you suspect there are many repeats in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the product, ``M*n[i]`` will be returned without flattening -- the cached value will be returned. If you divide by the ``d[i]`` first (and those are more unique than the ``n[i]``) then that will create a new Mul, ``M/d[i]`` the args of which will be traversed again when it is multiplied by ``n[i]``. {c.f. http://code.google.com/p/sympy/issues/detail?id=2607} This consideration is moot if the cache is turned off. NB -- The validity of the above notes depends on the implementation details of Mul and flatten which may change at any time. Therefore, you should only consider them when your code is highly performance sensitive. Removal of 1 from the sequence is already handled by AssocOp.__new__. """ rv = None if len(seq) == 2: a, b = seq if b.is_Rational: a, b = b, a assert not a is S.One if a and a.is_Rational: r, b = b.as_coeff_Mul() a *= r if b.is_Mul: bargs, nc = b.args_cnc() rv = bargs, nc, None if a is not S.One: bargs.insert(0, a) elif b.is_Add and b.is_commutative: if a is S.One: rv = [b], [], None else: r, b = b.as_coeff_Add() bargs = [_keep_coeff(a, bi) for bi in Add.make_args(b)] bargs.sort(key=hash) ar = a*r if ar: bargs.insert(0, ar) bargs = [Add._from_args(bargs)] rv = bargs, [], None if rv: return rv # apply associativity, separate commutative part of seq c_part = [] # out: commutative factors nc_part = [] # out: non-commutative factors nc_seq = [] coeff = S.One # standalone term # e.g. 3 * ... iu = [] # ImaginaryUnits, I c_powers = [] # (base,exp) n # e.g. (x,n) for x num_exp = [] # (num-base, exp) y # e.g. (3, y) for ... * 3 * ... neg1e = 0 # exponent on -1 extracted from Number-based Pow pnum_rat = {} # (num-base, Rat-exp) 1/2 # e.g. (3, 1/2) for ... * 3 * ... order_symbols = None # --- PART 1 --- # # "collect powers and coeff": # # o coeff # o c_powers # o num_exp # o neg1e # o pnum_rat # # NOTE: this is optimized for all-objects-are-commutative case for o in seq: # O(x) if o.is_Order: o, order_symbols = o.as_expr_variables(order_symbols) # Mul([...]) if o.is_Mul: if o.is_commutative: seq.extend(o.args) # XXX zerocopy? else: # NCMul can have commutative parts as well for q in o.args: if q.is_commutative: seq.append(q) else: nc_seq.append(q) # append non-commutative marker, so we don't forget to # process scheduled non-commutative objects seq.append(NC_Marker) continue # 3 elif o.is_Number: if o is S.NaN or coeff is S.ComplexInfinity and o is S.Zero: # we know for sure the result will be nan return [S.NaN], [], None elif coeff.is_Number: # it could be zoo coeff *= o if coeff is S.NaN: # we know for sure the result will be nan return [S.NaN], [], None continue elif o is S.ComplexInfinity: if not coeff: # 0 * zoo = NaN return [S.NaN], [], None if coeff is S.ComplexInfinity: # zoo * zoo = zoo return [S.ComplexInfinity], [], None coeff = S.ComplexInfinity continue elif o is S.ImaginaryUnit: iu.append(o) continue elif o.is_commutative: # e # o = b b, e = o.as_base_exp() # y # 3 if o.is_Pow and b.is_Number: # get all the factors with numeric base so they can be # combined below, but don't combine negatives unless # the exponent is an integer if e.is_Rational: if e.is_Integer: coeff *= Pow(b, e) # it is an unevaluated power continue elif e.is_negative: # also a sign of an unevaluated power seq.append(Pow(b, e)) continue elif b.is_negative: neg1e += e b = -b if b is not S.One: pnum_rat.setdefault(b, []).append(e) continue elif b.is_positive or e.is_integer: num_exp.append((b, e)) continue c_powers.append((b, e)) # NON-COMMUTATIVE # TODO: Make non-commutative exponents not combine automatically else: if o is not NC_Marker: nc_seq.append(o) # process nc_seq (if any) while nc_seq: o = nc_seq.pop(0) if not nc_part: nc_part.append(o) continue # b c b+c # try to combine last terms: a * a -> a o1 = nc_part.pop() b1, e1 = o1.as_base_exp() b2, e2 = o.as_base_exp() new_exp = e1 + e2 # Only allow powers to combine if the new exponent is # not an Add. This allow things like a**2*b**3 == a**5 # if a.is_commutative == False, but prohibits # a**x*a**y and x**a*x**b from combining (x,y commute). if b1 == b2 and (not new_exp.is_Add): o12 = b1 ** new_exp # now o12 could be a commutative object if o12.is_commutative: seq.append(o12) continue else: nc_seq.insert(0, o12) else: nc_part.append(o1) nc_part.append(o) # handle the ImaginaryUnits if iu: if len(iu) == 1: c_powers.append((iu[0], S.One)) else: # a product of I's has one of 4 values; select that value # based on the length of iu: # len(iu) % 4 of (0, 1, 2, 3) has a corresponding value of # (1, I,-1,-I) niu = len(iu) % 4 if niu % 2: c_powers.append((S.ImaginaryUnit, S.One)) if niu in (2, 3): coeff = -coeff # We do want a combined exponent if it would not be an Add, such as # y 2y 3y # x * x -> x # We determine if two exponents have the same term by using # as_coeff_Mul. # # Unfortunately, this isn't smart enough to consider combining into # exponents that might already be adds, so things like: # z - y y # x * x will be left alone. This is because checking every possible # combination can slow things down. # gather exponents of common bases... def _gather(c_powers): new_c_powers = [] common_b = {} # b:e for b, e in c_powers: co = e.as_coeff_Mul() common_b.setdefault(b, {}).setdefault(co[1], []).append(co[0]) for b, d in common_b.items(): for di, li in d.items(): d[di] = Add(*li) for b, e in common_b.items(): for t, c in e.items(): new_c_powers.append((b, c*t)) return new_c_powers # in c_powers c_powers = _gather(c_powers) # and in num_exp num_exp = _gather(num_exp) # --- PART 2 --- # # o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow) # o combine collected powers (2**x * 3**x -> 6**x) # with numeric base # ................................ # now we have: # - coeff: # - c_powers: (b, e) # - num_exp: (2, e) # - pnum_rat: {(1/3, [1/3, 2/3, 1/4])} # 0 1 # x -> 1 x -> x for b, e in c_powers: if e is S.One: if b.is_Number: coeff *= b else: c_part.append(b) elif e is not S.Zero: c_part.append(Pow(b, e)) # x x x # 2 * 3 -> 6 inv_exp_dict = {} # exp:Mul(num-bases) x x # e.g. x:6 for ... * 2 * 3 * ... for b, e in num_exp: inv_exp_dict.setdefault(e, []).append(b) for e, b in inv_exp_dict.items(): inv_exp_dict[e] = Mul(*b) c_part.extend([Pow(b, e) for e, b in inv_exp_dict.iteritems() if e]) # b, e -> e' = sum(e), b # {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])} comb_e = {} for b, e in pnum_rat.iteritems(): comb_e.setdefault(Add(*e), []).append(b) del pnum_rat # process them, reducing exponents to values less than 1 # and updating coeff if necessary else adding them to # num_rat for further processing num_rat = [] for e, b in comb_e.iteritems(): b = Mul(*b) if e.q == 1: coeff *= Pow(b, e) continue if e.p > e.q: e_i, ep = divmod(e.p, e.q) coeff *= Pow(b, e_i) e = Rational(ep, e.q) num_rat.append((b, e)) del comb_e # extract gcd of bases in num_rat # 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4) pnew = defaultdict(list) i = 0 # steps through num_rat which may grow while i < len(num_rat): bi, ei = num_rat[i] grow = [] for j in range(i + 1, len(num_rat)): bj, ej = num_rat[j] g = _rgcd(bi, bj) if g is not S.One: # 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2 # this might have a gcd with something else e = ei + ej if e.q == 1: coeff *= Pow(g, e) else: if e.p > e.q: e_i, ep = divmod(e.p, e.q) # change e in place coeff *= Pow(g, e_i) e = Rational(ep, e.q) grow.append((g, e)) # update the jth item num_rat[j] = (bj/g, ej) # update bi that we are checking with bi = bi/g if bi is S.One: break if bi is not S.One: obj = Pow(bi, ei) if obj.is_Number: coeff *= obj else: # changes like sqrt(12) -> 2*sqrt(3) for obj in Mul.make_args(obj): if obj.is_Number: coeff *= obj else: assert obj.is_Pow bi, ei = obj.args pnew[ei].append(bi) num_rat.extend(grow) i += 1 # combine bases of the new powers for e, b in pnew.iteritems(): pnew[e] = Mul(*b) # see if there is a base with matching coefficient # that the -1 can be joined with if neg1e: p = Pow(S.NegativeOne, neg1e) if p.is_Number: coeff *= p else: c, p = p.as_coeff_Mul() coeff *= c if p.is_Pow and p.base is S.NegativeOne: neg1e = p.exp for e, b in pnew.iteritems(): if e == neg1e and b.is_positive: pnew[e] = -b break else: c_part.append(p) # add all the pnew powers c_part.extend([Pow(b, e) for e, b in pnew.iteritems()]) # oo, -oo if (coeff is S.Infinity) or (coeff is S.NegativeInfinity): def _handle_for_oo(c_part, coeff_sign): new_c_part = [] for t in c_part: if t.is_positive: continue if t.is_negative: coeff_sign *= -1 continue new_c_part.append(t) return new_c_part, coeff_sign c_part, coeff_sign = _handle_for_oo(c_part, 1) nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign) coeff *= coeff_sign # zoo if coeff is S.ComplexInfinity: # zoo might be # unbounded_real + bounded_im # bounded_real + unbounded_im # unbounded_real + unbounded_im # and non-zero real or imaginary will not change that status. c_part = [c for c in c_part if not (c.is_nonzero and c.is_real is not None)] nc_part = [c for c in nc_part if not (c.is_nonzero and c.is_real is not None)] # 0 elif coeff is S.Zero: # we know for sure the result will be 0 return [coeff], [], order_symbols # order commutative part canonically c_part.sort(key=cls._args_sortkey) # current code expects coeff to be always in slot-0 if coeff is not S.One: c_part.insert(0, coeff) # we are done if len(c_part) == 2 and c_part[0].is_Number and c_part[1].is_Add: # 2*(1+a) -> 2 + 2 * a coeff = c_part[0] c_part = [Add(*[coeff*f for f in c_part[1].args])] return c_part, nc_part, order_symbols def _eval_power(b, e): # don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B cargs, nc = b.args_cnc(split_1=False) if e.is_Integer: return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \ Pow(Mul._from_args(nc), e, evaluate=False) p = Pow(b, e, evaluate=False) if e.is_Rational or e.is_Float: return p._eval_expand_power_base() return p @classmethod def class_key(cls): return 3, 0, cls.__name__ def _eval_evalf(self, prec): c, m = self.as_coeff_Mul() if c is S.NegativeOne: if m.is_Mul: rv = -AssocOp._eval_evalf(m, prec) else: mnew = m._eval_evalf(prec) if mnew is not None: m = mnew rv = -m else: rv = AssocOp._eval_evalf(self, prec) if rv.is_number: return rv.expand() return rv @cacheit def as_two_terms(self): """Return head and tail of self. This is the most efficient way to get the head and tail of an expression. - if you want only the head, use self.args[0]; - if you want to process the arguments of the tail then use self.as_coef_mul() which gives the head and a tuple containing the arguments of the tail when treated as a Mul. - if you want the coefficient when self is treated as an Add then use self.as_coeff_add()[0] >>> from sympy.abc import x, y >>> (3*x*y).as_two_terms() (3, x*y) """ args = self.args if len(args) == 1: return S.One, self elif len(args) == 2: return args else: return args[0], self._new_rawargs(*args[1:]) @cacheit def as_coeff_mul(self, *deps): if deps: l1 = [] l2 = [] for f in self.args: if f.has(*deps): l2.append(f) else: l1.append(f) return self._new_rawargs(*l1), tuple(l2) args = self.args if args[0].is_Rational: return args[0], args[1:] elif args[0] is S.NegativeInfinity: return S.NegativeOne, (-args[0],) + args[1:] return S.One, args def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ coeff, args = self.args[0], self.args[1:] if coeff.is_Number and not (rational and not coeff.is_Rational): if len(args) == 1: return coeff, args[0] else: return coeff, self._new_rawargs(*args) else: return S.One, self def as_real_imag(self, deep=True, **hints): other = [] coeff = S(1) for a in self.args: if a.is_real: coeff *= a else: other.append(a) m = Mul(*other) if hints.get('ignore') == m: return None else: return (coeff*C.re(m), coeff*C.im(m)) @staticmethod def _expandsums(sums): """ Helper function for _eval_expand_mul. sums must be a list of instances of Basic. """ L = len(sums) if L == 1: return sums[0].args terms = [] left = Mul._expandsums(sums[:L//2]) right = Mul._expandsums(sums[L//2:]) terms = [Mul(a, b) for a in left for b in right] added = Add(*terms) return Add.make_args(added) # it may have collapsed down to one term def _eval_expand_mul(self, **hints): from sympy import fraction, expand_mul # Handle things like 1/(x*(x + 1)), which are automatically converted # to 1/x*1/(x + 1) expr = self n, d = fraction(expr) if d.is_Mul: expr = n/d._eval_expand_mul(**hints) if not expr.is_Mul: return expand_mul(expr, deep=False) plain, sums, rewrite = [], [], False for factor in expr.args: if factor.is_Add: sums.append(factor) rewrite = True else: if factor.is_commutative: plain.append(factor) else: sums.append(Basic(factor)) # Wrapper if not rewrite: return expr else: plain = Mul(*plain) if sums: terms = Mul._expandsums(sums) args = [] for term in terms: t = Mul(plain, term) if t.is_Mul and any(a.is_Add for a in t.args): t = t._eval_expand_mul() args.append(t) return Add(*args) else: return plain def _eval_derivative(self, s): terms = list(self.args) factors = [] for i in xrange(len(terms)): t = terms[i].diff(s) if t is S.Zero: continue factors.append(Mul(*(terms[:i] + [t] + terms[i + 1:]))) return Add(*factors) def _matches_simple(self, expr, repl_dict): # handle (w*3).matches('x*5') -> {w: x*5/3} coeff, terms = self.as_coeff_Mul() terms = Mul.make_args(terms) if len(terms) == 1: newexpr = self.__class__._combine_inverse(expr, coeff) return terms[0].matches(newexpr, repl_dict) return def matches(self, expr, repl_dict={}): expr = sympify(expr) if self.is_commutative and expr.is_commutative: return AssocOp._matches_commutative(self, expr, repl_dict) elif self.is_commutative is not expr.is_commutative: return None c1, nc1 = self.args_cnc() c2, nc2 = expr.args_cnc() repl_dict = repl_dict.copy() if c1: if not c2: c2 = [1] a = Mul(*c1) if isinstance(a, AssocOp): repl_dict = a._matches_commutative(Mul(*c2), repl_dict) else: repl_dict = a.matches(Mul(*c2), repl_dict) if repl_dict: a = Mul(*nc1) if isinstance(a, Mul): repl_dict = a._matches(Mul(*nc2), repl_dict) else: repl_dict = a.matches(Mul(*nc2), repl_dict) return repl_dict or None def _matches(self, expr, repl_dict={}): # weed out negative one prefixes sign = 1 a, b = self.as_two_terms() if a is S.NegativeOne: if b.is_Mul: sign = -sign else: # the remainder, b, is not a Mul anymore return b.matches(-expr, repl_dict) expr = sympify(expr) if expr.is_Mul and expr.args[0] is S.NegativeOne: expr = -expr sign = -sign if not expr.is_Mul: # expr can only match if it matches b and a matches +/- 1 if len(self.args) == 2: # quickly test for equality if b == expr: return a.matches(Rational(sign), repl_dict) # do more expensive match dd = b.matches(expr, repl_dict) if dd is None: return None dd = a.matches(Rational(sign), dd) return dd return None d = repl_dict.copy() # weed out identical terms pp = list(self.args) ee = list(expr.args) for p in self.args: if p in expr.args: ee.remove(p) pp.remove(p) # only one symbol left in pattern -> match the remaining expression if len(pp) == 1 and isinstance(pp[0], C.Wild): if len(ee) == 1: d[pp[0]] = sign * ee[0] else: d[pp[0]] = sign * expr.func(*ee) return d if len(ee) != len(pp): return None for p, e in zip(pp, ee): d = p.xreplace(d).matches(e, d) if d is None: return None return d @staticmethod def _combine_inverse(lhs, rhs): """ Returns lhs/rhs, but treats arguments like symbols, so things like oo/oo return 1, instead of a nan. """ if lhs == rhs: return S.One def check(l, r): if l.is_Float and r.is_comparable: # if both objects are added to 0 they will share the same "normalization" # and are more likely to compare the same. Since Add(foo, 0) will not allow # the 0 to pass, we use __add__ directly. return l.__add__(0) == r.evalf().__add__(0) return False if check(lhs, rhs) or check(rhs, lhs): return S.One if lhs.is_Mul and rhs.is_Mul: a = list(lhs.args) b = [1] for x in rhs.args: if x in a: a.remove(x) else: b.append(x) return Mul(*a)/Mul(*b) return lhs/rhs def as_powers_dict(self): d = defaultdict(list) for term in self.args: b, e = term.as_base_exp() d[b].append(e) for b, e in d.iteritems(): if len(e) == 1: e = e[0] else: e = Add(*e) d[b] = e return d def as_numer_denom(self): # don't use _from_args to rebuild the numerators and denominators # as the order is not guaranteed to be the same once they have # been separated from each other numers, denoms = zip(*[f.as_numer_denom() for f in self.args]) return Mul(*numers), Mul(*denoms) def as_base_exp(self): e1 = None bases = [] nc = 0 for m in self.args: b, e = m.as_base_exp() if not b.is_commutative: nc += 1 if e1 is None: e1 = e elif e != e1 or nc > 1: return self, S.One bases.append(b) return Mul(*bases), e1 def _eval_is_polynomial(self, syms): return all(term._eval_is_polynomial(syms) for term in self.args) def _eval_is_rational_function(self, syms): return all(term._eval_is_rational_function(syms) for term in self.args) _eval_is_bounded = lambda self: self._eval_template_is_attr('is_bounded') _eval_is_integer = lambda self: self._eval_template_is_attr( 'is_integer', when_multiple=None) _eval_is_commutative = lambda self: self._eval_template_is_attr( 'is_commutative') def _eval_is_polar(self): has_polar = any(arg.is_polar for arg in self.args) return has_polar and \ all(arg.is_polar or arg.is_positive for arg in self.args) # I*I -> R, I*I*I -> -I def _eval_is_real(self): im_count = 0 is_neither = False for t in self.args: if t.is_imaginary: im_count += 1 continue t_real = t.is_real if t_real: continue elif t_real is False: if is_neither: return None else: is_neither = True else: return None if is_neither: return False return (im_count % 2 == 0) def _eval_is_imaginary(self): im_count = 0 is_neither = False for t in self.args: if t.is_imaginary: im_count += 1 continue t_real = t.is_real if t_real: continue elif t_real is False: if is_neither: return None else: is_neither = True else: return None if is_neither: return False return (im_count % 2 == 1) def _eval_is_hermitian(self): nc_count = 0 im_count = 0 is_neither = False for t in self.args: if not t.is_commutative: nc_count += 1 if nc_count > 1: return None if t.is_antihermitian: im_count += 1 continue t_real = t.is_hermitian if t_real: continue elif t_real is False: if is_neither: return None else: is_neither = True else: return None if is_neither: return False return (im_count % 2 == 0) def _eval_is_antihermitian(self): nc_count = 0 im_count = 0 is_neither = False for t in self.args: if not t.is_commutative: nc_count += 1 if nc_count > 1: return None if t.is_antihermitian: im_count += 1 continue t_real = t.is_hermitian if t_real: continue elif t_real is False: if is_neither: return None else: is_neither = True else: return None if is_neither: return False return (im_count % 2 == 1) def _eval_is_irrational(self): for t in self.args: a = t.is_irrational if a: others = list(self.args) others.remove(t) if all(x.is_rational is True for x in others): return True return None if a is None: return return False def _eval_is_zero(self): zero = None for a in self.args: if a.is_zero: zero = True continue bound = a.is_bounded if not bound: return bound if zero: return True def _eval_is_positive(self): """Return True if self is positive, False if not, and None if it cannot be determined. This algorithm is non-recursive and works by keeping track of the sign which changes when a negative or nonpositive is encountered. Whether a nonpositive or nonnegative is seen is also tracked since the presence of these makes it impossible to return True, but possible to return False if the end result is nonpositive. e.g. pos * neg * nonpositive -> pos or zero -> None is returned pos * neg * nonnegative -> neg or zero -> False is returned """ sign = 1 saw_NON = False for t in self.args: if t.is_positive: continue elif t.is_negative: sign = -sign elif t.is_zero: return False elif t.is_nonpositive: sign = -sign saw_NON = True elif t.is_nonnegative: saw_NON = True else: return if sign == 1 and saw_NON is False: return True if sign < 0: return False def _eval_is_negative(self): """Return True if self is negative, False if not, and None if it cannot be determined. This algorithm is non-recursive and works by keeping track of the sign which changes when a negative or nonpositive is encountered. Whether a nonpositive or nonnegative is seen is also tracked since the presence of these makes it impossible to return True, but possible to return False if the end result is nonnegative. e.g. pos * neg * nonpositive -> pos or zero -> False is returned pos * neg * nonnegative -> neg or zero -> None is returned """ sign = 1 saw_NON = False for t in self.args: if t.is_positive: continue elif t.is_negative: sign = -sign elif t.is_zero: return False elif t.is_nonpositive: sign = -sign saw_NON = True elif t.is_nonnegative: saw_NON = True else: return if sign == -1 and saw_NON is False: return True if sign > 0: return False def _eval_is_odd(self): is_integer = self.is_integer if is_integer: r = True for t in self.args: if t.is_even: return False if t.is_odd is None: r = None return r # !integer -> !odd elif is_integer is False: return False def _eval_is_even(self): is_integer = self.is_integer if is_integer: return fuzzy_not(self._eval_is_odd()) elif is_integer is False: return False def _eval_subs(self, old, new): from sympy import sign, multiplicity from sympy.simplify.simplify import powdenest, fraction if not old.is_Mul: return None if old.args[0] == -1: return self._subs(-old, -new) def base_exp(a): # if I and -1 are in a Mul, they get both end up with # a -1 base (see issue 3322); all we want here are the # true Pow or exp separated into base and exponent if a.is_Pow or a.func is C.exp: return a.as_base_exp() return a, S.One def breakup(eq): """break up powers of eq when treated as a Mul: b**(Rational*e) -> b**e, Rational commutatives come back as a dictionary {b**e: Rational} noncommutatives come back as a list [(b**e, Rational)] """ (c, nc) = (defaultdict(int), list()) for a in Mul.make_args(eq): a = powdenest(a) (b, e) = base_exp(a) if e is not S.One: (co, _) = e.as_coeff_mul() b = Pow(b, e/co) e = co if a.is_commutative: c[b] += e else: nc.append([b, e]) return (c, nc) def rejoin(b, co): """ Put rational back with exponent; in general this is not ok, but since we took it from the exponent for analysis, it's ok to put it back. """ (b, e) = base_exp(b) return Pow(b, e*co) def ndiv(a, b): """if b divides a in an extractive way (like 1/4 divides 1/2 but not vice versa, and 2/5 does not divide 1/3) then return the integer number of times it divides, else return 0. """ if not b.q % a.q or not a.q % b.q: return int(a/b) return 0 # give Muls in the denominator a chance to be changed (see issue 2552) # rv will be the default return value rv = None n, d = fraction(self) if d is not S.One: self2 = n._subs(old, new)/d._subs(old, new) if not self2.is_Mul: return self2._subs(old, new) if self2 != self: self = rv = self2 # Now continue with regular substitution. # handle the leading coefficient and use it to decide if anything # should even be started; we always know where to find the Rational # so it's a quick test co_self = self.args[0] co_old = old.args[0] co_xmul = None if co_old.is_Rational and co_self.is_Rational: # if coeffs are the same there will be no updating to do # below after breakup() step; so skip (and keep co_xmul=None) if co_old != co_self: co_xmul = co_self.extract_multiplicatively(co_old) elif co_old.is_Rational: return rv # break self and old into factors (c, nc) = breakup(self) (old_c, old_nc) = breakup(old) # update the coefficients if we had an extraction # e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5 # then co_self in c is replaced by (3/5)**2 and co_residual # is 2*(1/7)**2 if co_xmul and co_xmul.is_Rational: n_old, d_old = co_old.as_numer_denom() n_self, d_self = co_self.as_numer_denom() def _multiplicity(p, n): p = abs(p) if p is S.One: return S.Infinity return multiplicity(p, abs(n)) mult = S(min(_multiplicity(n_old, n_self), _multiplicity(d_old, d_self))) c.pop(co_self) c[co_old] = mult co_residual = co_self/co_old**mult else: co_residual = 1 # do quick tests to see if we can't succeed ok = True if len(old_nc) > len(nc): # more non-commutative terms ok = False elif len(old_c) > len(c): # more commutative terms ok = False elif set(i[0] for i in old_nc).difference(set(i[0] for i in nc)): # unmatched non-commutative bases ok = False elif set(old_c).difference(set(c)): # unmatched commutative terms ok = False elif any(sign(c[b]) != sign(old_c[b]) for b in old_c): # differences in sign ok = False if not ok: return rv if not old_c: cdid = None else: rat = [] for (b, old_e) in old_c.items(): c_e = c[b] rat.append(ndiv(c_e, old_e)) if not rat[-1]: return rv cdid = min(rat) if not old_nc: ncdid = None for i in range(len(nc)): nc[i] = rejoin(*nc[i]) else: ncdid = 0 # number of nc replacements we did take = len(old_nc) # how much to look at each time limit = cdid or S.Infinity # max number that we can take failed = [] # failed terms will need subs if other terms pass i = 0 while limit and i + take <= len(nc): hit = False # the bases must be equivalent in succession, and # the powers must be extractively compatible on the # first and last factor but equal inbetween. rat = [] for j in range(take): if nc[i + j][0] != old_nc[j][0]: break elif j == 0: rat.append(ndiv(nc[i + j][1], old_nc[j][1])) elif j == take - 1: rat.append(ndiv(nc[i + j][1], old_nc[j][1])) elif nc[i + j][1] != old_nc[j][1]: break else: rat.append(1) j += 1 else: ndo = min(rat) if ndo: if take == 1: if cdid: ndo = min(cdid, ndo) nc[i] = Pow(new, ndo)*rejoin(nc[i][0], nc[i][1] - ndo*old_nc[0][1]) else: ndo = 1 # the left residual l = rejoin(nc[i][0], nc[i][1] - ndo* old_nc[0][1]) # eliminate all middle terms mid = new # the right residual (which may be the same as the middle if take == 2) ir = i + take - 1 r = (nc[ir][0], nc[ir][1] - ndo* old_nc[-1][1]) if r[1]: if i + take < len(nc): nc[i:i + take] = [l*mid, r] else: r = rejoin(*r) nc[i:i + take] = [l*mid*r] else: # there was nothing left on the right nc[i:i + take] = [l*mid] limit -= ndo ncdid += ndo hit = True if not hit: # do the subs on this failing factor failed.append(i) i += 1 else: if not ncdid: return rv # although we didn't fail, certain nc terms may have # failed so we rebuild them after attempting a partial # subs on them failed.extend(range(i, len(nc))) for i in failed: nc[i] = rejoin(*nc[i]).subs(old, new) # rebuild the expression if cdid is None: do = ncdid elif ncdid is None: do = cdid else: do = min(ncdid, cdid) margs = [] for b in c: if b in old_c: # calculate the new exponent e = c[b] - old_c[b]*do margs.append(rejoin(b, e)) else: margs.append(rejoin(b.subs(old, new), c[b])) if cdid and not ncdid: # in case we are replacing commutative with non-commutative, # we want the new term to come at the front just like the # rest of this routine margs = [Pow(new, cdid)] + margs return co_residual*Mul(*margs)*Mul(*nc) def _eval_nseries(self, x, n, logx): from sympy import powsimp terms = [t.nseries(x, n=n, logx=logx) for t in self.args] return powsimp(Mul(*terms).expand(), combine='exp', deep=True) def _eval_as_leading_term(self, x): return Mul(*[t.as_leading_term(x) for t in self.args]) def _eval_conjugate(self): return Mul(*[t.conjugate() for t in self.args]) def _eval_transpose(self): return Mul(*[t.transpose() for t in self.args[::-1]]) def _eval_adjoint(self): return Mul(*[t.adjoint() for t in self.args[::-1]]) def _sage_(self): s = 1 for x in self.args: s *= x._sage_() return s def as_content_primitive(self, radical=False): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import sqrt >>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive() (6, -sqrt(2)*(-sqrt(2) + 1)) See docstring of Expr.as_content_primitive for more examples. """ coef = S.One args = [] for i, a in enumerate(self.args): c, p = a.as_content_primitive(radical=radical) coef *= c if p is not S.One: args.append(p) # don't use self._from_args here to reconstruct args # since there may be identical args now that should be combined # e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x)) return coef, Mul(*args) def as_ordered_factors(self, order=None): """Transform an expression into an ordered list of factors. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x, y >>> (2*x*y*sin(x)*cos(x)).as_ordered_factors() [2, x, y, sin(x), cos(x)] """ cpart, ncpart = self.args_cnc() cpart.sort(key=lambda expr: expr.sort_key(order=order)) return cpart + ncpart @property def _sorted_args(self): return self.as_ordered_factors()
def __new__(cls, expr, *symbols, **assumptions): expr = sympify(expr) if expr is S.NaN: return S.NaN if symbols: symbols = map(sympify, symbols) if not all(isinstance(s, Symbol) for s in symbols): raise NotImplementedError( 'Order at points other than 0 not supported.') else: symbols = list(expr.free_symbols) if expr.is_Order: v = set(expr.variables) symbols = v | set(symbols) if symbols == v: return expr symbols = list(symbols) elif symbols: symbols = list(set(symbols)) if len(symbols) > 1: # XXX: better way? We need this expand() to # workaround e.g: expr = x*(x + y). # (x*(x + y)).as_leading_term(x, y) currently returns # x*y (wrong order term!). That's why we want to deal with # expand()'ed expr (handled in "if expr.is_Add" branch below). expr = expr.expand() if expr.is_Add: lst = expr.extract_leading_order(*symbols) expr = Add(*[f.expr for (e, f) in lst]) elif expr: expr = expr.as_leading_term(*symbols) expr = expr.as_independent(*symbols, as_Add=False)[1] expr = expand_power_base(expr) expr = expand_log(expr) if len(symbols) == 1: # The definition of O(f(x)) symbol explicitly stated that # the argument of f(x) is irrelevant. That's why we can # combine some power exponents (only "on top" of the # expression tree for f(x)), e.g.: # x**p * (-x)**q -> x**(p+q) for real p, q. x = symbols[0] margs = list( Mul.make_args(expr.as_independent(x, as_Add=False)[1])) for i, t in enumerate(margs): if t.is_Pow: b, q = t.args if b in (x, -x) and q.is_real and not q.has(x): margs[i] = x**q elif b.is_Pow and not b.exp.has(x): b, r = b.args if b in (x, -x) and r.is_real: margs[i] = x**(r * q) elif b.is_Mul and b.args[0] is S.NegativeOne: b = -b if b.is_Pow and not b.exp.has(x): b, r = b.args if b in (x, -x) and r.is_real: margs[i] = x**(r * q) expr = Mul(*margs) if expr is S.Zero: return expr if not expr.has(*symbols): expr = S.One # create Order instance: symbols.sort(key=cmp_to_key(Basic.compare)) obj = Expr.__new__(cls, expr, *symbols, **assumptions) return obj
def __new__(cls, expr, *symbols, **assumptions): expr = sympify(expr) if expr is S.NaN: return S.NaN if symbols: symbols = map(sympify, symbols) if not all(isinstance(s, Symbol) for s in symbols): raise NotImplementedError( 'Order at points other than 0 not supported.') else: symbols = list(expr.free_symbols) if expr.is_Order: v = set(expr.variables) symbols = v | set(symbols) if symbols == v: return expr symbols = list(symbols) elif symbols: symbols = list(set(symbols)) if len(symbols) > 1: # XXX: better way? We need this expand() to # workaround e.g: expr = x*(x + y). # (x*(x + y)).as_leading_term(x, y) currently returns # x*y (wrong order term!). That's why we want to deal with # expand()'ed expr (handled in "if expr.is_Add" branch below). expr = expr.expand() if expr.is_Add: lst = expr.extract_leading_order(*symbols) expr = Add(*[f.expr for (e, f) in lst]) elif expr: expr = expr.as_leading_term(*symbols) expr = expr.as_independent(*symbols, **dict(as_Add=False))[1] expr = expand_power_base(expr) expr = expand_log(expr) if len(symbols) == 1: # The definition of O(f(x)) symbol explicitly stated that # the argument of f(x) is irrelevant. That's why we can # combine some power exponents (only "on top" of the # expression tree for f(x)), e.g.: # x**p * (-x)**q -> x**(p+q) for real p, q. x = symbols[0] margs = list(Mul.make_args( expr.as_independent(x, **dict(as_Add=False))[1])) for i, t in enumerate(margs): if t.is_Pow: b, q = t.args if b in (x, -x) and q.is_real and not q.has(x): margs[i] = x**q elif b.is_Pow and not b.exp.has(x): b, r = b.args if b in (x, -x) and r.is_real: margs[i] = x**(r*q) elif b.is_Mul and b.args[0] is S.NegativeOne: b = -b if b.is_Pow and not b.exp.has(x): b, r = b.args if b in (x, -x) and r.is_real: margs[i] = x**(r*q) expr = Mul(*margs) if expr is S.Zero: return expr if not expr.has(*symbols): expr = S.One # create Order instance: symbols.sort(key=cmp_to_key(Basic.compare)) obj = Expr.__new__(cls, expr, *symbols, **assumptions) return obj
from __future__ import print_function, division from collections import defaultdict from sympy.core.basic import C, Basic from sympy.core.compatibility import cmp_to_key, reduce, is_sequence from sympy.core.singleton import S from sympy.core.operations import AssocOp from sympy.core.cache import cacheit from sympy.core.numbers import ilcm, igcd from sympy.core.expr import Expr # Key for sorting commutative args in canonical order _args_sortkey = cmp_to_key(Basic.compare) def _addsort(args): # in-place sorting of args args.sort(key=_args_sortkey) def _unevaluated_Add(*args): """Return a well-formed unevaluated Add: Numbers are collected and put in slot 0 and args are sorted. Use this when args have changed but you still want to return an unevaluated Add. Examples ======== >>> from sympy.core.add import _unevaluated_Add as uAdd >>> from sympy import S, Add >>> from sympy.abc import x, y
class LatexPrinter(Printer): """ A printer class which converts an expression into its LaTeX equivalent. This class extends the LatexPrinter class currently in sympy in the following ways: 1. Variable and function names can now encode multiple Greek symbols, number, Greek, and roman super and subscripts and accents plus bold math in an alphanumeric ASCII string consisting of ``[A-Za-z0-9_]`` symbols 1 - Accents and bold math are implemented in reverse notation. For example if you wished the LaTeX output to be ``\bm{\hat{\sigma}}`` you would give the variable the name sigmahatbm. 2 - Subscripts are denoted by a single underscore and superscripts by a double underscore so that ``A_{\\rho\\beta}^{25}`` would be input as A_rhobeta__25. 2. Some standard function names have been improved such as asin is now denoted by Sin^{-1} and log by ln. 3. Several LaTeX formats for multivectors are available: 1 - Print multivector on one line 2 - Print each grade of multivector on one line 3 - Print each base of multivector on one line 4. A LaTeX output for numpy arrays containing sympy expressions is implemented for up to a three dimensional array. 5. LaTeX formatting for raw LaTeX, eqnarray, and array is available in simple output strings. 1 - The delimiter for raw LaTeX input is '%'. The raw input starts on the line where '%' is first encountered and continues until the next line where '%' is encountered. It does not matter where '%' is in the line. 2 - The delimiter for eqnarray input is '@'. The rules are the same as for raw input except that '=' in the first line is replaced be '&=&' and '\\begin{eqnarray*}' is added before the first line and '\end{eqnarray*}' to after the last line in the group of lines. 3 - The delimiter for array input is '#'. The rules are the same as for raw input except that '\\begin{equation*}' is added before the first line and '\end{equation*}' to after the last line in the group of lines. 6. Additional formats for partial derivatives: 0 - Same as sympy latex module 1 - Use subscript notation with partial symbol to indicate which variable the differentiation is with respect to. Symbol is of form \partial_{differentiation variable} """ #printmethod ='_latex_ex' sym_fmt = 0 fct_fmt = 0 pdiff_fmt = 0 mv_fmt = 0 str_fmt = 1 LaTeX_flg = False mode = ('_', '^') fmt_dict = {'sym': 0, 'fct': 0, 'pdiff': 0, 'mv': 0, 'str': 1} fct_dict = {'sin':'sin','cos':'cos','tan':'tan','cot':'cot',\ 'asin':'Sin^{-1}','acos':'Cos^{-1}',\ 'atan':'Tan^{-1}','acot':'Cot^{-1}',\ 'sinh':'sinh','cosh':'cosh','tanh':'tanh','coth':'coth',\ 'asinh':'Sinh^{-1}','acosh':'Cosh^{-1}', 'atanh':'Tanh^{-1}','acoth':'Coth^{-1}',\ 'sqrt':'sqrt','exp':'exp','log':'ln'} fct_dict_keys = fct_dict.keys() greek_keys = sorted(('alpha','beta','gamma','delta','varepsilon','epsilon','zeta',\ 'vartheta','theta','iota','kappa','lambda','mu','nu','xi',\ 'varpi','pi','rho','varrho','varsigma','sigma','tau','upsilon',\ 'varphi','phi','chi','psi','omega','Gamma','Delta','Theta',\ 'Lambda','Xi','Pi','Sigma','Upsilon','Phi','Psi','Omega','partial',\ 'nabla','eta'),key=cmp_to_key(len_cmp)) accent_keys = sorted(('hat','check','dot','breve','acute','ddot','grave','tilde',\ 'mathring','bar','vec','bm','prm','abs'),key=cmp_to_key(len_cmp)) greek_cnt = 0 greek_dict = {} accent_cnt = 0 accent_dict = {} preamble = '\\documentclass[10pt,letter,fleqn]{report}\n'+\ '\\pagestyle{empty}\n'+\ '\\usepackage[latin1]{inputenc}\n'+\ '\\usepackage[dvips,landscape,top=1cm,nohead,nofoot]{geometry}\n'+\ '\\usepackage{amsmath}\n'+\ '\\usepackage{bm}\n'+\ '\\usepackage{amsfonts}\n'+\ '\\usepackage{amssymb}\n'+\ '\\setlength{\\parindent}{0pt}\n'+\ '\\newcommand{\\bfrac}[2]{\\displaystyle\\frac{#1}{#2}}\n'+\ '\\newcommand{\\lp}{\\left (}\n'+\ '\\newcommand{\\rp}{\\right )}\n'+\ '\\newcommand{\\half}{\\frac{1}{2}}\n'+\ '\\newcommand{\\llt}{\\left <}\n'+\ '\\newcommand{\\rgt}{\\right >}\n'+\ '\\newcommand{\\abs}[1]{\\left |{#1}\\right | }\n'+\ '\\newcommand{\\pdiff}[2]{\\bfrac{\\partial {#1}}{\\partial {#2}}}\n'+\ '\\newcommand{\\lbrc}{\\left \\{}\n'+\ '\\newcommand{\\rbrc}{\\right \\}}\n'+\ '\\newcommand{\\W}{\\wedge}\n'+\ "\\newcommand{\\prm}[1]{{#1}'}\n"+\ '\\newcommand{\\ddt}[1]{\\bfrac{d{#1}}{dt}}\n'+\ '\\newcommand{\\R}{\\dagger}\n'+\ '\\begin{document}\n' postscript = '\\end{document}\n' @staticmethod def latex_bases(): """ Generate LaTeX strings for multivector bases """ if type(sympy.galgebra.GA.MV.basislabel_lst) == types.IntType: sys.stderr.write( 'MV.setup() must be executed before LatexPrinter.format()!\n') sys.exit(1) LatexPrinter.latexbasis_lst = [['']] for grades in sympy.galgebra.GA.MV.basislabel_lst[1:]: grades_lst = [] for grade in grades: grade_lst = [] for base in grade: latex_base = LatexPrinter.extended_symbol(base) grade_lst.append(latex_base) grades_lst.append(grade_lst) LatexPrinter.latexbasis_lst.append(grades_lst) return @staticmethod def build_base(igrade, iblade, bld_flg): if igrade == 0: return ('') base_lst = LatexPrinter.latexbasis_lst[igrade][iblade] if len(base_lst) == 1: return (base_lst[0]) base_str = '' for base in base_lst[:-1]: if bld_flg: base_str += base + '\\W ' else: base_str += base base_str += base_lst[-1] return (base_str) @staticmethod def format(sym=0, fct=0, pdiff=0, mv=0): LatexPrinter.LaTeX_flg = True LatexPrinter.fmt_dict['sym'] = sym LatexPrinter.fmt_dict['fct'] = fct LatexPrinter.fmt_dict['pdiff'] = pdiff LatexPrinter.fmt_dict['mv'] = mv LatexPrinter.fmt_dict['str'] = 1 if sympy.galgebra.GA.MV.is_setup: LatexPrinter.latex_bases() LatexPrinter.redirect() return @staticmethod def str_basic(in_str): if not LatexPrinter.LaTeX_flg: return (str(in_str)) Basic.__str__ = LatexPrinter.Basic__str__ out_str = str(in_str) Basic.__str__ = LaTeX return (out_str) @staticmethod def redirect(): LatexPrinter.Basic__str__ = Basic.__str__ LatexPrinter.MV__str__ = sympy.galgebra.GA.MV.__str__ LatexPrinter.stdout = sys.stdout sys.stdout = StringIO.StringIO() Basic.__str__ = LaTeX sympy.galgebra.GA.MV.__str__ = LaTeX return @staticmethod def restore(): LatexPrinter_stdout = sys.stdout LatexPrinter_Basic__str__ = Basic.__str__ LatexPrinter_MV__str__ = sympy.galgebra.GA.MV.__str__ sys.stdout = LatexPrinter.stdout Basic.__str__ = LatexPrinter.Basic__str__ sympy.galgebra.GA.MV.__str__ = LatexPrinter.MV__str__ LatexPrinter.stdout = LatexPrinter_stdout LatexPrinter.Basic__str__ = LatexPrinter_Basic__str__ LatexPrinter.MV__str__ = LatexPrinter_MV__str__ return @staticmethod def format_str(fmt='0 0 0 0'): fmt_lst = fmt.split() if '=' not in fmt: LatexPrinter.fmt_dict['sym'] = int(fmt_lst[0]) LatexPrinter.fmt_dict['fct'] = int(fmt_lst[1]) LatexPrinter.fmt_dict['pdiff'] = int(fmt_lst[2]) LatexPrinter.fmt_dict['mv'] = int(fmt_lst[3]) else: for fmt in fmt_lst: x = fmt.split('=') LatexPrinter.fmt_dict[x[0]] = int(x[1]) if LatexPrinter.LaTeX_flg == False: if sympy.galgebra.GA.MV.is_setup: LatexPrinter.latex_bases() LatexPrinter.redirect() LatexPrinter.LaTeX_flg = True return @staticmethod def append_body(xstr): if LatexPrinter.body_flg: LatexPrinter.body += xstr return ('') else: return (xstr[:-1]) @staticmethod def tokenize_greek(name_str): for sym in LatexPrinter.greek_keys: isym = name_str.find(sym) if isym > -1: keystr = '@' + str(LatexPrinter.greek_cnt) LatexPrinter.greek_cnt += 1 LatexPrinter.greek_dict[keystr] = sym name_str = name_str.replace(sym, keystr) return (name_str) @staticmethod def tokenize_accents(name_str): for sym in LatexPrinter.accent_keys: if name_str.find(sym) > -1: keystr = '#' + str(LatexPrinter.accent_cnt) + '#' LatexPrinter.accent_cnt += 1 LatexPrinter.accent_dict[keystr] = '\\' + sym name_str = name_str.replace(sym, keystr) return (name_str) @staticmethod def replace_greek_tokens(name_str): if name_str.find('@') == -1: return (name_str) for token in LatexPrinter.greek_dict.keys(): name_str = name_str.replace( token, '{\\' + LatexPrinter.greek_dict[token] + '}') LatexPrinter.greek_cnt = 0 LatexPrinter.greek_dict = {} return (name_str) @staticmethod def replace_accent_tokens(name_str): tmp_lst = name_str.split('#') name_str = tmp_lst[0] if len(tmp_lst) == 1: return (name_str) for x in tmp_lst[1:]: if x != '': name_str = '{}' + LatexPrinter.accent_dict[ '#' + x + '#'] + '{' + name_str + '}' LatexPrinter.accent_cnt = 0 LatexPrinter.accent_dict = {} return (name_str) @staticmethod def extended_symbol(name_str): name_str = LatexPrinter.tokenize_greek(name_str) tmp_lst = name_str.split('_') subsup_str = '' sym_str = tmp_lst[0] sym_str = LatexPrinter.tokenize_accents(sym_str) sym_str = LatexPrinter.replace_accent_tokens(sym_str) if len(tmp_lst) > 1: imode = 0 for x in tmp_lst[1:]: if x == '': imode = (imode + 1) % 2 else: subsup_str += LatexPrinter.mode[imode] + '{' + x + '}' #subsup_str += LatexPrinter.mode[imode]+x+' ' imode = (imode + 1) % 2 name_str = sym_str + subsup_str name_str = LatexPrinter.replace_greek_tokens(name_str) return (name_str) def coefficient(self, coef, first_flg): if isinstance(coef, C.AssocOp) and isinstance(-coef, C.AssocOp): coef_str = r"\lp %s\rp " % self._print(coef) else: coef_str = self._print(coef) if first_flg: first_flg = False if coef_str[0] == '+': coef_str = coef_str[1:] else: if coef_str[0] != '-': if coef_str[0] != '+': coef_str = '+' + coef_str if coef_str in ('1', '+1', '-1'): if coef_str == '1': coef_str = '' else: coef_str = coef_str[0] return (coef_str, first_flg) def __init__(self, inline=True): Printer.__init__(self) self._inline = inline def doprint(self, expr): tex = Printer.doprint(self, expr) xstr = '' if self._inline: if LatexPrinter.fmt_dict['fct'] == 1: xstr = r"%s" % tex else: xstr = r"$%s$" % tex else: xstr = r"\begin{equation*}%s\end{equation*}" % tex return (xstr) def _needs_brackets(self, expr): return not ((expr.is_Integer and expr.is_nonnegative) or expr.is_Atom) def _do_exponent(self, expr, exp): if exp is not None: return r"\left(%s\right)^{%s}" % (expr, exp) else: return expr def _print_Add(self, expr): tex = str(self._print(expr.args[0])) for term in expr.args[1:]: coeff = term.as_coeff_mul()[0] if coeff.is_negative: tex += r" %s" % self._print(term) else: tex += r" + %s" % self._print(term) return tex def _print_Mul(self, expr): coeff, tail = expr.as_two_terms() if not coeff.is_negative: tex = "" else: coeff = -coeff tex = "- " numer, denom = fraction(tail) def convert(terms): product = [] if not terms.is_Mul: return str(self._print(terms)) else: for term in terms.args: pretty = self._print(term) if term.is_Add: product.append(r"\left(%s\right)" % pretty) else: product.append(str(pretty)) return r" ".join(product) if denom is S.One: if coeff is not S.One: tex += str(self._print(coeff)) + " " if numer.is_Add: tex += r"\left(%s\right)" % convert(numer) else: tex += r"%s" % convert(numer) else: if numer is S.One: if coeff.is_Integer: numer *= coeff.p elif coeff.is_Rational: if coeff.p != 1: numer *= coeff.p denom *= coeff.q elif coeff is not S.One: tex += str(self._print(coeff)) + " " else: if coeff.is_Rational and coeff.p == 1: denom *= coeff.q elif coeff is not S.One: tex += str(self._print(coeff)) + " " tex += r"\frac{%s}{%s}" % \ (convert(numer), convert(denom)) return tex def _print_Pow(self, expr): if expr.exp.is_Rational and expr.exp.q == 2: base, exp = self._print(expr.base), abs(expr.exp.p) if exp == 1: tex = r"\sqrt{%s}" % base else: tex = r"\sqrt[%s]{%s}" % (exp, base) if expr.exp.is_negative: return r"\frac{1}{%s}" % tex else: return tex else: if expr.base.is_Function: return self._print(expr.base, self._print(expr.exp)) else: if expr.exp == S.NegativeOne: #solves issue 1030 #As Mul always simplify 1/x to x**-1 #The objective is achieved with this hack #first we get the latex for -1 * expr, #which is a Mul expression tex = self._print(S.NegativeOne * expr).strip() #the result comes with a minus and a space, so we remove if tex[:1] == "-": return tex[1:].strip() if self._needs_brackets(expr.base): tex = r"\left(%s\right)^{%s}" else: tex = r"{%s}^{%s}" return tex % (self._print(expr.base), self._print(expr.exp)) def _print_Derivative(self, expr): dim = len(expr.variables) if dim == 1: if LatexPrinter.fmt_dict['pdiff'] == 1: tex = r'\partial_{%s}' % self._print(expr.variables[0]) else: tex = r"\frac{\partial}{\partial %s}" % self._print( expr.variables[0]) else: multiplicity, i, tex = [], 1, "" current = expr.variables[0] for symbol in expr.variables[1:]: if symbol == current: i = i + 1 else: multiplicity.append((current, i)) current, i = symbol, 1 else: multiplicity.append((current, i)) if LatexPrinter.fmt_dict['pdiff'] == 1: for x, i in multiplicity: if i == 1: tex += r"\partial_{%s}" % self._print(x) else: tex += r"\partial^{%s}_{%s}" % (i, self._print(x)) else: for x, i in multiplicity: if i == 1: tex += r"\partial %s" % self._print(x) else: tex += r"\partial^{%s} %s" % (i, self._print(x)) tex = r"\frac{\partial^{%s}}{%s} " % (dim, tex) if isinstance(expr.expr, C.AssocOp): return r"%s\left(%s\right)" % (tex, self._print(expr.expr)) else: return r"%s %s" % (tex, self._print(expr.expr)) def _print_Integral(self, expr): tex, symbols = "", [] for symbol, limits in reversed(expr.limits): tex += r"\int" if limits is not None: if not self._inline: tex += r"\limits" tex += "_{%s}^{%s}" % (self._print( limits[0]), self._print(limits[1])) symbols.insert(0, "d%s" % self._print(symbol)) return r"%s %s\,%s" % (tex, str(self._print( expr.function)), " ".join(symbols)) def _print_Limit(self, expr): tex = r"\lim_{%s \to %s}" % (self._print( expr.var), self._print(expr.varlim)) if isinstance(expr.expr, C.AssocOp): return r"%s\left(%s\right)" % (tex, self._print(expr.expr)) else: return r"%s %s" % (tex, self._print(expr.expr)) def _print_Function(self, expr, exp=None): func = expr.func.__name__ if hasattr(self, '_print_' + func): return getattr(self, '_print_' + func)(expr, exp) else: args = [str(self._print(arg)) for arg in expr.args] if LatexPrinter.fmt_dict['fct'] == 1: if func in LatexPrinter.fct_dict_keys: if exp is not None: if func in accepted_latex_functions: name = r"\%s^{%s}" % (LatexPrinter.fct_dict[func], exp) else: name = r"\operatorname{%s}^{%s}" % ( LatexPrinter.fct_dict[func], exp) else: if LatexPrinter.fct_dict[ func] in accepted_latex_functions: name = r"\%s" % LatexPrinter.fct_dict[func] else: name = r"\operatorname{%s}" % LatexPrinter.fct_dict[ func] name += r"\left(%s\right)" % ",".join(args) return name else: func = self.print_Symbol_name(func) if exp is not None: name = r"{%s}^{%s}" % (func, exp) else: name = r"{%s}" % func return name else: if exp is not None: if func in accepted_latex_functions: name = r"\%s^{%s}" % (func, exp) else: name = r"\operatorname{%s}^{%s}" % (func, exp) else: if func in accepted_latex_functions: name = r"\%s" % func else: name = r"\operatorname{%s}" % func return name + r"\left(%s\right)" % ",".join(args) def _print_floor(self, expr, exp=None): tex = r"\lfloor{%s}\rfloor" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_ceiling(self, expr, exp=None): tex = r"\lceil{%s}\rceil" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_abs(self, expr, exp=None): tex = r"\lvert{%s}\rvert" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_re(self, expr, exp=None): if self._needs_brackets(expr.args[0]): tex = r"\Re\left(%s\right)" % self._print(expr.args[0]) else: tex = r"\Re{%s}" % self._print(expr.args[0]) return self._do_exponent(tex, exp) def _print_im(self, expr, exp=None): if self._needs_brackets(expr.args[0]): tex = r"\Im\left(%s\right)" % self._print(expr.args[0]) else: tex = r"\Im{%s}" % self._print(expr.args[0]) return self._do_exponent(tex, exp) def _print_conjugate(self, expr, exp=None): tex = r"\overline{%s}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_exp(self, expr, exp=None): tex = r"{e}^{%s}" % self._print(expr.args[0]) return self._do_exponent(tex, exp) def _print_gamma(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\Gamma^{%s}%s" % (exp, tex) else: return r"\Gamma%s" % tex def _print_factorial(self, expr, exp=None): x = expr.args[0] if self._needs_brackets(x): tex = r"\left(%s\right)!" % self._print(x) else: tex = self._print(x) + "!" if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_binomial(self, expr, exp=None): tex = r"{{%s}\choose{%s}}" % (self._print(expr[0]), self._print( expr[1])) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_RisingFactorial(self, expr, exp=None): tex = r"{\left(%s\right)}^{\left(%s\right)}" % \ (self._print(expr[0]), self._print(expr[1])) return self._do_exponent(tex, exp) def _print_FallingFactorial(self, expr, exp=None): tex = r"{\left(%s\right)}_{\left(%s\right)}" % \ (self._print(expr[0]), self._print(expr[1])) return self._do_exponent(tex, exp) def _print_Rational(self, expr): if expr.q != 1: sign = "" p = expr.p if expr.p < 0: sign = "- " p = -p return r"%s\frac{%d}{%d}" % (sign, p, expr.q) else: return self._print(expr.p) def _print_Infinity(self, expr): return r"\infty" def _print_NegativeInfinity(self, expr): return r"-\infty" def _print_ComplexInfinity(self, expr): return r"\tilde{\infty}" def _print_ImaginaryUnit(self, expr): return r"\mathbf{\imath}" def _print_NaN(self, expr): return r"\bot" def _print_Pi(self, expr): return r"\pi" def _print_Exp1(self, expr): return r"e" def _print_EulerGamma(self, expr): return r"\gamma" def _print_Order(self, expr): return r"\\mathcal{O}\left(%s\right)" % \ self._print(expr.args[0]) @staticmethod def print_Symbol_name(name_str): if len(name_str) == 1: return (name_str) if LatexPrinter.fmt_dict['sym'] == 1: return LatexPrinter.extended_symbol(name_str) else: return (name_str) #convert trailing digits to subscript m = regrep.match('(^[a-zA-Z]+)([0-9]+)$', name_str) if m is not None: name, sub = m.groups() tex = self._print_Symbol(Symbol(name)) tex = "%s_{%s}" % (tex, sub) return tex # insert braces to expresions containing '_' or '^' m = regrep.match('(^[a-zA-Z0-9]+)([_\^]{1})([a-zA-Z0-9]+)$', name_str) if m is not None: name, sep, rest = m.groups() tex = self._print_Symbol(Symbol(name)) tex = "%s%s{%s}" % (tex, sep, rest) return tex greek = set([ 'alpha', 'beta', 'gamma', 'delta', 'epsilon', 'zeta', 'eta', 'theta', 'iota', 'kappa', 'lambda', 'mu', 'nu', 'xi', 'omicron', 'pi', 'rho', 'sigma', 'tau', 'upsilon', 'phi', 'chi', 'psi', 'omega' ]) other = set([ 'aleph', 'beth', 'daleth', 'gimel', 'ell', 'eth', 'hbar', 'hslash', 'mho' ]) if name_str.lower() in greek: return "\\" + name_str elif name_str in other: return "\\" + name_str else: return name_str def _print_Symbol(self, expr): return LatexPrinter.print_Symbol_name(expr.name) def _print_str(self, expr): if LatexPrinter.fmt_dict['str'] > 0: expr = expr.replace('^', '{\\wedge}') expr = expr.replace('|', '{\\cdot}') expr = expr.replace('__', '^') return (expr) def _print_ndarray(self, expr): shape = numpy.shape(expr) ndim = len(shape) expr_str = '' if ndim == 1: expr_str += '#\\left [ \\begin{array}{' + shape[0] * 'c' + '} \n' for col in expr: expr_str += self._print(col) + ' & ' expr_str = expr_str[:-2] + '\n\\end{array}\\right ]#\n' return (expr_str) if ndim == 2: expr_str += '#\\left [ \\begin{array}{' + shape[1] * 'c' + '} \n' for row in expr[:-1]: for xij in row[:-1]: expr_str += self._print(xij) + ' & ' expr_str += self._print(row[-1]) + ' \\\\ \n' for xij in expr[-1][:-1]: expr_str += self._print(xij) + ' & ' expr_str += self._print( expr[-1][-1]) + '\n \\end{array} \\right ] #\n' return (expr_str) if ndim == 3: expr_str = '#\\left \\{ \\begin{array}{' + shape[0] * 'c' + '} \n' for x in expr[:-1]: xstr = self._print(x).replace('#', '') expr_str += xstr + ' , & ' xstr = self._print(expr[-1]).replace('#', '') expr_str += xstr + '\n\\end{array} \\right \\}#\n' return (expr_str) def _print_MV(self, expr): igrade = 0 MV_str = '' line_lst = [] first_flg = True for grade in expr.mv: if type(grade) != types.IntType: if type(grade) != types.IntType: ibase = 0 for base in grade: if base != 0: tmp = Symbol('XYZW') base_str = str(base * tmp) if base_str[0] != '-': base_str = '+' + base_str base_str = base_str.replace('- ', '-') if base_str[1:5] == 'XYZW': base_str = base_str.replace('XYZW', '') else: base_str = base_str.replace('XYZW', '1') MV_str += base_str+\ LatexPrinter.build_base(igrade,ibase,expr.bladeflg) if LatexPrinter.fmt_dict['mv'] == 3: line_lst.append(MV_str) MV_str = '' ibase += 1 if LatexPrinter.fmt_dict['mv'] == 2: if MV_str != '': line_lst.append(MV_str) MV_str = '' igrade += 1 n_lines = len(line_lst) if MV_str == '': if n_lines > 0 and line_lst[0][0] == '+': line_lst[0] = line_lst[0][1:] else: if MV_str[0] == '+': MV_str = MV_str[1:] if n_lines == 1: MV_str = line_lst[0] n_lines = 0 if LatexPrinter.fmt_dict['mv'] >= 2: MV_str = '@' + line_lst[0] + ' \\\\ \n' for line in line_lst[1:-1]: MV_str += '& ' + line + ' \\\\ \n' MV_str += '& ' + line_lst[-1] + '@\n' if MV_str == '': MV_str = '0' if expr.name != '': MV_str = LatexPrinter.extended_symbol(expr.name) + ' = ' + MV_str return (MV_str) def _print_OMV(self, expr): igrade = 0 MV_str = '' line_lst = [] first_flg = True for grade in expr.mv: if type(grade) is not None: if type(grade) is not None: ibase = 0 for base in grade: if base != 0: tmp = Symbol('XYZW') base_str = str(base * tmp) if base_str[0] != '-': base_str = '+' + base_str base_str = base_str.replace('- ', '-') if base_str[1:5] == 'XYZW': base_str = base_str.replace('XYZW', '') else: base_str = base_str.replace('XYZW', '1') MV_str += base_str+\ LatexPrinter.build_base(igrade,ibase,expr.bladeflg) if LatexPrinter.fmt_dict['mv'] == 3: line_lst.append(MV_str) MV_str = '' ibase += 1 if LatexPrinter.fmt_dict['mv'] == 2: if MV_str != '': line_lst.append(MV_str) MV_str = '' igrade += 1 n_lines = len(line_lst) if MV_str == '': if n_lines > 0 and line_lst[0][0] == '+': line_lst[0] = line_lst[0][1:] else: if MV_str[0] == '+': MV_str = MV_str[1:] if n_lines == 1: MV_str = line_lst[0] n_lines = 0 if LatexPrinter.fmt_dict['mv'] >= 2: MV_str = '@' + line_lst[0] + ' \\\\ \n' for line in line_lst[1:-1]: MV_str += '& ' + line + ' \\\\ \n' MV_str += '& ' + line_lst[-1] + '@\n' if MV_str == '': MV_str = '0' if expr.name != '': MV_str = LatexPrinter.extended_symbol(expr.name) + ' = ' + MV_str return (MV_str) def _print_Relational(self, expr): charmap = { "==": "=", "<": "<", "<=": r"\leq", "!=": r"\neq", } return "%s %s %s" % (self._print( expr.lhs), charmap[expr.rel_op], self._print(expr.rhs)) def _print_Matrix(self, expr): lines = [] for line in range(expr.lines): # horrible, should be 'rows' lines.append(" & ".join([self._print(i) for i in expr[line, :]])) if self._inline: tex = r"\left(\begin{smallmatrix}%s\end{smallmatrix}\right)" else: tex = r"\begin{pmatrix}%s\end{pmatrix}" return tex % r"\\".join(lines) def _print_tuple(self, expr): return r"\begin{pmatrix}%s\end{pmatrix}" % \ r", & ".join([ self._print(i) for i in expr ]) def _print_list(self, expr): return r"\begin{bmatrix}%s\end{bmatrix}" % \ r", & ".join([ self._print(i) for i in expr ]) def _print_dict(self, expr): items = [] keys = expr.keys() keys.sort(key=default_sort_key) for key in keys: val = expr[key] items.append("%s : %s" % (self._print(key), self._print(val))) return r"\begin{Bmatrix}%s\end{Bmatrix}" % r", & ".join(items) def _print_DiracDelta(self, expr): if len(expr.args) == 1 or expr.args[1] == 0: tex = r"\delta\left(%s\right)" % self._print(expr.args[0]) else: tex = r"\delta^{\left( %s \right)}\left( %s \right)" % (\ self._print(expr.args[1]), self._print(expr.args[0])) return tex
def _print_LatticeOp(self, expr): args = sorted(expr.args, key=cmp_to_key(expr._compare_pretty)) return expr.func.__name__ + "(%s)"%", ".join(self._print(arg) for arg in args)
def _print_LatticeOp(self, expr): args = sorted(expr.args, key=cmp_to_key(expr._compare_pretty)) return expr.func.__name__ + "(%s)" % ", ".join( self._print(arg) for arg in args)
def __new__(cls, expr, *symbols, **assumptions): expr = sympify(expr).expand() if expr is S.NaN: return S.NaN if symbols: symbols = map(sympify, symbols) if not all(isinstance(s, Symbol) for s in symbols): raise NotImplementedError( 'Order at points other than 0 not supported.') else: symbols = list(expr.free_symbols) if expr.is_Order: v = set(expr.variables) symbols = v | set(symbols) if symbols == v: return expr symbols = list(symbols) elif symbols: symbols = list(set(symbols)) if expr.is_Add: lst = expr.extract_leading_order(*symbols) expr = Add(*[f.expr for (e, f) in lst]) elif expr: if len(symbols) > 1 or expr.is_commutative is False: # TODO # We cannot use compute_leading_term because that only # works in one symbol. expr = expr.as_leading_term(*symbols) else: expr = expr.compute_leading_term(symbols[0]) margs = list(Mul.make_args(expr.as_independent(*symbols)[1])) if len(symbols) == 1: # The definition of O(f(x)) symbol explicitly stated that # the argument of f(x) is irrelevant. That's why we can # combine some power exponents (only "on top" of the # expression tree for f(x)), e.g.: # x**p * (-x)**q -> x**(p+q) for real p, q. x = symbols[0] for i, t in enumerate(margs): if t.is_Pow: b, q = t.args if b in (x, -x) and q.is_real and not q.has(x): margs[i] = x**q elif b.is_Pow and not b.exp.has(x): b, r = b.args if b in (x, -x) and r.is_real: margs[i] = x**(r*q) elif b.is_Mul and b.args[0] is S.NegativeOne: b = -b if b.is_Pow and not b.exp.has(x): b, r = b.args if b in (x, -x) and r.is_real: margs[i] = x**(r*q) expr = Mul(*margs) if expr is S.Zero: return expr if not expr.has(*symbols): expr = S.One # create Order instance: symbols.sort(key=cmp_to_key(Basic.compare)) obj = Expr.__new__(cls, expr, *symbols, **assumptions) return obj