def test_logic_not(): assert Not('a') != '!a' assert Not('!a') != 'a' # NOTE: we may want to change default Not behaviour and put this # functionality into some method. assert Not(And('a', 'b')) == Or(Not('a'), Not('b')) assert Not(Or('a', 'b')) == And(Not('a'), Not('b'))
def test_logic_onearg(): assert And() is True assert Or() is False assert And(T) == T assert And(F) == F assert Or(T) == T assert Or(F) == F assert And('a') == 'a' assert Or('a') == 'a'
def test_logic_onearg(): raises(TypeError, 'And()') raises(TypeError, 'Or ()') assert And(T) == T assert And(F) == F assert Or(T) == T assert Or(F) == F assert And('a') == 'a' assert Or('a') == 'a'
def test_logic_not(): assert Not('a') != '!a' assert Not('!a') != 'a' assert Not(True) == False assert Not(False) == True # NOTE: we may want to change default Not behaviour and put this # functionality into some method. assert Not(And('a', 'b')) == Or(Not('a'), Not('b')) assert Not(Or('a', 'b')) == And(Not('a'), Not('b')) raises(ValueError, lambda: Not(1))
def test_logic_fromstring(): S = Logic.fromstring assert S('a') == 'a' assert S('!a') == Not('a') assert S('a & b') == And('a', 'b') assert S('a | b') == Or('a', 'b') assert S('a | b & c') == And(Or('a', 'b'), 'c') assert S('a & b | c') == Or(And('a', 'b'), 'c') assert S('a & b & c') == And('a', 'b', 'c') assert S('a | b | c') == Or('a', 'b', 'c') raises(ValueError, lambda: S('| a')) raises(ValueError, lambda: S('& a')) raises(ValueError, lambda: S('a | | b')) raises(ValueError, lambda: S('a | & b')) raises(ValueError, lambda: S('a & & b')) raises(ValueError, lambda: S('a |'))
def test_logic_cmp(): l1 = And('a', Not('b')) l2 = And('a', Not('b')) assert hash(l1) == hash(l2) assert (l1 == l2) == T assert (l1 != l2) == F assert And('a', 'b', 'c') == And('b', 'a', 'c') assert And('a', 'b', 'c') == And('c', 'b', 'a') assert And('a', 'b', 'c') == And('c', 'a', 'b')
def test_logic_cmp(): l1 = And('a', Not('b')) l2 = And('a', Not('b')) assert hash(l1) == hash(l2) assert (l1 == l2) == T assert (l1 != l2) == F assert And('a', 'b', 'c') == And('b', 'a', 'c') assert And('a', 'b', 'c') == And('c', 'b', 'a') assert And('a', 'b', 'c') == And('c', 'a', 'b') assert Not('a') < Not('b') assert (Not('b') < Not('a')) is False if PY3: assert (Not('a') < 2) is False
def test_logic_expand(): t = And(Or("a", "b"), "c") assert t.expand() == Or(And("a", "c"), And("b", "c")) t = And(Or("a", "!b"), "b") assert t.expand() == And("a", "b") t = And(Or("a", "b"), Or("c", "d")) assert t.expand() == Or(And("a", "c"), And("a", "d"), And("b", "c"), And("b", "d"))
def test_logic_expand(): t = And(Or('a','b'), 'c') assert t.expand() == Or(And('a','c'), And('b','c')) t = And(Or('a','!b'),'b') assert t.expand() == And('a','b') t = And(Or('a','b'), Or('c','d')) assert t.expand() == Or(And('a','c'), And('a','d'), And('b','c'), And('b','d'))
def test_logic_eval_TF(): assert And(F, F) == F assert And(F, T) == F assert And(T, F) == F assert And(T, T) == T assert Or(F, F) == F assert Or(F, T) == T assert Or(T, F) == T assert Or(T, T) == T assert And('a', T) == 'a' assert And('a', F) == F assert Or('a', T) == T assert Or('a', F) == 'a'
def test_logic_xnotx(): assert And('a', Not('a')) == F assert Or('a', Not('a')) == T
def test_logic_expand(): t = And(Or('a', 'b'), 'c') assert t.expand() == Or(And('a', 'c'), And('b', 'c')) t = And(Or('a', Not('b')), 'b') assert t.expand() == And('a', 'b') t = And(Or('a', 'b'), Or('c', 'd')) assert t.expand() == \ Or(And('a', 'c'), And('a', 'd'), And('b', 'c'), And('b', 'd'))
def test_logic_combine_args(): assert And('a', 'b', 'a') == And('a', 'b') assert Or('a', 'b', 'a') == Or('a', 'b') assert And(And('a', 'b'), And('c', 'd')) == And('a', 'b', 'c', 'd') assert Or(Or('a', 'b'), Or('c', 'd')) == Or('a', 'b', 'c', 'd') assert Or('t', And('n', 'p', 'r'), And('n', 'r'), And('n', 'p', 'r'), 't', And('n', 'r')) == Or('t', And('n', 'p', 'r'), And('n', 'r'))
def test_apply_beta_to_alpha_route(): APPLY = apply_beta_to_alpha_route # indicates empty alpha-chain with attached beta-rule #bidx def Q(bidx): return (set(), [bidx]) # x -> a &(a,b) -> x -- x -> a A = { 'x': set(['a']) } B = [(And('a', 'b'), 'x')] assert APPLY(A, B) == {'x': (set(['a']), []), 'a': Q(0), 'b': Q(0)} # x -> a &(a,!x) -> b -- x -> a A = { 'x': set(['a']) } B = [(And('a', '!x'), 'b')] assert APPLY(A, B) == {'x': (set(['a']), []), '!x': Q(0), 'a': Q(0)} # x -> a b &(a,b) -> c -- x -> a b c A = { 'x': set(['a', 'b']) } B = [(And('a', 'b'), 'c')] assert APPLY(A, B) == { 'x': (set(['a', 'b', 'c']), []), 'a': Q(0), 'b': Q(0) } # x -> a &(a,b) -> y -- x -> a [#0] A = { 'x': set(['a']) } B = [(And('a', 'b'), 'y')] assert APPLY(A, B) == {'x': (set(['a']), [0]), 'a': Q(0), 'b': Q(0)} # x -> a b c &(a,b) -> c -- x -> a b c A = {'x': set(['a', 'b', 'c'])} B = [(And('a', 'b'), 'c')] assert APPLY(A, B) == { 'x': (set(['a', 'b', 'c']), []), 'a': Q(0), 'b': Q(0) } # x -> a b &(a,b,c) -> y -- x -> a b [#0] A = { 'x': set(['a', 'b']) } B = [(And('a', 'b', 'c'), 'y')] assert APPLY(A, B) == { 'x': (set(['a', 'b']), [0]), 'a': Q(0), 'b': Q(0), 'c': Q(0) } # x -> a b &(a,b) -> c -- x -> a b c d # c -> d c -> d A = {'x': set(['a', 'b']), 'c': set(['d'])} B = [(And('a', 'b'), 'c')] assert APPLY(A, B) == { 'x': (set(['a', 'b', 'c', 'd']), []), 'c': (set(['d']), []), 'a': Q(0), 'b': Q(0) } # x -> a b &(a,b) -> c -- x -> a b c d e # c -> d &(c,d) -> e c -> d e A = {'x': set(['a', 'b']), 'c': set(['d'])} B = [(And('a', 'b'), 'c'), (And('c', 'd'), 'e')] assert APPLY(A, B) == { 'x': (set(['a', 'b', 'c', 'd', 'e']), []), 'c': (set(['d', 'e']), []), 'a': Q(0), 'b': Q(0), 'd': Q(1) } # x -> a b &(a,y) -> z -- x -> a b y z # &(a,b) -> y A = {'x': set(['a', 'b'])} B = [(And('a', 'y'), 'z'), (And('a', 'b'), 'y')] assert APPLY(A, B) == { 'x': (set(['a', 'b', 'y', 'z']), []), 'a': (set(), [0, 1]), 'y': Q(0), 'b': Q(1) } # x -> a b &(a,!b) -> c -- x -> a b A = {'x': set(['a', 'b'])} B = [(And('a', '!b'), 'c')] assert APPLY(A, B) == {'x': (set(['a', 'b']), []), 'a': Q(0), '!b': Q(0)} # !x -> !a !b &(!a,b) -> c -- !x -> !a !b A = {'!x': set(['!a', '!b'])} B = [(And('!a', 'b'), 'c')] assert APPLY(A, B) == { '!x': (set(['!a', '!b']), []), '!a': Q(0), 'b': Q(0) } # x -> a b &(b,c) -> !a -- x -> a b A = {'x': set(['a', 'b'])} B = [(And('b', 'c'), '!a')] assert APPLY(A, B) == {'x': (set(['a', 'b']), []), 'b': Q(0), 'c': Q(0)} # x -> a b &(a, b) -> c -- x -> a b c p # c -> p a A = {'x': set(['a', 'b']), 'c': set(['p', 'a'])} B = [(And('a', 'b'), 'c')] assert APPLY(A, B) == { 'x': (set(['a', 'b', 'c', 'p']), []), 'c': (set(['p', 'a']), []), 'a': Q(0), 'b': Q(0) }
def test_apply_beta_to_alpha_route(): APPLY = apply_beta_to_alpha_route # indicates empty alpha-chain with attached beta-rule #bidx def Q(bidx): return (set(), [bidx]) # x -> a &(a,b) -> x -- x -> a A = {"x": set(["a"])} B = [(And("a", "b"), "x")] assert APPLY(A, B) == {"x": (set(["a"]), []), "a": Q(0), "b": Q(0)} # x -> a &(a,!x) -> b -- x -> a A = {"x": set(["a"])} B = [(And("a", Not("x")), "b")] assert APPLY(A, B) == {"x": (set(["a"]), []), Not("x"): Q(0), "a": Q(0)} # x -> a b &(a,b) -> c -- x -> a b c A = {"x": set(["a", "b"])} B = [(And("a", "b"), "c")] assert APPLY(A, B) == { "x": (set(["a", "b", "c"]), []), "a": Q(0), "b": Q(0) } # x -> a &(a,b) -> y -- x -> a [#0] A = {"x": set(["a"])} B = [(And("a", "b"), "y")] assert APPLY(A, B) == {"x": (set(["a"]), [0]), "a": Q(0), "b": Q(0)} # x -> a b c &(a,b) -> c -- x -> a b c A = {"x": set(["a", "b", "c"])} B = [(And("a", "b"), "c")] assert APPLY(A, B) == { "x": (set(["a", "b", "c"]), []), "a": Q(0), "b": Q(0) } # x -> a b &(a,b,c) -> y -- x -> a b [#0] A = {"x": set(["a", "b"])} B = [(And("a", "b", "c"), "y")] assert APPLY(A, B) == { "x": (set(["a", "b"]), [0]), "a": Q(0), "b": Q(0), "c": Q(0) } # x -> a b &(a,b) -> c -- x -> a b c d # c -> d c -> d A = {"x": set(["a", "b"]), "c": set(["d"])} B = [(And("a", "b"), "c")] assert APPLY(A, B) == { "x": (set(["a", "b", "c", "d"]), []), "c": (set(["d"]), []), "a": Q(0), "b": Q(0), } # x -> a b &(a,b) -> c -- x -> a b c d e # c -> d &(c,d) -> e c -> d e A = {"x": set(["a", "b"]), "c": set(["d"])} B = [(And("a", "b"), "c"), (And("c", "d"), "e")] assert APPLY(A, B) == { "x": (set(["a", "b", "c", "d", "e"]), []), "c": (set(["d", "e"]), []), "a": Q(0), "b": Q(0), "d": Q(1), } # x -> a b &(a,y) -> z -- x -> a b y z # &(a,b) -> y A = {"x": set(["a", "b"])} B = [(And("a", "y"), "z"), (And("a", "b"), "y")] assert APPLY(A, B) == { "x": (set(["a", "b", "y", "z"]), []), "a": (set(), [0, 1]), "y": Q(0), "b": Q(1), } # x -> a b &(a,!b) -> c -- x -> a b A = {"x": set(["a", "b"])} B = [(And("a", Not("b")), "c")] assert APPLY(A, B) == { "x": (set(["a", "b"]), []), "a": Q(0), Not("b"): Q(0) } # !x -> !a !b &(!a,b) -> c -- !x -> !a !b A = {Not("x"): set([Not("a"), Not("b")])} B = [(And(Not("a"), "b"), "c")] assert APPLY(A, B) == { Not("x"): (set([Not("a"), Not("b")]), []), Not("a"): Q(0), "b": Q(0), } # x -> a b &(b,c) -> !a -- x -> a b A = {"x": set(["a", "b"])} B = [(And("b", "c"), Not("a"))] assert APPLY(A, B) == {"x": (set(["a", "b"]), []), "b": Q(0), "c": Q(0)} # x -> a b &(a, b) -> c -- x -> a b c p # c -> p a A = {"x": set(["a", "b"]), "c": set(["p", "a"])} B = [(And("a", "b"), "c")] assert APPLY(A, B) == { "x": (set(["a", "b", "c", "p"]), []), "c": (set(["p", "a"]), []), "a": Q(0), "b": Q(0), }
def test_logic_xnotx(): assert And('a', '!a') == F assert Or('a', '!a') == T