예제 #1
0
    def eval(cls, a, z):
        from sympy import unpolarify, I, expint
        if z.is_Number:
            if z is S.NaN:
                return S.NaN
            elif z is S.Infinity:
                return S.Zero
            elif z.is_zero:
                if re(a).is_positive:
                    return gamma(a)

        # We extract branching information here. C/f lowergamma.
        nx, n = z.extract_branch_factor()
        if a.is_integer and a.is_positive:
            nx = unpolarify(z)
            if z != nx:
                return uppergamma(a, nx)
        elif a.is_integer and a.is_nonpositive:
            if n != 0:
                return -2 * pi * I * n * (-1)**(
                    -a) / factorial(-a) + uppergamma(a, nx)
        elif n != 0:
            return gamma(a) * (1 - exp(2 * pi * I * n * a)) + exp(
                2 * pi * I * n * a) * uppergamma(a, nx)

        # Special values.
        if a.is_Number:
            if a is S.Zero and z.is_positive:
                return -Ei(-z)
            elif a is S.One:
                return exp(-z)
            elif a is S.Half:
                return sqrt(pi) * erfc(sqrt(z))
            elif a.is_Integer or (2 * a).is_Integer:
                b = a - 1
                if b.is_positive:
                    if a.is_integer:
                        return exp(-z) * factorial(b) * Add(
                            *[z**k / factorial(k) for k in range(a)])
                    else:
                        return gamma(a) * erfc(sqrt(z)) + (-1)**(
                            a - S(3) / 2) * exp(-z) * sqrt(z) * Add(*[
                                gamma(-S.Half - k) * (-z)**k / gamma(1 - a)
                                for k in range(a - S.Half)
                            ])
                elif b.is_Integer:
                    return expint(-b, z) * unpolarify(z)**(b + 1)

                if not a.is_Integer:
                    return (-1)**(S.Half - a) * pi * erfc(
                        sqrt(z)) / gamma(1 - a) - z**a * exp(-z) * Add(*[
                            z**k * gamma(a) / gamma(a + k + 1)
                            for k in range(S.Half - a)
                        ])

        if a.is_zero and z.is_positive:
            return -Ei(-z)

        if z.is_zero and re(a).is_positive:
            return gamma(a)
예제 #2
0
def test_expint():
    assert mytn(expint(x, y), expint(x, y).rewrite(uppergamma),
                y**(x - 1)*uppergamma(1 - x, y), x)
    assert mytd(
        expint(x, y), -y**(x - 1)*meijerg([], [1, 1], [0, 0, 1 - x], [], y), x)
    assert mytd(expint(x, y), -expint(x - 1, y), y)
    assert mytn(expint(1, x), expint(1, x).rewrite(Ei),
                -Ei(x*polar_lift(-1)) + I*pi, x)

    assert expint(-4, x) == exp(-x)/x + 4*exp(-x)/x**2 + 12*exp(-x)/x**3 \
        + 24*exp(-x)/x**4 + 24*exp(-x)/x**5
    assert expint(Rational(-3, 2), x) == \
        exp(-x)/x + 3*exp(-x)/(2*x**2) + 3*sqrt(pi)*erfc(sqrt(x))/(4*x**S('5/2'))

    assert tn_branch(expint, 1)
    assert tn_branch(expint, 2)
    assert tn_branch(expint, 3)
    assert tn_branch(expint, 1.7)
    assert tn_branch(expint, pi)

    assert expint(y, x*exp_polar(2*I*pi)) == \
        x**(y - 1)*(exp(2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
    assert expint(y, x*exp_polar(-2*I*pi)) == \
        x**(y - 1)*(exp(-2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
    assert expint(2, x*exp_polar(2*I*pi)) == 2*I*pi*x + expint(2, x)
    assert expint(2, x*exp_polar(-2*I*pi)) == -2*I*pi*x + expint(2, x)
    assert expint(1, x).rewrite(Ei).rewrite(expint) == expint(1, x)
    assert expint(x, y).rewrite(Ei) == expint(x, y)
    assert expint(x, y).rewrite(Ci) == expint(x, y)

    assert mytn(E1(x), E1(x).rewrite(Shi), Shi(x) - Chi(x), x)
    assert mytn(E1(polar_lift(I)*x), E1(polar_lift(I)*x).rewrite(Si),
                -Ci(x) + I*Si(x) - I*pi/2, x)

    assert mytn(expint(2, x), expint(2, x).rewrite(Ei).rewrite(expint),
                -x*E1(x) + exp(-x), x)
    assert mytn(expint(3, x), expint(3, x).rewrite(Ei).rewrite(expint),
                x**2*E1(x)/2 + (1 - x)*exp(-x)/2, x)

    assert expint(Rational(3, 2), z).nseries(z) == \
        2 + 2*z - z**2/3 + z**3/15 - z**4/84 + z**5/540 - \
        2*sqrt(pi)*sqrt(z) + O(z**6)

    assert E1(z).series(z) == -EulerGamma - log(z) + z - \
        z**2/4 + z**3/18 - z**4/96 + z**5/600 + O(z**6)

    assert expint(4, z).series(z) == Rational(1, 3) - z/2 + z**2/2 + \
        z**3*(log(z)/6 - Rational(11, 36) + EulerGamma/6 - I*pi/6) - z**4/24 + \
        z**5/240 + O(z**6)

    assert expint(n, x).series(x, oo, n=3) == \
        (n*(n + 1)/x**2 - n/x + 1 + O(x**(-3), (x, oo)))*exp(-x)/x

    assert expint(z, y).series(z, 0, 2) == exp(-y)/y - z*meijerg(((), (1, 1)),
                                  ((0, 0, 1), ()), y)/y + O(z**2)
    raises(ArgumentIndexError, lambda: expint(x, y).fdiff(3))

    neg = Symbol('neg', negative=True)
    assert Ei(neg).rewrite(Si) == Shi(neg) + Chi(neg) - I*pi
예제 #3
0
def test_si():
    assert Si(I*x) == I*Shi(x)
    assert Shi(I*x) == I*Si(x)
    assert Si(-I*x) == -I*Shi(x)
    assert Shi(-I*x) == -I*Si(x)
    assert Si(-x) == -Si(x)
    assert Shi(-x) == -Shi(x)
    assert Si(exp_polar(2*pi*I)*x) == Si(x)
    assert Si(exp_polar(-2*pi*I)*x) == Si(x)
    assert Shi(exp_polar(2*pi*I)*x) == Shi(x)
    assert Shi(exp_polar(-2*pi*I)*x) == Shi(x)

    assert Si(oo) == pi/2
    assert Si(-oo) == -pi/2
    assert Shi(oo) is oo
    assert Shi(-oo) is -oo

    assert mytd(Si(x), sin(x)/x, x)
    assert mytd(Shi(x), sinh(x)/x, x)

    assert mytn(Si(x), Si(x).rewrite(Ei),
                -I*(-Ei(x*exp_polar(-I*pi/2))/2
               + Ei(x*exp_polar(I*pi/2))/2 - I*pi) + pi/2, x)
    assert mytn(Si(x), Si(x).rewrite(expint),
                -I*(-expint(1, x*exp_polar(-I*pi/2))/2 +
                    expint(1, x*exp_polar(I*pi/2))/2) + pi/2, x)
    assert mytn(Shi(x), Shi(x).rewrite(Ei),
                Ei(x)/2 - Ei(x*exp_polar(I*pi))/2 + I*pi/2, x)
    assert mytn(Shi(x), Shi(x).rewrite(expint),
                expint(1, x)/2 - expint(1, x*exp_polar(I*pi))/2 - I*pi/2, x)

    assert tn_arg(Si)
    assert tn_arg(Shi)

    assert Si(x).nseries(x, n=8) == \
        x - x**3/18 + x**5/600 - x**7/35280 + O(x**9)
    assert Shi(x).nseries(x, n=8) == \
        x + x**3/18 + x**5/600 + x**7/35280 + O(x**9)
    assert Si(sin(x)).nseries(x, n=5) == x - 2*x**3/9 + 17*x**5/450 + O(x**6)
    assert Si(x).nseries(x, 1, n=3) == \
        Si(1) + (x - 1)*sin(1) + (x - 1)**2*(-sin(1)/2 + cos(1)/2) + O((x - 1)**3, (x, 1))

    assert Si(x).series(x, oo) == pi/2 - (- 6/x**3 + 1/x \
        + O(x**(-7), (x, oo)))*sin(x)/x - (24/x**4 - 2/x**2 + 1 \
        + O(x**(-7), (x, oo)))*cos(x)/x

    t = Symbol('t', Dummy=True)
    assert Si(x).rewrite(sinc) == Integral(sinc(t), (t, 0, x))

    assert limit(Shi(x), x, S.NegativeInfinity) == -I*pi/2
예제 #4
0
def test_ci():
    m1 = exp_polar(I*pi)
    m1_ = exp_polar(-I*pi)
    pI = exp_polar(I*pi/2)
    mI = exp_polar(-I*pi/2)

    assert Ci(m1*x) == Ci(x) + I*pi
    assert Ci(m1_*x) == Ci(x) - I*pi
    assert Ci(pI*x) == Chi(x) + I*pi/2
    assert Ci(mI*x) == Chi(x) - I*pi/2
    assert Chi(m1*x) == Chi(x) + I*pi
    assert Chi(m1_*x) == Chi(x) - I*pi
    assert Chi(pI*x) == Ci(x) + I*pi/2
    assert Chi(mI*x) == Ci(x) - I*pi/2
    assert Ci(exp_polar(2*I*pi)*x) == Ci(x) + 2*I*pi
    assert Chi(exp_polar(-2*I*pi)*x) == Chi(x) - 2*I*pi
    assert Chi(exp_polar(2*I*pi)*x) == Chi(x) + 2*I*pi
    assert Ci(exp_polar(-2*I*pi)*x) == Ci(x) - 2*I*pi

    assert Ci(oo) is S.Zero
    assert Ci(-oo) == I*pi
    assert Chi(oo) is oo
    assert Chi(-oo) is oo

    assert mytd(Ci(x), cos(x)/x, x)
    assert mytd(Chi(x), cosh(x)/x, x)

    assert mytn(Ci(x), Ci(x).rewrite(Ei),
                Ei(x*exp_polar(-I*pi/2))/2 + Ei(x*exp_polar(I*pi/2))/2, x)
    assert mytn(Chi(x), Chi(x).rewrite(Ei),
                Ei(x)/2 + Ei(x*exp_polar(I*pi))/2 - I*pi/2, x)

    assert tn_arg(Ci)
    assert tn_arg(Chi)

    assert Ci(x).nseries(x, n=4) == \
        EulerGamma + log(x) - x**2/4 + x**4/96 + O(x**5)
    assert Chi(x).nseries(x, n=4) == \
        EulerGamma + log(x) + x**2/4 + x**4/96 + O(x**5)

    assert Ci(x).series(x, oo) == -cos(x)*(-6/x**3 + 1/x \
        + O(x**(-7), (x, oo)))/x + (24/x**4 - 2/x**2 + 1 \
        + O(x**(-7), (x, oo)))*sin(x)/x
    assert limit(log(x) - Ci(2*x), x, 0) == -log(2) - EulerGamma
    assert Ci(x).rewrite(uppergamma) == -expint(1, x*exp_polar(-I*pi/2))/2 -\
                                        expint(1, x*exp_polar(I*pi/2))/2
    assert Ci(x).rewrite(expint) == -expint(1, x*exp_polar(-I*pi/2))/2 -\
                                        expint(1, x*exp_polar(I*pi/2))/2
    raises(ArgumentIndexError, lambda: Ci(x).fdiff(2))
예제 #5
0
def test_specfun():
    n = Symbol('n')
    for f in [besselj, bessely, besseli, besselk]:
        assert octave_code(f(n, x)) == f.__name__ + '(n, x)'
    for f in (erfc, erfi, erf, erfinv, erfcinv, fresnelc, fresnels, gamma):
        assert octave_code(f(x)) == f.__name__ + '(x)'
    assert octave_code(hankel1(n, x)) == 'besselh(n, 1, x)'
    assert octave_code(hankel2(n, x)) == 'besselh(n, 2, x)'
    assert octave_code(airyai(x)) == 'airy(0, x)'
    assert octave_code(airyaiprime(x)) == 'airy(1, x)'
    assert octave_code(airybi(x)) == 'airy(2, x)'
    assert octave_code(airybiprime(x)) == 'airy(3, x)'
    assert octave_code(uppergamma(
        n, x)) == '(gammainc(x, n, \'upper\').*gamma(n))'
    assert octave_code(lowergamma(n, x)) == '(gammainc(x, n).*gamma(n))'
    assert octave_code(z**lowergamma(n, x)) == 'z.^(gammainc(x, n).*gamma(n))'
    assert octave_code(jn(
        n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2'
    assert octave_code(yn(
        n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2'
    assert octave_code(LambertW(x)) == 'lambertw(x)'
    assert octave_code(LambertW(x, n)) == 'lambertw(n, x)'

    # Automatic rewrite
    assert octave_code(Ei(x)) == 'logint(exp(x))'
    assert octave_code(dirichlet_eta(x)) == '(1 - 2.^(1 - x)).*zeta(x)'
    assert octave_code(
        riemann_xi(x)) == 'pi.^(-x/2).*x.*(x - 1).*gamma(x/2).*zeta(x)/2'
예제 #6
0
def test_manualintegrate_special():
    f, F = 4*exp(-x**2/3), 2*sqrt(3)*sqrt(pi)*erf(sqrt(3)*x/3)
    assert_is_integral_of(f, F)
    f, F = 3*exp(4*x**2), 3*sqrt(pi)*erfi(2*x)/4
    assert_is_integral_of(f, F)
    f, F = x**Rational(1, 3)*exp(-x/8), -16*uppergamma(Rational(4, 3), x/8)
    assert_is_integral_of(f, F)
    f, F = exp(2*x)/x, Ei(2*x)
    assert_is_integral_of(f, F)
    f, F = exp(1 + 2*x - x**2), sqrt(pi)*exp(2)*erf(x - 1)/2
    assert_is_integral_of(f, F)
    f = sin(x**2 + 4*x + 1)
    F = (sqrt(2)*sqrt(pi)*(-sin(3)*fresnelc(sqrt(2)*(2*x + 4)/(2*sqrt(pi))) +
        cos(3)*fresnels(sqrt(2)*(2*x + 4)/(2*sqrt(pi))))/2)
    assert_is_integral_of(f, F)
    f, F = cos(4*x**2), sqrt(2)*sqrt(pi)*fresnelc(2*sqrt(2)*x/sqrt(pi))/4
    assert_is_integral_of(f, F)
    f, F = sin(3*x + 2)/x, sin(2)*Ci(3*x) + cos(2)*Si(3*x)
    assert_is_integral_of(f, F)
    f, F = sinh(3*x - 2)/x, -sinh(2)*Chi(3*x) + cosh(2)*Shi(3*x)
    assert_is_integral_of(f, F)
    f, F = 5*cos(2*x - 3)/x, 5*cos(3)*Ci(2*x) + 5*sin(3)*Si(2*x)
    assert_is_integral_of(f, F)
    f, F = cosh(x/2)/x, Chi(x/2)
    assert_is_integral_of(f, F)
    f, F = cos(x**2)/x, Ci(x**2)/2
    assert_is_integral_of(f, F)
    f, F = 1/log(2*x + 1), li(2*x + 1)/2
    assert_is_integral_of(f, F)
    f, F = polylog(2, 5*x)/x, polylog(3, 5*x)
    assert_is_integral_of(f, F)
    f, F = 5/sqrt(3 - 2*sin(x)**2), 5*sqrt(3)*elliptic_f(x, Rational(2, 3))/3
    assert_is_integral_of(f, F)
    f, F = sqrt(4 + 9*sin(x)**2), 2*elliptic_e(x, Rational(-9, 4))
    assert_is_integral_of(f, F)
예제 #7
0
def test__eis():
    assert _eis(z).diff(z) == -_eis(z) + 1/z

    assert _eis(1/z).series(z) == \
        z + z**2 + 2*z**3 + 6*z**4 + 24*z**5 + O(z**6)

    assert Ei(z).rewrite('tractable') == exp(z)*_eis(z)
    assert li(z).rewrite('tractable') == z*_eis(log(z))

    assert _eis(z).rewrite('intractable') == exp(-z)*Ei(z)

    assert expand(li(z).rewrite('tractable').diff(z).rewrite('intractable')) \
        == li(z).diff(z)

    assert expand(Ei(z).rewrite('tractable').diff(z).rewrite('intractable')) \
        == Ei(z).diff(z)

    assert _eis(z).series(z, n=3) == EulerGamma + log(z) + z*(-log(z) - \
        EulerGamma + 1) + z**2*(log(z)/2 - Rational(3, 4) + EulerGamma/2)\
        + O(z**3*log(z))
    raises(ArgumentIndexError, lambda: _eis(z).fdiff(2))
예제 #8
0
def test_checkodesol():
    # For the most part, checkodesol is well tested in the tests below.
    # These tests only handle cases not checked below.
    raises(ValueError, lambda: checkodesol(f(x, y).diff(x), Eq(f(x, y), x)))
    raises(ValueError, lambda: checkodesol(f(x).diff(x), Eq(f(x, y),
           x), f(x, y)))
    assert checkodesol(f(x).diff(x), Eq(f(x, y), x)) == \
        (False, -f(x).diff(x) + f(x, y).diff(x) - 1)
    assert checkodesol(f(x).diff(x), Eq(f(x), x)) is not True
    assert checkodesol(f(x).diff(x), Eq(f(x), x)) == (False, 1)
    sol1 = Eq(f(x)**5 + 11*f(x) - 2*f(x) + x, 0)
    assert checkodesol(diff(sol1.lhs, x), sol1) == (True, 0)
    assert checkodesol(diff(sol1.lhs, x)*exp(f(x)), sol1) == (True, 0)
    assert checkodesol(diff(sol1.lhs, x, 2), sol1) == (True, 0)
    assert checkodesol(diff(sol1.lhs, x, 2)*exp(f(x)), sol1) == (True, 0)
    assert checkodesol(diff(sol1.lhs, x, 3), sol1) == (True, 0)
    assert checkodesol(diff(sol1.lhs, x, 3)*exp(f(x)), sol1) == (True, 0)
    assert checkodesol(diff(sol1.lhs, x, 3), Eq(f(x), x*log(x))) == \
        (False, 60*x**4*((log(x) + 1)**2 + log(x))*(
        log(x) + 1)*log(x)**2 - 5*x**4*log(x)**4 - 9)
    assert checkodesol(diff(exp(f(x)) + x, x)*x, Eq(exp(f(x)) + x, 0)) == \
        (True, 0)
    assert checkodesol(diff(exp(f(x)) + x, x)*x, Eq(exp(f(x)) + x, 0),
        solve_for_func=False) == (True, 0)
    assert checkodesol(f(x).diff(x, 2), [Eq(f(x), C1 + C2*x),
        Eq(f(x), C2 + C1*x), Eq(f(x), C1*x + C2*x**2)]) == \
        [(True, 0), (True, 0), (False, C2)]
    assert checkodesol(f(x).diff(x, 2), {Eq(f(x), C1 + C2*x),
        Eq(f(x), C2 + C1*x), Eq(f(x), C1*x + C2*x**2)}) == \
        {(True, 0), (True, 0), (False, C2)}
    assert checkodesol(f(x).diff(x) - 1/f(x)/2, Eq(f(x)**2, x)) == \
        [(True, 0), (True, 0)]
    assert checkodesol(f(x).diff(x) - f(x), Eq(C1*exp(x), f(x))) == (True, 0)
    # Based on test_1st_homogeneous_coeff_ode2_eq3sol.  Make sure that
    # checkodesol tries back substituting f(x) when it can.
    eq3 = x*exp(f(x)/x) + f(x) - x*f(x).diff(x)
    sol3 = Eq(f(x), log(log(C1/x)**(-x)))
    assert not checkodesol(eq3, sol3)[1].has(f(x))
    # This case was failing intermittently depending on hash-seed:
    eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x))
    sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
    assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0]
    eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (2*x**2 +25)*f(x)
    sol = Eq(f(x), C1*besselj(5*I, sqrt(2)*x) + C2*bessely(5*I, sqrt(2)*x))
    assert checkodesol(eq, sol) == (True, 0)

    eqs = [Eq(f(x).diff(x), f(x) + g(x)), Eq(g(x).diff(x), f(x) + g(x))]
    sol = [Eq(f(x), -C1 + C2*exp(2*x)), Eq(g(x), C1 + C2*exp(2*x))]
    assert checkodesol(eqs, sol) == (True, [0, 0])
예제 #9
0
def test_uppergamma():
    from sympy.functions.special.error_functions import expint
    from sympy.functions.special.hyper import meijerg
    assert uppergamma(4, 0) == 6
    assert uppergamma(x, y).diff(y) == -y**(x - 1)*exp(-y)
    assert td(uppergamma(randcplx(), y), y)
    assert uppergamma(x, y).diff(x) == \
        uppergamma(x, y)*log(y) + meijerg([], [1, 1], [0, 0, x], [], y)
    assert td(uppergamma(x, randcplx()), x)

    p = Symbol('p', positive=True)
    assert uppergamma(0, p) == -Ei(-p)
    assert uppergamma(p, 0) == gamma(p)
    assert uppergamma(S.Half, x) == sqrt(pi)*erfc(sqrt(x))
    assert not uppergamma(S.Half - 3, x).has(uppergamma)
    assert not uppergamma(S.Half + 3, x).has(uppergamma)
    assert uppergamma(S.Half, x, evaluate=False).has(uppergamma)
    assert tn(uppergamma(S.Half + 3, x, evaluate=False),
              uppergamma(S.Half + 3, x), x)
    assert tn(uppergamma(S.Half - 3, x, evaluate=False),
              uppergamma(S.Half - 3, x), x)

    assert unchanged(uppergamma, x, -oo)
    assert unchanged(uppergamma, x, 0)

    assert tn_branch(-3, uppergamma)
    assert tn_branch(-4, uppergamma)
    assert tn_branch(Rational(1, 3), uppergamma)
    assert tn_branch(pi, uppergamma)
    assert uppergamma(3, exp_polar(4*pi*I)*x) == uppergamma(3, x)
    assert uppergamma(y, exp_polar(5*pi*I)*x) == \
        exp(4*I*pi*y)*uppergamma(y, x*exp_polar(pi*I)) + \
        gamma(y)*(1 - exp(4*pi*I*y))
    assert uppergamma(-2, exp_polar(5*pi*I)*x) == \
        uppergamma(-2, x*exp_polar(I*pi)) - 2*pi*I

    assert uppergamma(-2, x) == expint(3, x)/x**2

    assert conjugate(uppergamma(x, y)) == uppergamma(conjugate(x), conjugate(y))
    assert unchanged(conjugate, uppergamma(x, -oo))

    assert uppergamma(x, y).rewrite(expint) == y**x*expint(-x + 1, y)
    assert uppergamma(x, y).rewrite(lowergamma) == gamma(x) - lowergamma(x, y)

    assert uppergamma(70, 6) == 69035724522603011058660187038367026272747334489677105069435923032634389419656200387949342530805432320*exp(-6)
    assert (uppergamma(S(77) / 2, 6) - uppergamma(S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
    assert (uppergamma(-S(77) / 2, 6) - uppergamma(-S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
예제 #10
0
def test_li():
    z = Symbol("z")
    zr = Symbol("z", real=True)
    zp = Symbol("z", positive=True)
    zn = Symbol("z", negative=True)

    assert li(0) is S.Zero
    assert li(1) is -oo
    assert li(oo) is oo

    assert isinstance(li(z), li)
    assert unchanged(li, -zp)
    assert unchanged(li, zn)

    assert diff(li(z), z) == 1/log(z)

    assert conjugate(li(z)) == li(conjugate(z))
    assert conjugate(li(-zr)) == li(-zr)
    assert unchanged(conjugate, li(-zp))
    assert unchanged(conjugate, li(zn))

    assert li(z).rewrite(Li) == Li(z) + li(2)
    assert li(z).rewrite(Ei) == Ei(log(z))
    assert li(z).rewrite(uppergamma) == (-log(1/log(z))/2 - log(-log(z)) +
                                         log(log(z))/2 - expint(1, -log(z)))
    assert li(z).rewrite(Si) == (-log(I*log(z)) - log(1/log(z))/2 +
                                 log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)))
    assert li(z).rewrite(Ci) == (-log(I*log(z)) - log(1/log(z))/2 +
                                 log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)))
    assert li(z).rewrite(Shi) == (-log(1/log(z))/2 + log(log(z))/2 +
                                  Chi(log(z)) - Shi(log(z)))
    assert li(z).rewrite(Chi) == (-log(1/log(z))/2 + log(log(z))/2 +
                                  Chi(log(z)) - Shi(log(z)))
    assert li(z).rewrite(hyper) ==(log(z)*hyper((1, 1), (2, 2), log(z)) -
                                   log(1/log(z))/2 + log(log(z))/2 + EulerGamma)
    assert li(z).rewrite(meijerg) == (-log(1/log(z))/2 - log(-log(z)) + log(log(z))/2 -
                                      meijerg(((), (1,)), ((0, 0), ()), -log(z)))

    assert gruntz(1/li(z), z, oo) is S.Zero
    assert li(z).series(z) == log(z)**5/600 + log(z)**4/96 + log(z)**3/18 + log(z)**2/4 + \
            log(z) + log(log(z)) + EulerGamma
    raises(ArgumentIndexError, lambda: li(z).fdiff(2))
예제 #11
0
def test_ei():
    assert Ei(0) is S.NegativeInfinity
    assert Ei(oo) is S.Infinity
    assert Ei(-oo) is S.Zero

    assert tn_branch(Ei)
    assert mytd(Ei(x), exp(x)/x, x)
    assert mytn(Ei(x), Ei(x).rewrite(uppergamma),
                -uppergamma(0, x*polar_lift(-1)) - I*pi, x)
    assert mytn(Ei(x), Ei(x).rewrite(expint),
                -expint(1, x*polar_lift(-1)) - I*pi, x)
    assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x)
    assert Ei(x*exp_polar(2*I*pi)) == Ei(x) + 2*I*pi
    assert Ei(x*exp_polar(-2*I*pi)) == Ei(x) - 2*I*pi

    assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x)
    assert mytn(Ei(x*polar_lift(I)), Ei(x*polar_lift(I)).rewrite(Si),
                Ci(x) + I*Si(x) + I*pi/2, x)

    assert Ei(log(x)).rewrite(li) == li(x)
    assert Ei(2*log(x)).rewrite(li) == li(x**2)

    assert gruntz(Ei(x+exp(-x))*exp(-x)*x, x, oo) == 1

    assert Ei(x).series(x) == EulerGamma + log(x) + x + x**2/4 + \
        x**3/18 + x**4/96 + x**5/600 + O(x**6)
    assert Ei(x).series(x, 1, 3) == Ei(1) + E*(x - 1) + O((x - 1)**3, (x, 1))
    assert Ei(x).series(x, oo) == \
        (120/x**5 + 24/x**4 + 6/x**3 + 2/x**2 + 1/x + 1 + O(x**(-6), (x, oo)))*exp(x)/x

    assert str(Ei(cos(2)).evalf(n=10)) == '-0.6760647401'
    raises(ArgumentIndexError, lambda: Ei(x).fdiff(2))
예제 #12
0
def test_issue_17671():
    assert limit(Ei(-log(x)) - log(log(x))/x, x, 1) == EulerGamma
예제 #13
0
def test_manualintegrate_trivial_substitution():
    assert manualintegrate((exp(x) - exp(-x)) / x, x) == -Ei(-x) + Ei(x)
    f = Function('f')
    assert manualintegrate((f(x) - f(-x))/x, x) == \
        -Integral(f(-x)/x, x) + Integral(f(x)/x, x)
예제 #14
0
def test_issue_6682():
    assert gruntz(exp(2 * Ei(-x)) / x**2, x, 0) == exp(2 * EulerGamma)
예제 #15
0
def test_gruntz_Ei():
    assert gruntz((Ei(x - exp(-exp(x))) - Ei(x)) * exp(-x) * exp(exp(x)) * x,
                  x, oo) == -1
예제 #16
0
def test_laplace_transform():
    from sympy import lowergamma
    from sympy.functions.special.delta_functions import DiracDelta
    from sympy.functions.special.error_functions import (fresnelc, fresnels)
    LT = laplace_transform
    a, b, c, = symbols('a, b, c', positive=True)
    t, w, x = symbols('t, w, x')
    f = Function("f")
    g = Function("g")

    # Test rule-base evaluation according to
    # http://eqworld.ipmnet.ru/en/auxiliary/inttrans/
    # Power-law functions (laplace2.pdf)
    assert LT(a*t+t**2+t**(S(5)/2), t, s) ==\
        (a/s**2 + 2/s**3 + 15*sqrt(pi)/(8*s**(S(7)/2)), 0, True)
    assert LT(b/(t+a), t, s) == (-b*exp(-a*s)*Ei(-a*s), 0, True)
    assert LT(1/sqrt(t+a), t, s) ==\
        (sqrt(pi)*sqrt(1/s)*exp(a*s)*erfc(sqrt(a)*sqrt(s)), 0, True)
    assert LT(sqrt(t)/(t+a), t, s) ==\
        (-pi*sqrt(a)*exp(a*s)*erfc(sqrt(a)*sqrt(s)) + sqrt(pi)*sqrt(1/s),
         0, True)
    assert LT((t+a)**(-S(3)/2), t, s) ==\
        (-2*sqrt(pi)*sqrt(s)*exp(a*s)*erfc(sqrt(a)*sqrt(s)) + 2/sqrt(a),
         0, True)
    assert LT(t**(S(1)/2)*(t+a)**(-1), t, s) ==\
        (-pi*sqrt(a)*exp(a*s)*erfc(sqrt(a)*sqrt(s)) + sqrt(pi)*sqrt(1/s),
         0, True)
    assert LT(1/(a*sqrt(t) + t**(3/2)), t, s) ==\
        (pi*sqrt(a)*exp(a*s)*erfc(sqrt(a)*sqrt(s)), 0, True)
    assert LT((t+a)**b, t, s) ==\
        (s**(-b - 1)*exp(-a*s)*lowergamma(b + 1, a*s), 0, True)
    assert LT(t**5/(t+a), t, s) == (120*a**5*lowergamma(-5, a*s), 0, True)
    # Exponential functions (laplace3.pdf)
    assert LT(exp(t), t, s) == (1/(s - 1), 1, True)
    assert LT(exp(2*t), t, s) == (1/(s - 2), 2, True)
    assert LT(exp(a*t), t, s) == (1/(s - a), a, True)
    assert LT(exp(a*(t-b)), t, s) == (exp(-a*b)/(-a + s), a, True)
    assert LT(t*exp(-a*(t)), t, s) == ((a + s)**(-2), -a, True)
    assert LT(t*exp(-a*(t-b)), t, s) == (exp(a*b)/(a + s)**2, -a, True)
    assert LT(b*t*exp(-a*t), t, s) == (b/(a + s)**2, -a, True)
    assert LT(t**(S(7)/4)*exp(-8*t)/gamma(S(11)/4), t, s) ==\
        ((s + 8)**(-S(11)/4), -8, True)
    assert LT(t**(S(3)/2)*exp(-8*t), t, s) ==\
        (3*sqrt(pi)/(4*(s + 8)**(S(5)/2)), -8, True)
    assert LT(t**a*exp(-a*t), t, s) ==  ((a+s)**(-a-1)*gamma(a+1), -a, True)
    assert LT(b*exp(-a*t**2), t, s) ==\
        (sqrt(pi)*b*exp(s**2/(4*a))*erfc(s/(2*sqrt(a)))/(2*sqrt(a)), 0, True)
    assert LT(exp(-2*t**2), t, s) ==\
        (sqrt(2)*sqrt(pi)*exp(s**2/8)*erfc(sqrt(2)*s/4)/4, 0, True)
    assert LT(b*exp(2*t**2), t, s) == b*LaplaceTransform(exp(2*t**2), t, s)
    assert LT(t*exp(-a*t**2), t, s) ==\
        (1/(2*a) - s*erfc(s/(2*sqrt(a)))/(4*sqrt(pi)*a**(S(3)/2)), 0, True)
    assert LT(exp(-a/t), t, s) ==\
        (2*sqrt(a)*sqrt(1/s)*besselk(1, 2*sqrt(a)*sqrt(s)), 0, True)
    assert LT(sqrt(t)*exp(-a/t), t, s) ==\
        (sqrt(pi)*(2*sqrt(a)*sqrt(s) + 1)*sqrt(s**(-3))*exp(-2*sqrt(a)*\
                                                    sqrt(s))/2, 0, True)
    assert LT(exp(-a/t)/sqrt(t), t, s) ==\
        (sqrt(pi)*sqrt(1/s)*exp(-2*sqrt(a)*sqrt(s)), 0, True)
    assert LT( exp(-a/t)/(t*sqrt(t)), t, s) ==\
        (sqrt(pi)*sqrt(1/a)*exp(-2*sqrt(a)*sqrt(s)), 0, True)
    assert LT(exp(-2*sqrt(a*t)), t, s) ==\
        ( 1/s -sqrt(pi)*sqrt(a) * exp(a/s)*erfc(sqrt(a)*sqrt(1/s))/\
         s**(S(3)/2), 0, True)
    assert LT(exp(-2*sqrt(a*t))/sqrt(t), t, s) == (exp(a/s)*erfc(sqrt(a)*\
        sqrt(1/s))*(sqrt(pi)*sqrt(1/s)), 0, True)
    assert LT(t**4*exp(-2/t), t, s) ==\
        (8*sqrt(2)*(1/s)**(S(5)/2)*besselk(5, 2*sqrt(2)*sqrt(s)), 0, True)
    # Hyperbolic functions (laplace4.pdf)
    assert LT(sinh(a*t), t, s) == (a/(-a**2 + s**2), a, True)
    assert LT(b*sinh(a*t)**2, t, s) == (2*a**2*b/(-4*a**2*s**2 + s**3),
                                        2*a, True)
    # The following line confirms that issue #21202 is solved
    assert LT(cosh(2*t), t, s) == (s/(-4 + s**2), 2, True)
    assert LT(cosh(a*t), t, s) == (s/(-a**2 + s**2), a, True)
    assert LT(cosh(a*t)**2, t, s) == ((-2*a**2 + s**2)/(-4*a**2*s**2 + s**3),
                                      2*a, True)
    assert LT(sinh(x + 3), x, s) == (
        (-s + (s + 1)*exp(6) + 1)*exp(-3)/(s - 1)/(s + 1)/2, 0, Abs(s) > 1)
    # The following line replaces the old test test_issue_7173()
    assert LT(sinh(a*t)*cosh(a*t), t, s) == (a/(-4*a**2 + s**2), 2*a, True)
    assert LT(sinh(a*t)/t, t, s) == (log((a + s)/(-a + s))/2, a, True)
    assert LT(t**(-S(3)/2)*sinh(a*t), t, s) ==\
        (-sqrt(pi)*(sqrt(-a + s) - sqrt(a + s)), a, True)
    assert LT(sinh(2*sqrt(a*t)), t, s) ==\
        (sqrt(pi)*sqrt(a)*exp(a/s)/s**(S(3)/2), 0, True)
    assert LT(sqrt(t)*sinh(2*sqrt(a*t)), t, s) ==\
        (-sqrt(a)/s**2 + sqrt(pi)*(a + s/2)*exp(a/s)*erf(sqrt(a)*\
                                            sqrt(1/s))/s**(S(5)/2), 0, True)
    assert LT(sinh(2*sqrt(a*t))/sqrt(t), t, s) ==\
        (sqrt(pi)*exp(a/s)*erf(sqrt(a)*sqrt(1/s))/sqrt(s), 0, True)
    assert LT(sinh(sqrt(a*t))**2/sqrt(t), t, s) ==\
        (sqrt(pi)*(exp(a/s) - 1)/(2*sqrt(s)), 0, True)
    assert LT(t**(S(3)/7)*cosh(a*t), t, s) ==\
        (((a + s)**(-S(10)/7) + (-a+s)**(-S(10)/7))*gamma(S(10)/7)/2, a, True)
    assert LT(cosh(2*sqrt(a*t)), t, s) ==\
        (sqrt(pi)*sqrt(a)*exp(a/s)*erf(sqrt(a)*sqrt(1/s))/s**(S(3)/2) + 1/s,
         0, True)
    assert LT(sqrt(t)*cosh(2*sqrt(a*t)), t, s) ==\
        (sqrt(pi)*(a + s/2)*exp(a/s)/s**(S(5)/2), 0, True)
    assert LT(cosh(2*sqrt(a*t))/sqrt(t), t, s) ==\
        (sqrt(pi)*exp(a/s)/sqrt(s), 0, True)
    assert LT(cosh(sqrt(a*t))**2/sqrt(t), t, s) ==\
        (sqrt(pi)*(exp(a/s) + 1)/(2*sqrt(s)), 0, True)
    # logarithmic functions (laplace5.pdf)
    assert LT(log(t), t, s) == (-log(s+S.EulerGamma)/s, 0, True)
    assert LT(log(t/a), t, s) == (-log(a*s + S.EulerGamma)/s, 0, True)
    assert LT(log(1+a*t), t, s) == (-exp(s/a)*Ei(-s/a)/s, 0, True)
    assert LT(log(t+a), t, s) == ((log(a) - exp(s/a)*Ei(-s/a)/s)/s, 0, True)
    assert LT(log(t)/sqrt(t), t, s) ==\
        (sqrt(pi)*(-log(s) - 2*log(2) - S.EulerGamma)/sqrt(s), 0, True)
    assert LT(t**(S(5)/2)*log(t), t, s) ==\
        (15*sqrt(pi)*(-log(s)-2*log(2)-S.EulerGamma+S(46)/15)/(8*s**(S(7)/2)),
         0, True)
    assert (LT(t**3*log(t), t, s, noconds=True)-6*(-log(s) - S.EulerGamma\
                                    + S(11)/6)/s**4).simplify() == S.Zero
    assert LT(log(t)**2, t, s) ==\
        (((log(s) + EulerGamma)**2 + pi**2/6)/s, 0, True)
    assert LT(exp(-a*t)*log(t), t, s) ==\
        ((-log(a + s) - S.EulerGamma)/(a + s), -a, True)
    # Trigonometric functions (laplace6.pdf)
    assert LT(sin(a*t), t, s) == (a/(a**2 + s**2), 0, True)
    assert LT(Abs(sin(a*t)), t, s) ==\
        (a*coth(pi*s/(2*a))/(a**2 + s**2), 0, True)
    assert LT(sin(a*t)/t, t, s) == (atan(a/s), 0, True)
    assert LT(sin(a*t)**2/t, t, s) == (log(4*a**2/s**2 + 1)/4, 0, True)
    assert LT(sin(a*t)**2/t**2, t, s) ==\
        (a*atan(2*a/s) - s*log(4*a**2/s**2 + 1)/4, 0, True)
    assert LT(sin(2*sqrt(a*t)), t, s) ==\
        (sqrt(pi)*sqrt(a)*exp(-a/s)/s**(S(3)/2), 0, True)
    assert LT(sin(2*sqrt(a*t))/t, t, s) == (pi*erf(sqrt(a)*sqrt(1/s)), 0, True)
    assert LT(cos(a*t), t, s) == (s/(a**2 + s**2), 0, True)
    assert LT(cos(a*t)**2, t, s) ==\
        ((2*a**2 + s**2)/(s*(4*a**2 + s**2)), 0, True)
    assert LT(sqrt(t)*cos(2*sqrt(a*t)), t, s) ==\
        (sqrt(pi)*(-2*a + s)*exp(-a/s)/(2*s**(S(5)/2)), 0, True)
    assert LT(cos(2*sqrt(a*t))/sqrt(t), t, s) ==\
        (sqrt(pi)*sqrt(1/s)*exp(-a/s), 0, True)
    assert LT(sin(a*t)*sin(b*t), t, s) ==\
        (2*a*b*s/((s**2 + (a - b)**2)*(s**2 + (a + b)**2)), 0, True)
    assert LT(cos(a*t)*sin(b*t), t, s) ==\
        (b*(-a**2 + b**2 + s**2)/((s**2 + (a - b)**2)*(s**2 + (a + b)**2)),
         0, True)
    assert LT(cos(a*t)*cos(b*t), t, s) ==\
        (s*(a**2 + b**2 + s**2)/((s**2 + (a - b)**2)*(s**2 + (a + b)**2)),
         0, True)
    assert LT(c*exp(-b*t)*sin(a*t), t, s) == (a*c/(a**2 + (b + s)**2),
                                              -b, True)
    assert LT(c*exp(-b*t)*cos(a*t), t, s) == ((b + s)*c/(a**2 + (b + s)**2),
                                              -b, True)
    assert LT(cos(x + 3), x, s) == ((s*cos(3) - sin(3))/(s**2 + 1), 0, True)
    # Error functions (laplace7.pdf)
    assert LT(erf(a*t), t, s) == (exp(s**2/(4*a**2))*erfc(s/(2*a))/s, 0, True)
    assert LT(erf(sqrt(a*t)), t, s) == (sqrt(a)/(s*sqrt(a + s)), 0, True)
    assert LT(exp(a*t)*erf(sqrt(a*t)), t, s) ==\
        (sqrt(a)/(sqrt(s)*(-a + s)), a, True)
    assert LT(erf(sqrt(a/t)/2), t, s) == ((1-exp(-sqrt(a)*sqrt(s)))/s, 0, True)
    assert LT(erfc(sqrt(a*t)), t, s) ==\
        ((-sqrt(a) + sqrt(a + s))/(s*sqrt(a + s)), 0, True)
    assert LT(exp(a*t)*erfc(sqrt(a*t)), t, s) ==\
        (1/(sqrt(a)*sqrt(s) + s), 0, True)
    assert LT(erfc(sqrt(a/t)/2), t, s) == (exp(-sqrt(a)*sqrt(s))/s, 0, True)
    # Bessel functions (laplace8.pdf)
    assert LT(besselj(0, a*t), t, s) == (1/sqrt(a**2 + s**2), 0, True)
    assert LT(besselj(1, a*t), t, s) ==\
        (a/(sqrt(a**2 + s**2)*(s + sqrt(a**2 + s**2))), 0, True)
    assert LT(besselj(2, a*t), t, s) ==\
        (a**2/(sqrt(a**2 + s**2)*(s + sqrt(a**2 + s**2))**2), 0, True)
    assert LT(t*besselj(0, a*t), t, s) ==\
        (s/(a**2 + s**2)**(S(3)/2), 0, True)
    assert LT(t*besselj(1, a*t), t, s) ==\
        (a/(a**2 + s**2)**(S(3)/2), 0, True)
    assert LT(t**2*besselj(2, a*t), t, s) ==\
        (3*a**2/(a**2 + s**2)**(S(5)/2), 0, True)
    assert LT(besselj(0, 2*sqrt(a*t)), t, s) == (exp(-a/s)/s, 0, True)
    assert LT(t**(S(3)/2)*besselj(3, 2*sqrt(a*t)), t, s) ==\
        (a**(S(3)/2)*exp(-a/s)/s**4, 0, True)
    assert LT(besselj(0, a*sqrt(t**2+b*t)), t, s) ==\
        (exp(b*s - b*sqrt(a**2 + s**2))/sqrt(a**2 + s**2), 0, True)
    assert LT(besseli(0, a*t), t, s) == (1/sqrt(-a**2 + s**2), a, True)
    assert LT(besseli(1, a*t), t, s) ==\
        (a/(sqrt(-a**2 + s**2)*(s + sqrt(-a**2 + s**2))), a, True)
    assert LT(besseli(2, a*t), t, s) ==\
        (a**2/(sqrt(-a**2 + s**2)*(s + sqrt(-a**2 + s**2))**2), a, True)
    assert LT(t*besseli(0, a*t), t, s) == (s/(-a**2 + s**2)**(S(3)/2), a, True)
    assert LT(t*besseli(1, a*t), t, s) == (a/(-a**2 + s**2)**(S(3)/2), a, True)
    assert LT(t**2*besseli(2, a*t), t, s) ==\
        (3*a**2/(-a**2 + s**2)**(S(5)/2), a, True)
    assert LT(t**(S(3)/2)*besseli(3, 2*sqrt(a*t)), t, s) ==\
        (a**(S(3)/2)*exp(a/s)/s**4, 0, True)
    assert LT(bessely(0, a*t), t, s) ==\
        (-2*asinh(s/a)/(pi*sqrt(a**2 + s**2)), 0, True)
    assert LT(besselk(0, a*t), t, s) ==\
        (log(s + sqrt(-a**2 + s**2))/sqrt(-a**2 + s**2), a, True)
    assert LT(sin(a*t)**8, t, s) ==\
        (40320*a**8/(s*(147456*a**8 + 52480*a**6*s**2 + 4368*a**4*s**4 +\
                        120*a**2*s**6 + s**8)), 0, True)

    # Test general rules and unevaluated forms
    # These all also test whether issue #7219 is solved.
    assert LT(Heaviside(t-1)*cos(t-1), t, s) == (s*exp(-s)/(s**2 + 1), 0, True)
    assert LT(a*f(t), t, w) == a*LaplaceTransform(f(t), t, w)
    assert LT(a*Heaviside(t+1)*f(t+1), t, s) ==\
        a*LaplaceTransform(f(t + 1)*Heaviside(t + 1), t, s)
    assert LT(a*Heaviside(t-1)*f(t-1), t, s) ==\
        a*LaplaceTransform(f(t), t, s)*exp(-s)
    assert LT(b*f(t/a), t, s) == a*b*LaplaceTransform(f(t), t, a*s)
    assert LT(exp(-f(x)*t), t, s) == (1/(s + f(x)), -f(x), True)
    assert LT(exp(-a*t)*f(t), t, s) == LaplaceTransform(f(t), t, a + s)
    assert LT(exp(-a*t)*erfc(sqrt(b/t)/2), t, s) ==\
        (exp(-sqrt(b)*sqrt(a + s))/(a + s), -a, True)
    assert LT(sinh(a*t)*f(t), t, s) ==\
        LaplaceTransform(f(t), t, -a+s)/2 - LaplaceTransform(f(t), t, a+s)/2
    assert LT(sinh(a*t)*t, t, s) ==\
        (-1/(2*(a + s)**2) + 1/(2*(-a + s)**2), a, True)
    assert LT(cosh(a*t)*f(t), t, s) ==\
        LaplaceTransform(f(t), t, -a+s)/2 + LaplaceTransform(f(t), t, a+s)/2
    assert LT(cosh(a*t)*t, t, s) ==\
        (1/(2*(a + s)**2) + 1/(2*(-a + s)**2), a, True)
    assert LT(sin(a*t)*f(t), t, s) ==\
        I*(-LaplaceTransform(f(t), t, -I*a + s) +\
           LaplaceTransform(f(t), t, I*a + s))/2
    assert LT(sin(a*t)*t, t, s) ==\
        (2*a*s/(a**4 + 2*a**2*s**2 + s**4), 0, True)
    assert LT(cos(a*t)*f(t), t, s) ==\
        LaplaceTransform(f(t), t, -I*a + s)/2 +\
        LaplaceTransform(f(t), t, I*a + s)/2
    assert LT(cos(a*t)*t, t, s) ==\
        ((-a**2 + s**2)/(a**4 + 2*a**2*s**2 + s**4), 0, True)
    # The following two lines test whether issues #5813 and #7176 are solved.
    assert LT(diff(f(t), (t, 1)), t, s) == s*LaplaceTransform(f(t), t, s)\
        - f(0)
    assert LT(diff(f(t), (t, 3)), t, s) == s**3*LaplaceTransform(f(t), t, s)\
        - s**2*f(0) - s*Subs(Derivative(f(t), t), t, 0)\
            - Subs(Derivative(f(t), (t, 2)), t, 0)
    assert LT(a*f(b*t)+g(c*t), t, s) == a*LaplaceTransform(f(t), t, s/b)/b +\
        LaplaceTransform(g(t), t, s/c)/c
    assert inverse_laplace_transform(
        f(w), w, t, plane=0) == InverseLaplaceTransform(f(w), w, t, 0)
    assert LT(f(t)*g(t), t, s) == LaplaceTransform(f(t)*g(t), t, s)

    # additional basic tests from wikipedia
    assert LT((t - a)**b*exp(-c*(t - a))*Heaviside(t - a), t, s) == \
        ((s + c)**(-b - 1)*exp(-a*s)*gamma(b + 1), -c, True)
    assert LT((exp(2*t) - 1)*exp(-b - t)*Heaviside(t)/2, t, s, noconds=True) \
        == exp(-b)/(s**2 - 1)

    # DiracDelta function: standard cases
    assert LT(DiracDelta(t), t, s) == (1, 0, True)
    assert LT(DiracDelta(a*t), t, s) == (1/a, 0, True)
    assert LT(DiracDelta(t/42), t, s) == (42, 0, True)
    assert LT(DiracDelta(t+42), t, s) == (0, 0, True)
    assert LT(DiracDelta(t)+DiracDelta(t-42), t, s) == \
        (1 + exp(-42*s), 0, True)
    assert LT(DiracDelta(t)-a*exp(-a*t), t, s) == (s/(a + s), 0, True)
    assert LT(exp(-t)*(DiracDelta(t)+DiracDelta(t-42)), t, s) == \
        (exp(-42*s - 42) + 1, -oo, True)

    # Collection of cases that cannot be fully evaluated and/or would catch
    # some common implementation errors
    assert LT(DiracDelta(t**2), t, s) == LaplaceTransform(DiracDelta(t**2), t, s)
    assert LT(DiracDelta(t**2 - 1), t, s) == (exp(-s)/2, -oo, True)
    assert LT(DiracDelta(t*(1 - t)), t, s) == \
        LaplaceTransform(DiracDelta(-t**2 + t), t, s)
    assert LT((DiracDelta(t) + 1)*(DiracDelta(t - 1) + 1), t, s) == \
        (LaplaceTransform(DiracDelta(t)*DiracDelta(t - 1), t, s) + \
         1 + exp(-s) + 1/s, 0, True)
    assert LT(DiracDelta(2*t-2*exp(a)), t, s) == (exp(-s*exp(a))/2, 0, True)
    assert LT(DiracDelta(-2*t+2*exp(a)), t, s) == (exp(-s*exp(a))/2, 0, True)

    # Heaviside tests
    assert LT(Heaviside(t), t, s) == (1/s, 0, True)
    assert LT(Heaviside(t - a), t, s) == (exp(-a*s)/s, 0, True)
    assert LT(Heaviside(t-1), t, s) == (exp(-s)/s, 0, True)
    assert LT(Heaviside(2*t-4), t, s) == (exp(-2*s)/s, 0, True)
    assert LT(Heaviside(-2*t+4), t, s) == ((1 - exp(-2*s))/s, 0, True)
    assert LT(Heaviside(2*t+4), t, s) == (1/s, 0, True)
    assert LT(Heaviside(-2*t+4), t, s) == ((1 - exp(-2*s))/s, 0, True)

    # Fresnel functions
    assert laplace_transform(fresnels(t), t, s) == \
        ((-sin(s**2/(2*pi))*fresnels(s/pi) + sin(s**2/(2*pi))/2 -
            cos(s**2/(2*pi))*fresnelc(s/pi) + cos(s**2/(2*pi))/2)/s, 0, True)
    assert laplace_transform(fresnelc(t), t, s) == (
        ((2*sin(s**2/(2*pi))*fresnelc(s/pi) - 2*cos(s**2/(2*pi))*fresnels(s/pi)
        + sqrt(2)*cos(s**2/(2*pi) + pi/4))/(2*s), 0, True))

    # Matrix tests
    Mt = Matrix([[exp(t), t*exp(-t)], [t*exp(-t), exp(t)]])
    Ms = Matrix([[    1/(s - 1), (s + 1)**(-2)],
                 [(s + 1)**(-2),     1/(s - 1)]])

    # The default behaviour for Laplace tranform of a Matrix returns a Matrix
    # of Tuples and is deprecated:
    with warns_deprecated_sympy():
        Ms_conds = Matrix([[(1/(s - 1), 1, True), ((s + 1)**(-2),
            -1, True)], [((s + 1)**(-2), -1, True), (1/(s - 1), 1, True)]])
    with warns_deprecated_sympy():
        assert LT(Mt, t, s) == Ms_conds
    # The new behavior is to return a tuple of a Matrix and the convergence
    # conditions for the matrix as a whole:
    assert LT(Mt, t, s, legacy_matrix=False) == (Ms, 1, True)
    # With noconds=True the transformed matrix is returned without conditions
    # either way:
    assert LT(Mt, t, s, noconds=True) == Ms
    assert LT(Mt, t, s, legacy_matrix=False, noconds=True) == Ms