예제 #1
0
파일: entity.py 프로젝트: vddesai1871/sympy
 def _eval_subs(self, old, new):
     from sympy.geometry.point import Point, Point3D
     if is_sequence(old) or is_sequence(new):
         if isinstance(self, Point3D):
             old = Point3D(old)
             new = Point3D(new)
         else:
             old = Point(old)
             new = Point(new)
         return  self._subs(old, new)
def test_deviation():
    n1, n2 = symbols('n1, n2')
    r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
    n = Matrix([0, 0, 1])
    i = Matrix([-1, -1, -1])
    normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
    P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
    assert deviation(r1, 1, 1, normal=n) == 0
    assert deviation(r1, 1, 1, plane=P) == 0
    assert deviation(r1, 1, 1.1, plane=P).evalf(3) + 0.119 < 1e-3
    assert deviation(i, 1, 1.1, normal=normal_ray).evalf(3) + 0.119 < 1e-3
    assert deviation(r1, 1.33, 1, plane=P) is None  # TIR
    assert deviation(r1, 1, 1, normal=[0, 0, 1]) == 0
    assert deviation([-1, -1, -1], 1, 1, normal=[0, 0, 1]) == 0
예제 #3
0
def are_coplanar(*e):
    """ Returns True if the given entities are coplanar otherwise False

    Parameters
    ==========

    e: entities to be checked for being coplanar

    Returns
    =======

    Boolean

    Examples
    ========

    >>> from sympy import Point3D, Line3D
    >>> from sympy.geometry.util import are_coplanar
    >>> a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
    >>> b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
    >>> c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
    >>> are_coplanar(a, b, c)
    False

    """
    from sympy.geometry.line import LinearEntity3D
    from sympy.geometry.entity import GeometryEntity
    from sympy.geometry.point import Point3D
    from sympy.geometry.plane import Plane

    # XXX update tests for coverage

    e = set(e)
    # first work with a Plane if present
    for i in list(e):
        if isinstance(i, Plane):
            e.remove(i)
            return all(p.is_coplanar(i) for p in e)

    if all(isinstance(i, Point3D) for i in e):
        if len(e) < 3:
            return False

        # remove pts that are collinear with 2 pts
        a, b = e.pop(), e.pop()
        for i in list(e):
            if Point3D.are_collinear(a, b, i):
                e.remove(i)

        if not e:
            return False
        else:
            # define a plane
            p = Plane(a, b, e.pop())
            for i in e:
                if i not in p:
                    return False
            return True
    else:
        pt3d = []
        for i in e:
            if isinstance(i, Point3D):
                pt3d.append(i)
            elif isinstance(i, LinearEntity3D):
                pt3d.extend(i.args)
            elif isinstance(
                    i, GeometryEntity
            ):  # XXX we should have a GeometryEntity3D class so we can tell the difference between 2D and 3D -- here we just want to deal with 2D objects; if new 3D objects are encountered that we didn't handle above, an error should be raised
                # all 2D objects have some Point that defines them; so convert those points to 3D pts by making z=0
                for p in i.args:
                    if isinstance(p, Point):
                        pt3d.append(Point3D(*(p.args + (0, ))))
        return are_coplanar(*pt3d)
예제 #4
0
파일: util.py 프로젝트: asmeurer/sympy
def are_coplanar(*e):
    """ Returns True if the given entities are coplanar otherwise False

    Parameters
    ==========

    e: entities to be checked for being coplanar

    Returns
    =======

    Boolean

    Examples
    ========

    >>> from sympy import Point3D, Line3D
    >>> from sympy.geometry.util import are_coplanar
    >>> a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
    >>> b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
    >>> c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
    >>> are_coplanar(a, b, c)
    False

    """
    from sympy.geometry.line import LinearEntity3D
    from sympy.geometry.point import Point3D
    from sympy.geometry.plane import Plane
    # XXX update tests for coverage

    e = set(e)
    # first work with a Plane if present
    for i in list(e):
        if isinstance(i, Plane):
            e.remove(i)
            return all(p.is_coplanar(i) for p in e)

    if all(isinstance(i, Point3D) for i in e):
        if len(e) < 3:
            return False

        # remove pts that are collinear with 2 pts
        a, b = e.pop(), e.pop()
        for i in list(e):
            if Point3D.are_collinear(a, b, i):
                e.remove(i)

        if not e:
            return False
        else:
            # define a plane
            p = Plane(a, b, e.pop())
            for i in e:
                if i not in p:
                    return False
            return True
    else:
        pt3d = []
        for i in e:
            if isinstance(i, Point3D):
                pt3d.append(i)
            elif isinstance(i, LinearEntity3D):
                pt3d.extend(i.args)
            elif isinstance(i, GeometryEntity):  # XXX we should have a GeometryEntity3D class so we can tell the difference between 2D and 3D -- here we just want to deal with 2D objects; if new 3D objects are encountered that we didn't hanlde above, an error should be raised
                # all 2D objects have some Point that defines them; so convert those points to 3D pts by making z=0
                for p in i.args:
                    if isinstance(p, Point):
                        pt3d.append(Point3D(*(p.args + (0,))))
        return are_coplanar(*pt3d)
예제 #5
0
def test_refraction_angle():
    n1, n2 = symbols('n1, n2')
    m1 = Medium('m1')
    m2 = Medium('m2')
    r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
    i = Matrix([1, 1, 1])
    n = Matrix([0, 0, 1])
    normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
    P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
    assert refraction_angle(r1, 1, 1, n) == Matrix([[1], [1], [-1]])
    assert refraction_angle([1, 1, 1], 1, 1, n) == Matrix([[1], [1], [-1]])
    assert refraction_angle((1, 1, 1), 1, 1, n) == Matrix([[1], [1], [-1]])
    assert refraction_angle(i, 1, 1, [0, 0, 1]) == Matrix([[1], [1], [-1]])
    assert refraction_angle(i, 1, 1, (0, 0, 1)) == Matrix([[1], [1], [-1]])
    assert refraction_angle(i, 1, 1, normal_ray) == Matrix([[1], [1], [-1]])
    assert refraction_angle(i, 1, 1, plane=P) == Matrix([[1], [1], [-1]])
    assert refraction_angle(r1, 1, 1, plane=P) == \
        Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
    assert refraction_angle(r1, m1, 1.33, plane=P) == \
        Ray3D(Point3D(0, 0, 0), Point3D(100/133, 100/133, -789378201649271*sqrt(3)/1000000000000000))
    assert refraction_angle(r1, 1, m2, plane=P) == \
        Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
    assert refraction_angle(r1, n1, n2, plane=P) == \
        Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))
    assert refraction_angle(r1, 1.33, 1, plane=P) == 0  # TIR
    assert refraction_angle(r1, 1, 1, normal_ray) == \
        Ray3D(Point3D(0, 0, 0), direction_ratio=[1, 1, -1])
예제 #6
0
def test_refraction_angle():
    n1, n2 = symbols('n1, n2')
    m1 = Medium('m1')
    m2 = Medium('m2')
    r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
    i = Matrix([1, 1, 1])
    n = Matrix([0, 0, 1])
    normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
    P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
    assert refraction_angle(r1, 1, 1, n) == Matrix([[1], [1], [-1]])
    assert refraction_angle([1, 1, 1], 1, 1, n) == Matrix([[1], [1], [-1]])
    assert refraction_angle((1, 1, 1), 1, 1, n) == Matrix([[1], [1], [-1]])
    assert refraction_angle(i, 1, 1, [0, 0, 1]) == Matrix([[1], [1], [-1]])
    assert refraction_angle(i, 1, 1, (0, 0, 1)) == Matrix([[1], [1], [-1]])
    assert refraction_angle(i, 1, 1, normal_ray) == Matrix([[1], [1], [-1]])
    assert refraction_angle(i, 1, 1, plane=P) == Matrix([[1], [1], [-1]])
    assert refraction_angle(r1, 1, 1, plane=P) == \
        Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
    assert refraction_angle(r1, m1, 1.33, plane=P) == \
        Ray3D(Point3D(0, 0, 0), Point3D(Rational(100, 133), Rational(100, 133), -789378201649271*sqrt(3)/1000000000000000))
    assert refraction_angle(r1, 1, m2, plane=P) == \
        Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
    assert refraction_angle(r1, n1, n2, plane=P) == \
        Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))
    assert refraction_angle(r1, 1.33, 1, plane=P) == 0  # TIR
    assert refraction_angle(r1, 1, 1, normal_ray) == \
        Ray3D(Point3D(0, 0, 0), direction_ratio=[1, 1, -1])
    assert ae(refraction_angle(0.5, 1, 2), 0.24207, 5)
    assert ae(refraction_angle(0.5, 2, 1), 1.28293, 5)
    raises(ValueError, lambda: refraction_angle(r1, m1, m2, normal_ray, P))
    raises(TypeError, lambda: refraction_angle(m1, m1, m2)
           )  # can add other values for arg[0]
    raises(TypeError, lambda: refraction_angle(r1, m1, m2, None, i))
    raises(TypeError, lambda: refraction_angle(r1, m1, m2, m2))
예제 #7
0
    if (DISPLAY):
        p.add_point_labels(posterior_point, [
                           "Post Point"], point_color='white', point_size=20)
        p.add_point_labels(
            anterior_point, ["Ant Point"], point_color='red', point_size=20)
        p.add_legend()
        p.add_axes()
        p.show()

    raise

    # Check if point is lateral or medial
    # posterior_point_distance =
    posterior_point_distance = sagittal_plane.distance(
        Point3D(posterior_point, evaluate=False))

    if (posterior_point_distance < 0):
        # Find sagittale plane
        initial_sagitall_axis = np.array([1, 0, 0])
        initial_sagitall_plane = Plane(
            femur_cm, normal_vector=initial_sagitall_axis)
        max_distance = -100000
        for idx, point in enumerate(femur_3D_points):
            d = initial_sagitall_plane.distance(point)
            if (d > max_distance):
                max_distance = d
                index_point_max_sagitall_distance = idx
    else:
        initial_sagitall_axis = np.array([1, 0, 0])
        initial_sagitall_plane = Plane(