def test_trace(): assert isinstance(Trace(A), Trace) assert not isinstance(Trace(A), MatrixExpr) raises(ShapeError, lambda: Trace(C)) assert Trace(eye(3)) == 3 assert Trace(Matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])) == 15 assert adjoint(Trace(A)) == Trace(Adjoint(A)) assert conjugate(Trace(A)) == Trace(Adjoint(A)) assert transpose(Trace(A)) == Trace(A) A / Trace(A) # Make sure this is possible # Some easy simplifications assert Trace(Identity(5)) == 5 assert Trace(ZeroMatrix(5, 5)) == 0 assert Trace(2 * A * B) == 2 * Trace(A * B) assert Trace(A.T) == Trace(A) i, j = symbols('i j') F = FunctionMatrix(3, 3, Lambda((i, j), i + j)) assert Trace(F).doit() == (0 + 0) + (1 + 1) + (2 + 2) raises(TypeError, lambda: Trace(S.One)) assert Trace(A).arg is A
def test_funcmatrix(): i, j = symbols('i,j') X = FunctionMatrix(3, 3, Lambda((i, j), i - j)) assert X[1, 1] == 0 assert X[1, 2] == -1 assert X.shape == (3, 3) assert X.rows == X.cols == 3 assert Matrix(X) == Matrix(3, 3, lambda i, j: i - j) assert isinstance(X*X + X, MatrixExpr)
def test_funcmatrix_creation(): i, j, k = symbols('i j k') assert FunctionMatrix(2, 2, Lambda((i, j), 0)) assert FunctionMatrix(0, 0, Lambda((i, j), 0)) raises(ValueError, lambda: FunctionMatrix(-1, 0, Lambda((i, j), 0))) raises(ValueError, lambda: FunctionMatrix(2.0, 0, Lambda((i, j), 0))) raises(ValueError, lambda: FunctionMatrix(2j, 0, Lambda((i, j), 0))) raises(ValueError, lambda: FunctionMatrix(0, -1, Lambda((i, j), 0))) raises(ValueError, lambda: FunctionMatrix(0, 2.0, Lambda((i, j), 0))) raises(ValueError, lambda: FunctionMatrix(0, 2j, Lambda((i, j), 0))) raises(ValueError, lambda: FunctionMatrix(2, 2, Lambda(i, 0))) raises(ValueError, lambda: FunctionMatrix(2, 2, lambda i, j: 0)) raises(ValueError, lambda: FunctionMatrix(2, 2, Lambda((i,), 0))) raises(ValueError, lambda: FunctionMatrix(2, 2, Lambda((i, j, k), 0))) raises(ValueError, lambda: FunctionMatrix(2, 2, i+j)) assert FunctionMatrix(2, 2, "lambda i, j: 0") == \ FunctionMatrix(2, 2, Lambda((i, j), 0)) m = FunctionMatrix(2, 2, KroneckerDelta) assert m.as_explicit() == Identity(2).as_explicit() assert m.args[2] == Lambda((i, j), KroneckerDelta(i, j)) n = symbols('n') assert FunctionMatrix(n, n, Lambda((i, j), 0)) n = symbols('n', integer=False) raises(ValueError, lambda: FunctionMatrix(n, n, Lambda((i, j), 0))) n = symbols('n', negative=True) raises(ValueError, lambda: FunctionMatrix(n, n, Lambda((i, j), 0)))
def test_replace_issue(): X = FunctionMatrix(3, 3, KroneckerDelta) assert X.replace(lambda x: True, lambda x: x) == X
def test_funcmatrix_creation(): i, j, k = symbols('i j k') assert FunctionMatrix(2, 2, Lambda((i, j), 0)) assert FunctionMatrix(0, 0, Lambda((i, j), 0)) raises(ValueError, lambda: FunctionMatrix(-1, 0, Lambda((i, j), 0))) raises(ValueError, lambda: FunctionMatrix(2.0, 0, Lambda((i, j), 0))) raises(ValueError, lambda: FunctionMatrix(2j, 0, Lambda((i, j), 0))) raises(ValueError, lambda: FunctionMatrix(0, -1, Lambda((i, j), 0))) raises(ValueError, lambda: FunctionMatrix(0, 2.0, Lambda((i, j), 0))) raises(ValueError, lambda: FunctionMatrix(0, 2j, Lambda((i, j), 0))) raises(ValueError, lambda: FunctionMatrix(2, 2, Lambda(i, 0))) with warns(SymPyDeprecationWarning, test_stacklevel=False): # This raises a deprecation warning from sympify() raises(ValueError, lambda: FunctionMatrix(2, 2, lambda i, j: 0)) raises(ValueError, lambda: FunctionMatrix(2, 2, Lambda((i,), 0))) raises(ValueError, lambda: FunctionMatrix(2, 2, Lambda((i, j, k), 0))) raises(ValueError, lambda: FunctionMatrix(2, 2, i+j)) assert FunctionMatrix(2, 2, "lambda i, j: 0") == \ FunctionMatrix(2, 2, Lambda((i, j), 0)) m = FunctionMatrix(2, 2, KroneckerDelta) assert m.as_explicit() == Identity(2).as_explicit() assert m.args[2].dummy_eq(Lambda((i, j), KroneckerDelta(i, j))) n = symbols('n') assert FunctionMatrix(n, n, Lambda((i, j), 0)) n = symbols('n', integer=False) raises(ValueError, lambda: FunctionMatrix(n, n, Lambda((i, j), 0))) n = symbols('n', negative=True) raises(ValueError, lambda: FunctionMatrix(n, n, Lambda((i, j), 0)))