예제 #1
0
파일: partitions_.py 프로젝트: 101man/sympy
def npartitions(n, verbose=False):
    """
    Calculate the partition function P(n), i.e. the number of ways that
    n can be written as a sum of positive integers.

    P(n) is computed using the Hardy-Ramanujan-Rademacher formula,
    described e.g. at http://mathworld.wolfram.com/PartitionFunctionP.html

    The correctness of this implementation has been tested for 10**n
    up to n = 8.
    """
    n = int(n)
    if n < 0: return 0
    if n <= 5: return [1, 1, 2, 3, 5, 7][n]
    # Estimate number of bits in p(n). This formula could be tidied
    pbits = int((math.pi*(2*n/3.)**0.5-math.log(4*n))/math.log(10)+1)*\
        math.log(10,2)
    prec = p = int(pbits*1.1 + 100)
    s = fzero
    M = max(6, int(0.24*n**0.5+4))
    sq23pi = mpf_mul(mpf_sqrt(from_rational(2,3,p), p), mpf_pi(p), p)
    sqrt8 = mpf_sqrt(from_int(8), p)
    for q in xrange(1, M):
        a = A(n,q,p)
        d = D(n,q,p, sq23pi, sqrt8)
        s = mpf_add(s, mpf_mul(a, d), prec)
        if verbose:
            print "step", q, "of", M, to_str(a, 10), to_str(d, 10)
        # On average, the terms decrease rapidly in magnitude. Dynamically
        # reducing the precision greatly improves performance.
        p = bitcount(abs(to_int(d))) + 50
    np = to_int(mpf_add(s, fhalf, prec))
    return int(np)
예제 #2
0
def npartitions(n, verbose=False):
    """
    Calculate the partition function P(n), i.e. the number of ways that
    n can be written as a sum of positive integers.

    P(n) is computed using the Hardy-Ramanujan-Rademacher formula,
    described e.g. at http://mathworld.wolfram.com/PartitionFunctionP.html

    The correctness of this implementation has been tested for 10**n
    up to n = 8.
    """
    n = int(n)
    if n < 0: return 0
    if n <= 5: return [1, 1, 2, 3, 5, 7][n]
    # Estimate number of bits in p(n). This formula could be tidied
    pbits = int((math.pi*(2*n/3.)**0.5-math.log(4*n))/math.log(10)+1)*\
        math.log(10,2)
    prec = p = int(pbits * 1.1 + 100)
    s = fzero
    M = max(6, int(0.24 * n**0.5 + 4))
    sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
    sqrt8 = mpf_sqrt(from_int(8), p)
    for q in xrange(1, M):
        a = A(n, q, p)
        d = D(n, q, p, sq23pi, sqrt8)
        s = mpf_add(s, mpf_mul(a, d), prec)
        if verbose:
            print "step", q, "of", M, to_str(a, 10), to_str(d, 10)
        # On average, the terms decrease rapidly in magnitude. Dynamically
        # reducing the precision greatly improves performance.
        p = bitcount(abs(to_int(d))) + 50
    np = to_int(mpf_add(s, fhalf, prec))
    return int(np)
예제 #3
0
def _d(n, j, prec, sq23pi, sqrt8):
    """
    Compute the sinh term in the outer sum of the HRR formula.
    The constants sqrt(2/3*pi) and sqrt(8) must be precomputed.
    """
    j = from_int(j)
    pi = mpf_pi(prec)
    a = mpf_div(sq23pi, j, prec)
    b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec)
    c = mpf_sqrt(b, prec)
    ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec)
    D = mpf_div(mpf_sqrt(j, prec), mpf_mul(mpf_mul(sqrt8, b), pi), prec)
    E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec)
    return mpf_mul(D, E)
예제 #4
0
def _d(n, j, prec, sq23pi, sqrt8):
    """
    Compute the sinh term in the outer sum of the HRR formula.
    The constants sqrt(2/3*pi) and sqrt(8) must be precomputed.
    """
    j = from_int(j)
    pi = mpf_pi(prec)
    a = mpf_div(sq23pi, j, prec)
    b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec)
    c = mpf_sqrt(b, prec)
    ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec)
    D = mpf_div(mpf_sqrt(j, prec), mpf_mul(mpf_mul(sqrt8, b), pi), prec)
    E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec)
    return mpf_mul(D, E)
예제 #5
0
파일: evalf.py 프로젝트: smichr/sympy
def evalf_pow(v, prec, options):

    target_prec = prec
    base, exp = v.args

    # We handle x**n separately. This has two purposes: 1) it is much
    # faster, because we avoid calling evalf on the exponent, and 2) it
    # allows better handling of real/imaginary parts that are exactly zero
    if exp.is_Integer:
        p = exp.p
        # Exact
        if not p:
            return fone, None, prec, None
        # Exponentiation by p magnifies relative error by |p|, so the
        # base must be evaluated with increased precision if p is large
        prec += int(math.log(abs(p), 2))
        re, im, re_acc, im_acc = evalf(base, prec + 5, options)
        # Real to integer power
        if re and not im:
            return mpf_pow_int(re, p, target_prec), None, target_prec, None
        # (x*I)**n = I**n * x**n
        if im and not re:
            z = mpf_pow_int(im, p, target_prec)
            case = p % 4
            if case == 0:
                return z, None, target_prec, None
            if case == 1:
                return None, z, None, target_prec
            if case == 2:
                return mpf_neg(z), None, target_prec, None
            if case == 3:
                return None, mpf_neg(z), None, target_prec
        # Zero raised to an integer power
        if not re:
            return None, None, None, None
        # General complex number to arbitrary integer power
        re, im = libmp.mpc_pow_int((re, im), p, prec)
        # Assumes full accuracy in input
        return finalize_complex(re, im, target_prec)

    # Pure square root
    if exp is S.Half:
        xre, xim, _, _ = evalf(base, prec + 5, options)
        # General complex square root
        if xim:
            re, im = libmp.mpc_sqrt((xre or fzero, xim), prec)
            return finalize_complex(re, im, prec)
        if not xre:
            return None, None, None, None
        # Square root of a negative real number
        if mpf_lt(xre, fzero):
            return None, mpf_sqrt(mpf_neg(xre), prec), None, prec
        # Positive square root
        return mpf_sqrt(xre, prec), None, prec, None

    # We first evaluate the exponent to find its magnitude
    # This determines the working precision that must be used
    prec += 10
    yre, yim, _, _ = evalf(exp, prec, options)
    # Special cases: x**0
    if not (yre or yim):
        return fone, None, prec, None

    ysize = fastlog(yre)
    # Restart if too big
    # XXX: prec + ysize might exceed maxprec
    if ysize > 5:
        prec += ysize
        yre, yim, _, _ = evalf(exp, prec, options)

    # Pure exponential function; no need to evalf the base
    if base is S.Exp1:
        if yim:
            re, im = libmp.mpc_exp((yre or fzero, yim), prec)
            return finalize_complex(re, im, target_prec)
        return mpf_exp(yre, target_prec), None, target_prec, None

    xre, xim, _, _ = evalf(base, prec + 5, options)
    # 0**y
    if not (xre or xim):
        return None, None, None, None

    # (real ** complex) or (complex ** complex)
    if yim:
        re, im = libmp.mpc_pow((xre or fzero, xim or fzero), (yre or fzero, yim), target_prec)
        return finalize_complex(re, im, target_prec)
    # complex ** real
    if xim:
        re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec)
        return finalize_complex(re, im, target_prec)
    # negative ** real
    elif mpf_lt(xre, fzero):
        re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec)
        return finalize_complex(re, im, target_prec)
    # positive ** real
    else:
        return mpf_pow(xre, yre, target_prec), None, target_prec, None
예제 #6
0
def evalf_pow(v, prec, options):

    target_prec = prec
    base, exp = v.args

    # We handle x**n separately. This has two purposes: 1) it is much
    # faster, because we avoid calling evalf on the exponent, and 2) it
    # allows better handling of real/imaginary parts that are exactly zero
    if exp.is_Integer:
        p = exp.p
        # Exact
        if not p:
            return fone, None, prec, None
        # Exponentiation by p magnifies relative error by |p|, so the
        # base must be evaluated with increased precision if p is large
        prec += int(math.log(abs(p), 2))
        re, im, re_acc, im_acc = evalf(base, prec + 5, options)
        # Real to integer power
        if re and not im:
            return mpf_pow_int(re, p, target_prec), None, target_prec, None
        # (x*I)**n = I**n * x**n
        if im and not re:
            z = mpf_pow_int(im, p, target_prec)
            case = p % 4
            if case == 0:
                return z, None, target_prec, None
            if case == 1:
                return None, z, None, target_prec
            if case == 2:
                return mpf_neg(z), None, target_prec, None
            if case == 3:
                return None, mpf_neg(z), None, target_prec
        # Zero raised to an integer power
        if not re:
            return None, None, None, None
        # General complex number to arbitrary integer power
        re, im = libmp.mpc_pow_int((re, im), p, prec)
        # Assumes full accuracy in input
        return finalize_complex(re, im, target_prec)

    # Pure square root
    if exp is S.Half:
        xre, xim, _, _ = evalf(base, prec + 5, options)
        # General complex square root
        if xim:
            re, im = libmp.mpc_sqrt((xre or fzero, xim), prec)
            return finalize_complex(re, im, prec)
        if not xre:
            return None, None, None, None
        # Square root of a negative real number
        if mpf_lt(xre, fzero):
            return None, mpf_sqrt(mpf_neg(xre), prec), None, prec
        # Positive square root
        return mpf_sqrt(xre, prec), None, prec, None

    # We first evaluate the exponent to find its magnitude
    # This determines the working precision that must be used
    prec += 10
    yre, yim, _, _ = evalf(exp, prec, options)
    # Special cases: x**0
    if not (yre or yim):
        return fone, None, prec, None

    ysize = fastlog(yre)
    # Restart if too big
    # XXX: prec + ysize might exceed maxprec
    if ysize > 5:
        prec += ysize
        yre, yim, _, _ = evalf(exp, prec, options)

    # Pure exponential function; no need to evalf the base
    if base is S.Exp1:
        if yim:
            re, im = libmp.mpc_exp((yre or fzero, yim), prec)
            return finalize_complex(re, im, target_prec)
        return mpf_exp(yre, target_prec), None, target_prec, None

    xre, xim, _, _ = evalf(base, prec + 5, options)
    # 0**y
    if not (xre or xim):
        return None, None, None, None

    # (real ** complex) or (complex ** complex)
    if yim:
        re, im = libmp.mpc_pow(
            (xre or fzero, xim or fzero), (yre or fzero, yim),
            target_prec)
        return finalize_complex(re, im, target_prec)
    # complex ** real
    if xim:
        re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec)
        return finalize_complex(re, im, target_prec)
    # negative ** real
    elif mpf_lt(xre, fzero):
        re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec)
        return finalize_complex(re, im, target_prec)
    # positive ** real
    else:
        return mpf_pow(xre, yre, target_prec), None, target_prec, None