예제 #1
1
def test_linearize_pendulum_lagrange_minimal():
    q1 = dynamicsymbols('q1')                     # angle of pendulum
    q1d = dynamicsymbols('q1', 1)                 # Angular velocity
    L, m, t = symbols('L, m, t')
    g = 9.8

    # Compose world frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)

    # A.x is along the pendulum
    A = N.orientnew('A', 'axis', [q1, N.z])
    A.set_ang_vel(N, q1d*N.z)

    # Locate point P relative to the origin N*
    P = pN.locatenew('P', L*A.x)
    P.v2pt_theory(pN, N, A)
    pP = Particle('pP', P, m)

    # Solve for eom with Lagranges method
    Lag = Lagrangian(N, pP)
    LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N)
    LM.form_lagranges_equations()

    # Linearize
    A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True)

    assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]])
    assert B == Matrix([])
예제 #2
1
def test_parallel_axis():
    # This is for a 2 dof inverted pendulum on a cart.
    # This tests the parallel axis code in Kane. The inertia of the pendulum is
    # defined about the hinge, not about the center of mass.

    # Defining the constants and knowns of the system
    gravity        = symbols('g')
    k, ls          = symbols('k ls')
    a, mA, mC      = symbols('a mA mC')
    F              = dynamicsymbols('F')
    Ix, Iy, Iz     = symbols('Ix Iy Iz')

    # Declaring the Generalized coordinates and speeds
    q1, q2   = dynamicsymbols('q1 q2')
    q1d, q2d = dynamicsymbols('q1 q2', 1)
    u1, u2   = dynamicsymbols('u1 u2')
    u1d, u2d = dynamicsymbols('u1 u2', 1)

    # Creating reference frames
    N = ReferenceFrame('N')
    A = ReferenceFrame('A')

    A.orient(N, 'Axis', [-q2, N.z])
    A.set_ang_vel(N, -u2 * N.z)

    # Origin of Newtonian reference frame
    O = Point('O')

    # Creating and Locating the positions of the cart, C, and the
    # center of mass of the pendulum, A
    C  = O.locatenew('C',  q1 * N.x)
    Ao = C.locatenew('Ao', a * A.y)

    # Defining velocities of the points
    O.set_vel(N, 0)
    C.set_vel(N, u1 * N.x)
    Ao.v2pt_theory(C, N, A)
    Cart     = Particle('Cart', C, mC)
    Pendulum = RigidBody('Pendulum', Ao, A, mA, (inertia(A, Ix, Iy, Iz), C))

    # kinematical differential equations

    kindiffs  = [q1d - u1, q2d - u2]

    bodyList  = [Cart, Pendulum]

    forceList = [(Ao, -N.y * gravity * mA),
                 (C,  -N.y * gravity * mC),
                 (C,  -N.x * k * (q1 - ls)),
                 (C,   N.x * F)]

    km=Kane(N)
    km.coords([q1, q2])
    km.speeds([u1, u2])
    km.kindiffeq(kindiffs)
    (fr,frstar) = km.kanes_equations(forceList, bodyList)
    mm = km.mass_matrix_full
    assert mm[3, 3] == -Iz
예제 #3
1
파일: test_kane.py 프로젝트: 101man/sympy
def test_aux():
    # Same as above, except we have 2 auxiliary speeds for the ground contact
    # point, which is known to be zero. In one case, we go through then
    # substitute the aux. speeds in at the end (they are zero, as well as their
    # derivative), in the other case, we use the built-in auxiliary speed part
    # of Kane. The equations from each should be the same.
    q1, q2, q3, u1, u2, u3  = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
    u4d, u5d = dynamicsymbols('u4, u5', 1)
    r, m, g = symbols('r m g')

    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
    R.set_ang_acc(N, R.ang_vel_in(N).dt(R) + (R.ang_vel_in(N) ^
        R.ang_vel_in(N)))

    C = Point('C')
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)
    Dmc.a2pt_theory(C, N, R)

    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    kd = [q1d - u3/cos(q3), q2d - u1, q3d - u2 + u3 * tan(q2)]

    ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
    BodyD = RigidBody()
    BodyD.mc = Dmc
    BodyD.inertia = (I, Dmc)
    BodyD.frame = R
    BodyD.mass = m
    BodyList = [BodyD]

    KM = Kane(N)
    KM.coords([q1, q2, q3])
    KM.speeds([u1, u2, u3, u4, u5])
    KM.kindiffeq(kd)
    kdd = KM.kindiffdict()
    (fr, frstar) = KM.kanes_equations(ForceList, BodyList)
    fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})
    frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})

    KM2 = Kane(N)
    KM2.coords([q1, q2, q3])
    KM2.speeds([u1, u2, u3], u_auxiliary=[u4, u5])
    KM2.kindiffeq(kd)
    (fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList)
    fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})
    frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5:0})

    assert fr.expand() == fr2.expand()
    assert frstar.expand() == frstar2.expand()
예제 #4
0
def test_pendulum_angular_momentum():
    """Consider a pendulum of length OA = 2a, of mass m as a rigid body of
    center of mass G (OG = a) which turn around (O,z). The angle between the
    reference frame R and the rod is q.  The inertia of the body is I =
    (G,0,ma^2/3,ma^2/3). """

    m, a = symbols('m, a')
    q = dynamicsymbols('q')

    R = ReferenceFrame('R')
    R1 = R.orientnew('R1', 'Axis', [q, R.z])
    R1.set_ang_vel(R, q.diff() * R.z)

    I = inertia(R1, 0, m * a**2 / 3, m * a**2 / 3)

    O = Point('O')

    A = O.locatenew('A', 2*a * R1.x)
    G = O.locatenew('G', a * R1.x)

    S = RigidBody('S', G, R1, m, (I, G))

    O.set_vel(R, 0)
    A.v2pt_theory(O, R, R1)
    G.v2pt_theory(O, R, R1)

    assert (4 * m * a**2 / 3 * q.diff() * R.z -
            S.angular_momentum(O, R).express(R)) == 0
예제 #5
0
def test_point_v2pt_theorys():
    q = dynamicsymbols('q')
    qd = dynamicsymbols('q', 1)
    N = ReferenceFrame('N')
    B = N.orientnew('B', 'Axis', [q, N.z])
    O = Point('O')
    P = O.locatenew('P', 0)
    O.set_vel(N, 0)
    assert P.v2pt_theory(O, N, B) == 0
    P = O.locatenew('P', B.x)
    assert P.v2pt_theory(O, N, B) == (qd * B.z ^ B.x)
    O.set_vel(N, N.x)
    assert P.v2pt_theory(O, N, B) == N.x + qd * B.y
예제 #6
0
파일: test_kane.py 프로젝트: AStorus/sympy
def test_aux():
    # Same as above, except we have 2 auxiliary speeds for the ground contact
    # point, which is known to be zero. In one case, we go through then
    # substitute the aux. speeds in at the end (they are zero, as well as their
    # derivative), in the other case, we use the built-in auxiliary speed part
    # of KanesMethod. The equations from each should be the same.
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2')
    u4d, u5d = dynamicsymbols('u4, u5', 1)
    r, m, g = symbols('r m g')

    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    w_R_N_qd = R.ang_vel_in(N)
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    C = Point('C')
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)
    Dmc.a2pt_theory(C, N, R)

    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]

    ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))]
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
    BodyList = [BodyD]

    KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3, u4, u5],
                     kd_eqs=kd)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        (fr, frstar) = KM.kanes_equations(ForceList, BodyList)
    fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
    frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})

    KM2 = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd,
                      u_auxiliary=[u4, u5])
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        (fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList)
    fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})
    frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0})

    frstar.simplify()
    frstar2.simplify()

    assert (fr - fr2).expand() == Matrix([0, 0, 0, 0, 0])
    assert (frstar - frstar2).expand() == Matrix([0, 0, 0, 0, 0])
예제 #7
0
def test_point_pos():
    q = dynamicsymbols('q')
    N = ReferenceFrame('N')
    B = N.orientnew('B', 'Axis', [q, N.z])
    O = Point('O')
    P = O.locatenew('P', 10 * N.x + 5 * B.x)
    assert P.pos_from(O) == 10 * N.x + 5 * B.x
    Q = P.locatenew('Q', 10 * N.y + 5 * B.y)
    assert Q.pos_from(P) == 10 * N.y + 5 * B.y
    assert Q.pos_from(O) == 10 * N.x + 10 * N.y + 5 * B.x + 5 * B.y
    assert O.pos_from(Q) == -10 * N.x - 10 * N.y - 5 * B.x - 5 * B.y
예제 #8
0
def test_rolling_disc():
    # Rolling Disc Example
    # Here the rolling disc is formed from the contact point up, removing the
    # need to introduce generalized speeds. Only 3 configuration and 3
    # speed variables are need to describe this system, along with the
    # disc's mass and radius, and the local gravity.
    q1, q2, q3 = dynamicsymbols('q1 q2 q3')
    q1d, q2d, q3d = dynamicsymbols('q1 q2 q3', 1)
    r, m, g = symbols('r m g')

    # The kinematics are formed by a series of simple rotations. Each simple
    # rotation creates a new frame, and the next rotation is defined by the new
    # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
    # Z, X, Y series of rotations. Angular velocity for this is defined using
    # the second frame's basis (the lean frame).
    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])

    # This is the translational kinematics. We create a point with no velocity
    # in N; this is the contact point between the disc and ground. Next we form
    # the position vector from the contact point to the disc's center of mass.
    # Finally we form the velocity and acceleration of the disc.
    C = Point('C')
    C.set_vel(N, 0)
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

    # Forming the inertia dyadic.
    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))

    # Finally we form the equations of motion, using the same steps we did
    # before. Supply the Lagrangian, the generalized speeds.
    BodyD.set_potential_energy(- m * g * r * cos(q2))
    Lag = Lagrangian(N, BodyD)
    q = [q1, q2, q3]
    q1 = Function('q1')
    q2 = Function('q2')
    q3 = Function('q3')
    l = LagrangesMethod(Lag, q)
    l.form_lagranges_equations()
    RHS = l.rhs()
    RHS.simplify()
    t = symbols('t')

    assert (l.mass_matrix[3:6] == [0, 5*m*r**2/4, 0])
    assert RHS[4].simplify() == (-8*g*sin(q2(t)) + 5*r*sin(2*q2(t)
        )*Derivative(q1(t), t)**2 + 12*r*cos(q2(t))*Derivative(q1(t), t
        )*Derivative(q3(t), t))/(10*r)
    assert RHS[5] == (-5*cos(q2(t))*Derivative(q1(t), t) + 6*tan(q2(t)
        )*Derivative(q3(t), t) + 4*Derivative(q1(t), t)/cos(q2(t))
        )*Derivative(q2(t), t)
예제 #9
0
def test_parallel_axis():
    # This is for a 2 dof inverted pendulum on a cart.
    # This tests the parallel axis code in KanesMethod. The inertia of the
    # pendulum is defined about the hinge, not about the center of mass.

    # Defining the constants and knowns of the system
    gravity = symbols("g")
    k, ls = symbols("k ls")
    a, mA, mC = symbols("a mA mC")
    F = dynamicsymbols("F")
    Ix, Iy, Iz = symbols("Ix Iy Iz")

    # Declaring the Generalized coordinates and speeds
    q1, q2 = dynamicsymbols("q1 q2")
    q1d, q2d = dynamicsymbols("q1 q2", 1)
    u1, u2 = dynamicsymbols("u1 u2")
    u1d, u2d = dynamicsymbols("u1 u2", 1)

    # Creating reference frames
    N = ReferenceFrame("N")
    A = ReferenceFrame("A")

    A.orient(N, "Axis", [-q2, N.z])
    A.set_ang_vel(N, -u2 * N.z)

    # Origin of Newtonian reference frame
    O = Point("O")

    # Creating and Locating the positions of the cart, C, and the
    # center of mass of the pendulum, A
    C = O.locatenew("C", q1 * N.x)
    Ao = C.locatenew("Ao", a * A.y)

    # Defining velocities of the points
    O.set_vel(N, 0)
    C.set_vel(N, u1 * N.x)
    Ao.v2pt_theory(C, N, A)
    Cart = Particle("Cart", C, mC)
    Pendulum = RigidBody("Pendulum", Ao, A, mA, (inertia(A, Ix, Iy, Iz), C))

    # kinematical differential equations

    kindiffs = [q1d - u1, q2d - u2]

    bodyList = [Cart, Pendulum]

    forceList = [(Ao, -N.y * gravity * mA), (C, -N.y * gravity * mC), (C, -N.x * k * (q1 - ls)), (C, N.x * F)]

    km = KanesMethod(N, [q1, q2], [u1, u2], kindiffs)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        (fr, frstar) = km.kanes_equations(forceList, bodyList)
    mm = km.mass_matrix_full
    assert mm[3, 3] == Iz
예제 #10
0
def test_point_a2pt_theorys():
    q = dynamicsymbols('q')
    qd = dynamicsymbols('q', 1)
    qdd = dynamicsymbols('q', 2)
    N = ReferenceFrame('N')
    B = N.orientnew('B', 'Axis', [q, N.z])
    O = Point('O')
    P = O.locatenew('P', 0)
    O.set_vel(N, 0)
    assert P.a2pt_theory(O, N, B) == 0
    P.set_pos(O, B.x)
    assert P.a2pt_theory(O, N, B) == (-qd**2) * B.x + (qdd) * B.y
예제 #11
0
def test_lagrange_2forces():
    ### Equations for two damped springs in serie with two forces

    ### generalized coordinates
    qs = q1, q2 = dynamicsymbols('q1, q2')
    ### generalized speeds
    qds = q1d, q2d = dynamicsymbols('q1, q2', 1)

    ### Mass, spring strength, friction coefficient
    m, k, nu = symbols('m, k, nu')

    N = ReferenceFrame('N')
    O = Point('O')

    ### Two points
    P1 = O.locatenew('P1', q1 * N.x)
    P1.set_vel(N, q1d * N.x)
    P2 = O.locatenew('P1', q2 * N.x)
    P2.set_vel(N, q2d * N.x)

    pP1 = Particle('pP1', P1, m)
    pP1.potential_energy = k * q1**2 / 2

    pP2 = Particle('pP2', P2, m)
    pP2.potential_energy = k * (q1 - q2)**2 / 2

    #### Friction forces
    forcelist = [(P1, - nu * q1d * N.x),
                 (P2, - nu * q2d * N.x)]
    lag = Lagrangian(N, pP1, pP2)

    l_method = LagrangesMethod(lag, (q1, q2), forcelist=forcelist, frame=N)
    l_method.form_lagranges_equations()

    eq1 = l_method.eom[0]
    assert eq1.diff(q1d) == nu
    eq2 = l_method.eom[1]
    assert eq2.diff(q2d) == nu
예제 #12
0
def get_equations(m_val, g_val, l_val):
    # This function body is copyied from:
    # http://www.pydy.org/examples/double_pendulum.html
    # Retrieved 2015-09-29
    from sympy import symbols
    from sympy.physics.mechanics import (
        dynamicsymbols, ReferenceFrame, Point, Particle, KanesMethod
    )

    q1, q2 = dynamicsymbols('q1 q2')
    q1d, q2d = dynamicsymbols('q1 q2', 1)
    u1, u2 = dynamicsymbols('u1 u2')
    u1d, u2d = dynamicsymbols('u1 u2', 1)
    l, m, g = symbols('l m g')

    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [q1, N.z])
    B = N.orientnew('B', 'Axis', [q2, N.z])

    A.set_ang_vel(N, u1 * N.z)
    B.set_ang_vel(N, u2 * N.z)

    O = Point('O')
    P = O.locatenew('P', l * A.x)
    R = P.locatenew('R', l * B.x)

    O.set_vel(N, 0)
    P.v2pt_theory(O, N, A)
    R.v2pt_theory(P, N, B)

    ParP = Particle('ParP', P, m)
    ParR = Particle('ParR', R, m)

    kd = [q1d - u1, q2d - u2]
    FL = [(P, m * g * N.x), (R, m * g * N.x)]
    BL = [ParP, ParR]

    KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)

    (fr, frstar) = KM.kanes_equations(FL, BL)
    kdd = KM.kindiffdict()
    mm = KM.mass_matrix_full
    fo = KM.forcing_full
    qudots = mm.inv() * fo
    qudots = qudots.subs(kdd)
    qudots.simplify()
    # Edit:
    depv = [q1, q2, u1, u2]
    subs = list(zip([m, g, l], [m_val, g_val, l_val]))
    return zip(depv, [expr.subs(subs) for expr in qudots])
예제 #13
0
def test_point_v1pt_theorys():
    q, q2 = dynamicsymbols('q q2')
    qd, q2d = dynamicsymbols('q q2', 1)
    qdd, q2dd = dynamicsymbols('q q2', 2)
    N = ReferenceFrame('N')
    B = ReferenceFrame('B')
    B.set_ang_vel(N, qd * B.z)
    O = Point('O')
    P = O.locatenew('P', B.x)
    P.set_vel(B, 0)
    O.set_vel(N, 0)
    assert P.v1pt_theory(O, N, B) == qd * B.y
    O.set_vel(N, N.x)
    assert P.v1pt_theory(O, N, B) == N.x + qd * B.y
    P.set_vel(B, B.z)
    assert P.v1pt_theory(O, N, B) == B.z + N.x + qd * B.y
예제 #14
0
def test_dub_pen():

    # The system considered is the double pendulum. Like in the
    # test of the simple pendulum above, we begin by creating the generalized
    # coordinates and the simple generalized speeds and accelerations which
    # will be used later. Following this we create frames and points necessary
    # for the kinematics. The procedure isn't explicitly explained as this is
    # similar to the simple  pendulum. Also this is documented on the pydy.org
    # website.
    q1, q2 = dynamicsymbols('q1 q2')
    q1d, q2d = dynamicsymbols('q1 q2', 1)
    q1dd, q2dd = dynamicsymbols('q1 q2', 2)
    u1, u2 = dynamicsymbols('u1 u2')
    u1d, u2d = dynamicsymbols('u1 u2', 1)
    l, m, g = symbols('l m g')

    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [q1, N.z])
    B = N.orientnew('B', 'Axis', [q2, N.z])

    A.set_ang_vel(N, q1d * A.z)
    B.set_ang_vel(N, q2d * A.z)

    O = Point('O')
    P = O.locatenew('P', l * A.x)
    R = P.locatenew('R', l * B.x)

    O.set_vel(N, 0)
    P.v2pt_theory(O, N, A)
    R.v2pt_theory(P, N, B)

    ParP = Particle('ParP', P, m)
    ParR = Particle('ParR', R, m)

    ParP.potential_energy = - m * g * l * cos(q1)
    ParR.potential_energy = - m * g * l * cos(q1) - m * g * l * cos(q2)
    L = Lagrangian(N, ParP, ParR)
    lm = LagrangesMethod(L, [q1, q2], bodies=[ParP, ParR])
    lm.form_lagranges_equations()

    assert simplify(l*m*(2*g*sin(q1) + l*sin(q1)*sin(q2)*q2dd
        + l*sin(q1)*cos(q2)*q2d**2 - l*sin(q2)*cos(q1)*q2d**2
        + l*cos(q1)*cos(q2)*q2dd + 2*l*q1dd) - lm.eom[0]) == 0
    assert simplify(l*m*(g*sin(q2) + l*sin(q1)*sin(q2)*q1dd
        - l*sin(q1)*cos(q2)*q1d**2 + l*sin(q2)*cos(q1)*q1d**2
        + l*cos(q1)*cos(q2)*q1dd + l*q2dd) - lm.eom[1]) == 0
    assert lm.bodies == [ParP, ParR]
예제 #15
0
def test_point_a1pt_theorys():
    q, q2 = dynamicsymbols('q q2')
    qd, q2d = dynamicsymbols('q q2', 1)
    qdd, q2dd = dynamicsymbols('q q2', 2)
    N = ReferenceFrame('N')
    B = ReferenceFrame('B')
    B.set_ang_vel(N, qd * B.z)
    O = Point('O')
    P = O.locatenew('P', B.x)
    P.set_vel(B, 0)
    O.set_vel(N, 0)
    assert P.a1pt_theory(O, N, B) ==  -(qd**2) * B.x + qdd * B.y
    P.set_vel(B, q2d * B.z)
    assert P.a1pt_theory(O, N, B) == -(qd**2) * B.x + qdd * B.y + q2dd * B.z
    O.set_vel(N, q2d * B.x)
    assert P.a1pt_theory(O, N, B) == ((q2dd - qd**2) * B.x + (q2d * qd + qdd) * B.y +
                               q2dd * B.z)
예제 #16
0
def test_angular_momentum_and_linear_momentum():
    m, M, l1 = symbols('m M l1')
    q1d = dynamicsymbols('q1d')
    N = ReferenceFrame('N')
    O = Point('O')
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew('Ac', l1 * N.x)
    P = Ac.locatenew('P', l1 * N.x)
    a = ReferenceFrame('a')
    a.set_ang_vel(N, q1d * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle('Pa', P, m)
    I = outer(N.z, N.z)
    A = RigidBody('A', Ac, a, M, (I, Ac))
    assert linear_momentum(N, A, Pa) == 2 * m * q1d* l1 * N.y + M * l1 * q1d * N.y
    assert angular_momentum(O, N, A, Pa) == 4 * m * q1d * l1**2 * N.z + q1d * N.z
예제 #17
0
def test_angular_momentum_and_linear_momentum():
    m, M, l1 = symbols("m M l1")
    q1d = dynamicsymbols("q1d")
    N = ReferenceFrame("N")
    O = Point("O")
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew("Ac", l1 * N.x)
    P = Ac.locatenew("P", l1 * N.x)
    a = ReferenceFrame("a")
    a.set_ang_vel(N, q1d * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle("Pa", P, m)
    I = outer(N.z, N.z)
    A = RigidBody("A", Ac, a, M, (I, Ac))
    assert linear_momentum(N, A, Pa) == 2 * m * q1d * l1 * N.y + M * l1 * q1d * N.y
    assert angular_momentum(O, N, A, Pa) == 4 * m * q1d * l1 ** 2 * N.z + q1d * N.z
예제 #18
0
def test_kinetic_energy():
    m, M, l1 = symbols('m M l1')
    omega = dynamicsymbols('omega')
    N = ReferenceFrame('N')
    O = Point('O')
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew('Ac', l1 * N.x)
    P = Ac.locatenew('P', l1 * N.x)
    a = ReferenceFrame('a')
    a.set_ang_vel(N, omega * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle('Pa', P, m)
    I = outer(N.z, N.z)
    A = RigidBody('A', Ac, a, M, (I, Ac))
    assert 0 == kinetic_energy(N, Pa, A) - (M*l1**2*omega**2/2
            + 2*l1**2*m*omega**2 + omega**2/2)
예제 #19
0
def test_potential_energy():
    m, M, l1, g, h, H = symbols("m M l1 g h H")
    omega = dynamicsymbols("omega")
    N = ReferenceFrame("N")
    O = Point("O")
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew("Ac", l1 * N.x)
    P = Ac.locatenew("P", l1 * N.x)
    a = ReferenceFrame("a")
    a.set_ang_vel(N, omega * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle("Pa", P, m)
    I = outer(N.z, N.z)
    A = RigidBody("A", Ac, a, M, (I, Ac))
    Pa.potential_energy = m * g * h
    A.potential_energy = M * g * H
    assert potential_energy(A, Pa) == m * g * h + M * g * H
예제 #20
0
def test_potential_energy():
    m, M, l1, g, h, H = symbols('m M l1 g h H')
    omega = dynamicsymbols('omega')
    N = ReferenceFrame('N')
    O = Point('O')
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew('Ac', l1 * N.x)
    P = Ac.locatenew('P', l1 * N.x)
    a = ReferenceFrame('a')
    a.set_ang_vel(N, omega * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle('Pa', P, m)
    I = outer(N.z, N.z)
    A = RigidBody('A', Ac, a, M, (I, Ac))
    Pa.set_potential_energy(m * g * h)
    A.set_potential_energy(M * g * H)
    assert potential_energy(A, Pa) == m * g * h + M * g * H
예제 #21
0
def test_kinetic_energy():
    m, M, l1 = symbols("m M l1")
    omega = dynamicsymbols("omega")
    N = ReferenceFrame("N")
    O = Point("O")
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew("Ac", l1 * N.x)
    P = Ac.locatenew("P", l1 * N.x)
    a = ReferenceFrame("a")
    a.set_ang_vel(N, omega * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle("Pa", P, m)
    I = outer(N.z, N.z)
    A = RigidBody("A", Ac, a, M, (I, Ac))
    assert 0 == kinetic_energy(N, Pa, A) - (
        M * l1 ** 2 * omega ** 2 / 2 + 2 * l1 ** 2 * m * omega ** 2 + omega ** 2 / 2
    )
예제 #22
0
def test_rigidbody3():
    q1, q2, q3, q4 = dynamicsymbols('q1:5')
    p1, p2, p3 = symbols('p1:4')
    m = symbols('m')

    A = ReferenceFrame('A')
    B = A.orientnew('B', 'axis', [q1, A.x])
    O = Point('O')
    O.set_vel(A, q2*A.x + q3*A.y + q4*A.z)
    P = O.locatenew('P', p1*B.x + p2*B.y + p3*B.z)
    I = outer(B.x, B.x)

    rb1 = RigidBody('rb1', P, B, m, (I, P))
    # I_S/O = I_S/S* + I_S*/O
    rb2 = RigidBody('rb2', P, B, m,
                    (I + inertia_of_point_mass(m, P.pos_from(O), B), O))

    assert rb1.central_inertia == rb2.central_inertia
    assert rb1.angular_momentum(O, A) == rb2.angular_momentum(O, A)
예제 #23
0
def test_partial_velocity():
    q1, q2, q3, u1, u2, u3  = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    u4, u5 = dynamicsymbols('u4, u5')
    r = symbols('r')

    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    C = Point('C')
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

    vel_list = [Dmc.vel(N), C.vel(N), R.ang_vel_in(N)]
    u_list = [u1, u2, u3, u4, u5]
    assert (partial_velocity(vel_list, u_list) == [[- r*L.y, 0, L.x],
            [r*L.x, 0, L.y], [0, 0, L.z], [L.x, L.x, 0],
                [cos(q2)*L.y - sin(q2)*L.z, cos(q2)*L.y - sin(q2)*L.z, 0]])
예제 #24
0
def test_simp_pen():
    # This tests that the equations generated by LagrangesMethod are identical
    # to those obtained by hand calculations. The system under consideration is
    # the simple pendulum.
    # We begin by creating the generalized coordinates as per the requirements
    # of LagrangesMethod. Also we created the associate symbols
    # that characterize the system: 'm' is the mass of the bob, l is the length
    # of the massless rigid rod connecting the bob to a point O fixed in the
    # inertial frame.
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u ', 1)
    l, m, g = symbols('l m g')

    # We then create the inertial frame and a frame attached to the massless
    # string following which we define the inertial angular velocity of the
    # string.
    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [q, N.z])
    A.set_ang_vel(N, qd * N.z)

    # Next, we create the point O and fix it in the inertial frame. We then
    # locate the point P to which the bob is attached. Its corresponding
    # velocity is then determined by the 'two point formula'.
    O = Point('O')
    O.set_vel(N, 0)
    P = O.locatenew('P', l * A.x)
    P.v2pt_theory(O, N, A)

    # The 'Particle' which represents the bob is then created and its
    # Lagrangian generated.
    Pa = Particle('Pa', P, m)
    Pa.set_potential_energy(- m * g * l * cos(q))
    L = Lagrangian(N, Pa)

    # The 'LagrangesMethod' class is invoked to obtain equations of motion.
    lm = LagrangesMethod(L, [q])
    lm.form_lagranges_equations()
    RHS = lm.rhs()
    assert RHS[1] == -g*sin(q)/l
예제 #25
0
def test_angular_momentum_and_linear_momentum():
    """A rod with length 2l, centroidal inertia I, and mass M along with a
    particle of mass m fixed to the end of the rod rotate with an angular rate
    of omega about point O which is fixed to the non-particle end of the rod.
    The rod's reference frame is A and the inertial frame is N."""
    m, M, l, I = symbols('m, M, l, I')
    omega = dynamicsymbols('omega')
    N = ReferenceFrame('N')
    a = ReferenceFrame('a')
    O = Point('O')
    Ac = O.locatenew('Ac', l * N.x)
    P = Ac.locatenew('P', l * N.x)
    O.set_vel(N, 0 * N.x)
    a.set_ang_vel(N, omega * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle('Pa', P, m)
    A = RigidBody('A', Ac, a, M, (I * outer(N.z, N.z), Ac))
    expected = 2 * m * omega * l * N.y + M * l * omega * N.y
    assert linear_momentum(N, A, Pa) == expected
    expected = (I + M * l**2 + 4 * m * l**2) * omega * N.z
    assert angular_momentum(O, N, A, Pa) == expected
예제 #26
0
def test_angular_momentum_and_linear_momentum():
    """A rod with length 2l, centroidal inertia I, and mass M along with a
    particle of mass m fixed to the end of the rod rotate with an angular rate
    of omega about point O which is fixed to the non-particle end of the rod.
    The rod's reference frame is A and the inertial frame is N."""
    m, M, l, I = symbols("m, M, l, I")
    omega = dynamicsymbols("omega")
    N = ReferenceFrame("N")
    a = ReferenceFrame("a")
    O = Point("O")
    Ac = O.locatenew("Ac", l * N.x)
    P = Ac.locatenew("P", l * N.x)
    O.set_vel(N, 0 * N.x)
    a.set_ang_vel(N, omega * N.z)
    Ac.v2pt_theory(O, N, a)
    P.v2pt_theory(O, N, a)
    Pa = Particle("Pa", P, m)
    A = RigidBody("A", Ac, a, M, (I * outer(N.z, N.z), Ac))
    expected = 2 * m * omega * l * N.y + M * l * omega * N.y
    assert (linear_momentum(N, A, Pa) - expected) == Vector(0)
    expected = (I + M * l ** 2 + 4 * m * l ** 2) * omega * N.z
    assert (angular_momentum(O, N, A, Pa) - expected).simplify() == Vector(0)
예제 #27
0
q0d, q1d, q2d = dynamicsymbols('q0 q1 q2', level=1)
u1, u2, u3 = dynamicsymbols('u1 u2 u3')
LA, LB, LP = symbols('LA LB LP')
p1, p2, p3 = symbols('p1 p2 p3')
g, mA, mB, mC, mD, t = symbols('g mA mB mC mD t')

## --- reference frames ---
E = ReferenceFrame('E')
A = E.orientnew('A', 'Axis', [q0, E.x])
B = A.orientnew('B', 'Axis', [q1, A.y])
C = B.orientnew('C', 'Axis', [0, B.x])
D = C.orientnew('D', 'Axis', [0, C.x])

## --- points and their velocities ---
pO = Point('O')
pA_star = pO.locatenew('A*', LA * A.z)
pP = pO.locatenew('P', LP * A.z)
pB_star = pP.locatenew('B*', LB * B.z)
pC_star = pB_star.locatenew('C*', q2 * B.z)
pD_star = pC_star.locatenew('D*', p1 * B.x + p2 * B.y + p3 * B.z)

pO.set_vel(E, 0)  # Point O is fixed in Reference Frame E
pA_star.v2pt_theory(pO, E, A)  # Point A* is fixed in Reference Frame A
pP.v2pt_theory(pO, E, A)  # Point P is fixed in Reference Frame A
pB_star.v2pt_theory(pP, E, B)  # Point B* is fixed in Reference Frame B
# Point C* is moving in Reference Frame B
pC_star.set_vel(B, pC_star.pos_from(pB_star).diff(t, B))
pC_star.v1pt_theory(pB_star, E, B)
pD_star.set_vel(B, pC_star.vel(B))  # Point D* is fixed rel to Point C* in B
pD_star.v1pt_theory(pB_star, E, B)  # Point D* is moving in Reference Frame B
예제 #28
0
IA22, IA23, IA33 = symbols('IA22 IA23 IA33')
R, M, g, e, f, theta, t = symbols('R M g e f θ t')
Q1, Q2, Q3 = symbols('Q1 Q2 Q3')

# reference frames
F = ReferenceFrame('F')
P = F.orientnew('P', 'axis', [-theta, F.y])
A = P.orientnew('A', 'axis', [q1, P.x])
# define frames for wheels
B = A.orientnew('B', 'axis', [q4, A.z])
C = A.orientnew('C', 'axis', [q5, A.z])

# define points
pO = Point('O')
pO.set_vel(F, 0)
pD = pO.locatenew('D', q2 * P.y + q3 * P.z)
pD.set_vel(A, 0)
pD.set_vel(F, pD.pos_from(pO).dt(F))

pS_star = pD.locatenew('S*', e * A.y)
pQ = pD.locatenew('Q', f * A.y - R * A.x)
for p in [pS_star, pQ]:
    p.set_vel(A, 0)
    p.v2pt_theory(pD, F, A)

# masscenters of bodies A, B, C
pA_star = pD.locatenew('A*', a * A.y)
pB_star = pD.locatenew('B*', -b * A.z)
pC_star = pD.locatenew('C*', +b * A.z)
for p in [pA_star, pB_star, pC_star]:
    p.set_vel(A, 0)
예제 #29
0
파일: Ex4.1.py 프로젝트: zizai/pydy
from sympy.simplify.simplify import trigsimp


def msprint(expr):
    pr = MechanicsStrPrinter()
    return pr.doprint(expr)


theta = symbols('theta:3')
x = symbols('x:3')
q = symbols('q')

A = ReferenceFrame('A')
B = A.orientnew('B', 'SPACE', theta, 'xyz')

O = Point('O')
P = O.locatenew('P', x[0] * A.x + x[1] * A.y + x[2] * A.z)
p = P.pos_from(O)

# From problem, point P is on L (span(B.x)) when:
constraint_eqs = {
    x[0]: q * cos(theta[1]) * cos(theta[2]),
    x[1]: q * cos(theta[1]) * sin(theta[2]),
    x[2]: -q * sin(theta[1])
}

# If point P is on line L then r^{P/O} will have no components in the B.y or
# B.z directions since point O is also on line L and B.x is parallel to L.
assert (trigsimp(dot(P.pos_from(O), B.y).subs(constraint_eqs)) == 0)
assert (trigsimp(dot(P.pos_from(O), B.z).subs(constraint_eqs)) == 0)
예제 #30
0
theta_val = pi / 3
N = ReferenceFrame('N')
#B = N.orientnew('B', 'body', [q1, theta, q2], 'zxz')
F1 = N.orientnew('F1', 'axis', [q1, N.z])
F2 = F1.orientnew('F2', 'axis', [theta, F1.x])
B = F2.orientnew('B', 'axis', [q2, F2.z])

print('rotation matrix from frame N to frame B:')
C = B.dcm(N).subs(theta, theta_val)
print(msprint(C))

# velocity of the disk at the point of contact with the ground is not moving
# since the disk rolls without slipping.
pA = Point('pA')  # ball bearing A
pB = pA.locatenew('pB', -R * F1.y)  # ball bearing B
pC = pB.locatenew('pC', -r * F2.y)  # disk ground contact point

##pO.set_vel(N, 0)
pA.set_vel(N, 0)
pA.set_vel(F1, 0)

pB.set_vel(F1, 0)
pB.set_vel(B, 0)
pB.v2pt_theory(pA, N, F1)

pC.v2pt_theory(pB, N, B)
print('\nvelocity of point C in N, v_C_N, at q1 = 0 = ')
print(pC.vel(N).express(N))

print('\ndisc is rolling without slip so v_C_N = 0')
예제 #31
0
def eval_vec(v):
    vs = v.subs(ab_val)
    return sum(dot(vs, n).evalf() * n for n in N)


# For each part A, B, C, D, define an origin for that part such that the
# centers of mass of each part of the component have positive N.x, N.y,
# and N.z values.
## FIND CENTER OF MASS OF A
vol_A_1 = pi * a**2 * b / 4
vol_A_2 = pi * a**2 * a / 4 / 2
vol_A = vol_A_1 + vol_A_2
pA_O = Point('A_O')
pAs_1 = pA_O.locatenew(
    'A*_1', (b / 2 * N.z + centroid_sector.subs(theta_pi_4) * sin(pi / 4) *
             (N.x + N.y)))
pAs_2 = pA_O.locatenew('A*_2', (b * N.z + N.z * integrate(
    (theta * R**2 * (z)).subs(R_theta_val),
    (z, 0, a)) / vol_A_2 + N.x * integrate(
        (theta * R**2 * cos(theta) * centroid_sector).subs(R_theta_val),
        (z, 0, a)) / vol_A_2 + N.y * integrate(
            (2 * R**3 / 3 * 4 * a / pi * sin(theta)**2).subs(R, a),
            (theta, 0, pi / 4)) / vol_A_2))
pAs = pA_O.locatenew(
    'A*', ((pAs_1.pos_from(pA_O) * vol_A_1 + pAs_2.pos_from(pA_O) * vol_A_2) /
           vol_A))
print('A* = {0}'.format(pAs.pos_from(pA_O)))
print('A* = {0}'.format(eval_vec(pAs.pos_from(pA_O))))

## FIND CENTER OF MASS OF B
예제 #32
0
q = dynamicsymbols('q1:6')
qd = dynamicsymbols('q1:6', level=1)
u = dynamicsymbols('u1:6')

## --- Define ReferenceFrames ---
A = ReferenceFrame('A')
B_prime = A.orientnew('B_prime', 'Axis', [q[0], A.z])
B = B_prime.orientnew('B', 'Axis', [pi / 2 - q[1], B_prime.x])
C = B.orientnew('C', 'Axis', [q[2], B.z])

## --- Define Points and their velocities ---
pO = Point('O')
pO.set_vel(A, 0)

# R is the point in plane H that comes into contact with disk C.
pR = pO.locatenew('R', q[3] * A.x + q[4] * A.y)
pR.set_vel(A, pR.pos_from(pO).diff(t, A))
pR.set_vel(B, 0)

# C^ is the point in disk C that comes into contact with plane H.
pC_hat = pR.locatenew('C^', 0)
pC_hat.set_vel(C, 0)

# C* is the point at the center of disk C.
pCs = pC_hat.locatenew('C*', R * B.y)
pCs.set_vel(C, 0)
pCs.set_vel(B, 0)

# calculate velocities in A
pCs.v2pt_theory(pR, A, B)
pC_hat.v2pt_theory(pCs, A, C)
예제 #33
0
# Reference frames
N = ReferenceFrame("N")
A = N.orientnew("A", "Body", [pi, 0, q1], "123")
B = A.orientnew("B", "Body", [pi / 2, 0, q2], "123")
C = B.orientnew("C", "Body", [-pi / 2, 0, q3], "123")
D = C.orientnew("D", "Body", [pi / 2, 0, q4], "123")
E = D.orientnew("E", "Body", [-pi / 2, 0, q5], "123")
F = E.orientnew("F", "Body", [pi / 2, 0, q6], "123")
G = F.orientnew("G", "Body", [-pi / 2, 0, q7], "123")

# The interface module's reference frame
H = G.orientnew("H", "Body", [pi, 0, 0], "123")

# Unit for distance: meter
P0 = Point("O")
P1 = P0.locatenew("P1", 0.1564 * N.z)
P2 = P1.locatenew("P2", 0.0054 * A.y - 0.1284 * A.z)
P3 = P2.locatenew("P3", -0.2104 * B.y - 0.0064 * B.z)
P4 = P3.locatenew("P4", 0.0064 * C.y - 0.2104 * C.z)
P5 = P4.locatenew("P5", -0.2084 * D.y - 0.0064 * D.z)
P6 = P5.locatenew("P6", -0.1059 * E.z)
P7 = P6.locatenew("P7", -0.1059 * F.y)
P8 = P7.locatenew("P8", -0.0615 * G.z)

# Mid-point of each link
Ao_half = P1.locatenew("P1_half", 0.0054 / 2 * A.y - 0.1284 / 2 * A.z)
Bo_half = P2.locatenew("P2_half", -0.2014 / 2 * B.y - 0.0064 / 2 * B.z)
Co_half = P3.locatenew("P3_half", 0.0064 / 2 * C.y - 0.2104 / 2 * C.z)
Do_half = P4.locatenew("P4_half", -0.2084 / 2 * D.y - 0.0064 / 2 * D.z)
Eo_half = P5.locatenew("P5_half", -0.1059 / 2 * E.z)
Fo_half = P6.locatenew("P6_half", -0.1059 / 2 * F.y)
예제 #34
0
def test_replace_qdots_in_force():
    # Test PR 16700 "Replaces qdots with us in force-list in kanes.py"
    # The new functionality allows one to specify forces in qdots which will
    # automatically be replaced with u:s which are defined by the kde supplied
    # to KanesMethod. The test case is the double pendulum with interacting
    # forces in the example of chapter 4.7 "CONTRIBUTING INTERACTION FORCES"
    # in Ref. [1]. Reference list at end test function.

    q1, q2 = dynamicsymbols('q1, q2')
    qd1, qd2 = dynamicsymbols('q1, q2', level=1)
    u1, u2 = dynamicsymbols('u1, u2')

    l, m = symbols('l, m')

    N = ReferenceFrame('N')  # Inertial frame
    A = N.orientnew('A', 'Axis', (q1, N.z))  # Rod A frame
    B = A.orientnew('B', 'Axis', (q2, N.z))  # Rod B frame

    O = Point('O')  # Origo
    O.set_vel(N, 0)

    P = O.locatenew('P', (l * A.x))  # Point @ end of rod A
    P.v2pt_theory(O, N, A)

    Q = P.locatenew('Q', (l * B.x))  # Point @ end of rod B
    Q.v2pt_theory(P, N, B)

    Ap = Particle('Ap', P, m)
    Bp = Particle('Bp', Q, m)

    # The forces are specified below. sigma is the torsional spring stiffness
    # and delta is the viscous damping coefficient acting between the two
    # bodies. Here, we specify the viscous damper as function of qdots prior
    # forming the kde. In more complex systems it not might be obvious which
    # kde is most efficient, why it is convenient to specify viscous forces in
    # qdots independently of the kde.
    sig, delta = symbols('sigma, delta')
    Ta = (sig * q2 + delta * qd2) * N.z
    forces = [(A, Ta), (B, -Ta)]

    # Try different kdes.
    kde1 = [u1 - qd1, u2 - qd2]
    kde2 = [u1 - qd1, u2 - (qd1 + qd2)]

    KM1 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde1)
    fr1, fstar1 = KM1.kanes_equations([Ap, Bp], forces)

    KM2 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde2)
    fr2, fstar2 = KM2.kanes_equations([Ap, Bp], forces)

    # Check EOM for KM2:
    # Mass and force matrix from p.6 in Ref. [2] with added forces from
    # example of chapter 4.7 in [1] and without gravity.
    forcing_matrix_expected = Matrix(
        [[m * l**2 * sin(q2) * u2**2 + sig * q2 + delta * (u2 - u1)],
         [m * l**2 * sin(q2) * -u1**2 - sig * q2 - delta * (u2 - u1)]])
    mass_matrix_expected = Matrix([[2 * m * l**2, m * l**2 * cos(q2)],
                                   [m * l**2 * cos(q2), m * l**2]])

    assert (KM2.mass_matrix.expand() == mass_matrix_expected.expand())
    assert (KM2.forcing.expand() == forcing_matrix_expected.expand())

    # Check fr1 with reference fr_expected from [1] with u:s instead of qdots.
    fr1_expected = Matrix([0, -(sig * q2 + delta * u2)])
    assert fr1.expand() == fr1_expected.expand()

    # Check fr2
    fr2_expected = Matrix(
        [sig * q2 + delta * (u2 - u1), -sig * q2 - delta * (u2 - u1)])
    assert fr2.expand() == fr2_expected.expand()

    # Specifying forces in u:s should stay the same:
    Ta = (sig * q2 + delta * u2) * N.z
    forces = [(A, Ta), (B, -Ta)]
    KM1 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde1)
    fr1, fstar1 = KM1.kanes_equations([Ap, Bp], forces)

    assert fr1.expand() == fr1_expected.expand()

    Ta = (sig * q2 + delta * (u2 - u1)) * N.z
    forces = [(A, Ta), (B, -Ta)]
    KM2 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde2)
    fr2, fstar2 = KM2.kanes_equations([Ap, Bp], forces)

    assert fr2.expand() == fr2_expected.expand()

    # Test if we have a qubic qdot force:
    Ta = (sig * q2 + delta * qd2**3) * N.z
    forces = [(A, Ta), (B, -Ta)]

    KM1 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde1)
    fr1, fstar1 = KM1.kanes_equations([Ap, Bp], forces)

    fr1_cubic_expected = Matrix([0, -(sig * q2 + delta * u2**3)])

    assert fr1.expand() == fr1_cubic_expected.expand()

    KM2 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde2)
    fr2, fstar2 = KM2.kanes_equations([Ap, Bp], forces)

    fr2_cubic_expected = Matrix(
        [sig * q2 + delta * (u2 - u1)**3, -sig * q2 - delta * (u2 - u1)**3])

    assert fr2.expand() == fr2_cubic_expected.expand()
예제 #35
0
def test_sub_qdot():
    # This test solves exercises 8.12, 8.17 from Kane 1985 and defines
    # some velocities in terms of q, qdot.

    ## --- Declare symbols ---
    q1, q2, q3 = dynamicsymbols('q1:4')
    q1d, q2d, q3d = dynamicsymbols('q1:4', level=1)
    u1, u2, u3 = dynamicsymbols('u1:4')
    u_prime, R, M, g, e, f, theta = symbols('u\' R, M, g, e, f, theta')
    a, b, mA, mB, IA, J, K, t = symbols('a b mA mB IA J K t')
    IA22, IA23, IA33 = symbols('IA22 IA23 IA33')
    Q1, Q2, Q3 = symbols('Q1 Q2 Q3')

    # --- Reference Frames ---
    F = ReferenceFrame('F')
    P = F.orientnew('P', 'axis', [-theta, F.y])
    A = P.orientnew('A', 'axis', [q1, P.x])
    A.set_ang_vel(F, u1 * A.x + u3 * A.z)
    # define frames for wheels
    B = A.orientnew('B', 'axis', [q2, A.z])
    C = A.orientnew('C', 'axis', [q3, A.z])

    ## --- define points D, S*, Q on frame A and their velocities ---
    pD = Point('D')
    pD.set_vel(A, 0)
    # u3 will not change v_D_F since wheels are still assumed to roll w/o slip
    pD.set_vel(F, u2 * A.y)

    pS_star = pD.locatenew('S*', e * A.y)
    pQ = pD.locatenew('Q', f * A.y - R * A.x)
    # masscenters of bodies A, B, C
    pA_star = pD.locatenew('A*', a * A.y)
    pB_star = pD.locatenew('B*', b * A.z)
    pC_star = pD.locatenew('C*', -b * A.z)
    for p in [pS_star, pQ, pA_star, pB_star, pC_star]:
        p.v2pt_theory(pD, F, A)

    # points of B, C touching the plane P
    pB_hat = pB_star.locatenew('B^', -R * A.x)
    pC_hat = pC_star.locatenew('C^', -R * A.x)
    pB_hat.v2pt_theory(pB_star, F, B)
    pC_hat.v2pt_theory(pC_star, F, C)

    # --- relate qdot, u ---
    # the velocities of B^, C^ are zero since B, C are assumed to roll w/o slip
    kde = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]]
    kde += [u1 - q1d]
    kde_map = solve(kde, [q1d, q2d, q3d])
    for k, v in list(kde_map.items()):
        kde_map[k.diff(t)] = v.diff(t)

    # inertias of bodies A, B, C
    # IA22, IA23, IA33 are not specified in the problem statement, but are
    # necessary to define an inertia object. Although the values of
    # IA22, IA23, IA33 are not known in terms of the variables given in the
    # problem statement, they do not appear in the general inertia terms.
    inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0)
    inertia_B = inertia(B, K, K, J)
    inertia_C = inertia(C, K, K, J)

    # define the rigid bodies A, B, C
    rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star))
    rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star))
    rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star))

    ## --- use kanes method ---
    km = KanesMethod(F, [q1, q2, q3], [u1, u2], kd_eqs=kde, u_auxiliary=[u3])

    forces = [(pS_star, -M * g * F.x), (pQ, Q1 * A.x + Q2 * A.y + Q3 * A.z)]
    bodies = [rbA, rbB, rbC]

    # Q2 = -u_prime * u2 * Q1 / sqrt(u2**2 + f**2 * u1**2)
    # -u_prime * R * u2 / sqrt(u2**2 + f**2 * u1**2) = R / Q1 * Q2
    fr_expected = Matrix([
        f * Q3 + M * g * e * sin(theta) * cos(q1),
        Q2 + M * g * sin(theta) * sin(q1),
        e * M * g * cos(theta) - Q1 * f - Q2 * R
    ])
    #Q1 * (f - u_prime * R * u2 / sqrt(u2**2 + f**2 * u1**2)))])
    fr_star_expected = Matrix([
        -(IA + 2 * J * b**2 / R**2 + 2 * K + mA * a**2 + 2 * mB * b**2) *
        u1.diff(t) - mA * a * u1 * u2,
        -(mA + 2 * mB + 2 * J / R**2) * u2.diff(t) + mA * a * u1**2, 0
    ])

    fr, fr_star = km.kanes_equations(forces, bodies)
    assert (fr.expand() == fr_expected.expand())
    assert (trigsimp(fr_star).expand() == fr_star_expected.expand())
예제 #36
0
def test_non_central_inertia():
    # This tests that the calculation of Fr* does not depend the point
    # about which the inertia of a rigid body is defined. This test solves
    # exercises 8.12, 8.17 from Kane 1985.

    # Declare symbols
    q1, q2, q3 = dynamicsymbols('q1:4')
    q1d, q2d, q3d = dynamicsymbols('q1:4', level=1)
    u1, u2, u3, u4, u5 = dynamicsymbols('u1:6')
    u_prime, R, M, g, e, f, theta = symbols('u\' R, M, g, e, f, theta')
    a, b, mA, mB, IA, J, K, t = symbols('a b mA mB IA J K t')
    Q1, Q2, Q3 = symbols('Q1, Q2 Q3')
    IA22, IA23, IA33 = symbols('IA22 IA23 IA33')

    # Reference Frames
    F = ReferenceFrame('F')
    P = F.orientnew('P', 'axis', [-theta, F.y])
    A = P.orientnew('A', 'axis', [q1, P.x])
    A.set_ang_vel(F, u1 * A.x + u3 * A.z)
    # define frames for wheels
    B = A.orientnew('B', 'axis', [q2, A.z])
    C = A.orientnew('C', 'axis', [q3, A.z])
    B.set_ang_vel(A, u4 * A.z)
    C.set_ang_vel(A, u5 * A.z)

    # define points D, S*, Q on frame A and their velocities
    pD = Point('D')
    pD.set_vel(A, 0)
    # u3 will not change v_D_F since wheels are still assumed to roll without slip.
    pD.set_vel(F, u2 * A.y)

    pS_star = pD.locatenew('S*', e * A.y)
    pQ = pD.locatenew('Q', f * A.y - R * A.x)
    for p in [pS_star, pQ]:
        p.v2pt_theory(pD, F, A)

    # masscenters of bodies A, B, C
    pA_star = pD.locatenew('A*', a * A.y)
    pB_star = pD.locatenew('B*', b * A.z)
    pC_star = pD.locatenew('C*', -b * A.z)
    for p in [pA_star, pB_star, pC_star]:
        p.v2pt_theory(pD, F, A)

    # points of B, C touching the plane P
    pB_hat = pB_star.locatenew('B^', -R * A.x)
    pC_hat = pC_star.locatenew('C^', -R * A.x)
    pB_hat.v2pt_theory(pB_star, F, B)
    pC_hat.v2pt_theory(pC_star, F, C)

    # the velocities of B^, C^ are zero since B, C are assumed to roll without slip
    #kde = [dot(p.vel(F), b) for b in A for p in [pB_hat, pC_hat]]
    kde = [q1d - u1, q2d - u4, q3d - u5]
    vc = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]]

    # inertias of bodies A, B, C
    # IA22, IA23, IA33 are not specified in the problem statement, but are
    # necessary to define an inertia object. Although the values of
    # IA22, IA23, IA33 are not known in terms of the variables given in the
    # problem statement, they do not appear in the general inertia terms.
    inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0)
    inertia_B = inertia(B, K, K, J)
    inertia_C = inertia(C, K, K, J)

    # define the rigid bodies A, B, C
    rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star))
    rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star))
    rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star))

    km = KanesMethod(F,
                     q_ind=[q1, q2, q3],
                     u_ind=[u1, u2],
                     kd_eqs=kde,
                     u_dependent=[u4, u5],
                     velocity_constraints=vc,
                     u_auxiliary=[u3])

    forces = [(pS_star, -M * g * F.x), (pQ, Q1 * A.x + Q2 * A.y + Q3 * A.z)]
    bodies = [rbA, rbB, rbC]
    fr, fr_star = km.kanes_equations(forces, bodies)
    vc_map = solve(vc, [u4, u5])

    # KanesMethod returns the negative of Fr, Fr* as defined in Kane1985.
    fr_star_expected = Matrix([
        -(IA + 2 * J * b**2 / R**2 + 2 * K + mA * a**2 + 2 * mB * b**2) *
        u1.diff(t) - mA * a * u1 * u2,
        -(mA + 2 * mB + 2 * J / R**2) * u2.diff(t) + mA * a * u1**2, 0
    ])
    assert (trigsimp(fr_star.subs(vc_map).subs(
        u3, 0)).doit().expand() == fr_star_expected.expand())

    # define inertias of rigid bodies A, B, C about point D
    # I_S/O = I_S/S* + I_S*/O
    bodies2 = []
    for rb, I_star in zip([rbA, rbB, rbC], [inertia_A, inertia_B, inertia_C]):
        I = I_star + inertia_of_point_mass(rb.mass, rb.masscenter.pos_from(pD),
                                           rb.frame)
        bodies2.append(RigidBody('', rb.masscenter, rb.frame, rb.mass,
                                 (I, pD)))
    fr2, fr_star2 = km.kanes_equations(forces, bodies2)
    assert (trigsimp(fr_star2.subs(vc_map).subs(
        u3, 0)).doit().expand() == fr_star_expected.expand())
예제 #37
0
from sympy.physics.mechanics import msprint
from sympy.physics.mechanics import Point, Particle
from sympy.physics.mechanics import Lagrangian, LagrangesMethod
from sympy import symbols, sin, cos

s, theta, h = dynamicsymbols('s θ h')  # s, theta, h
sd, thetad, hd = dynamicsymbols('s θ h', 1)
m, g, l = symbols('m g l')
N = ReferenceFrame('N')

# part a
r1 = s * N.x
r2 = (s + l * cos(theta)) * N.x + l * sin(theta) * N.y

O = Point('O')
p1 = O.locatenew('p1', r1)
p2 = O.locatenew('p2', r2)

O.set_vel(N, 0)
p1.set_vel(N, p1.pos_from(O).dt(N))
p2.set_vel(N, p2.pos_from(O).dt(N))

P1 = Particle('P1', p1, 2 * m)
P2 = Particle('P2', p2, m)

P1.set_potential_energy(0)
P2.set_potential_energy(P2.mass * g * (p2.pos_from(O) & N.y))

L1 = Lagrangian(N, P1, P2)
print('{} = {}'.format('L1', msprint(L1)))
예제 #38
0
comb_implicit_mat = Matrix([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0],
                            [0, 0, 1, 0, -x / m], [0, 0, 0, 1, -y / m],
                            [0, 0, 0, 0, l**2 / m]])

comb_implicit_rhs = Matrix([u, v, 0, 0, u**2 + v**2 - g * y])

kin_explicit_rhs = Matrix([u, v])

comb_explicit_rhs = comb_implicit_mat.LUsolve(comb_implicit_rhs)

# Set up a body and load to pass into the system
theta = atan(x / y)
N = ReferenceFrame('N')
A = N.orientnew('A', 'Axis', [theta, N.z])
O = Point('O')
P = O.locatenew('P', l * A.x)

Pa = Particle('Pa', P, m)

bodies = [Pa]
loads = [(P, g * m * N.x)]

# Set up some output equations to be given to SymbolicSystem
# Change to make these fit the pendulum
PE = symbols("PE")
out_eqns = {PE: m * g * (l + y)}

# Set up remaining arguments that can be passed to SymbolicSystem
alg_con = [2]
alg_con_full = [4]
coordinates = (x, y, lam)
예제 #39
0
q1, q2, q3, q4, q5 = q = dynamicsymbols('q1:6')
qd = dynamicsymbols('q1:6', level=1)
u1, u2, u3, u4, u5 = u = dynamicsymbols('u1:6')

# reference frames
A = ReferenceFrame('A')
B_prime = A.orientnew('B_prime', 'Axis', [q1, A.z])
B = B_prime.orientnew('B', 'Axis', [pi / 2 - q2, B_prime.x])
C = B.orientnew('C', 'Axis', [q3, B.z])

# points, velocities
pO = Point('O')
pO.set_vel(A, 0)

# R is the point in plane H that comes into contact with disk C.
pR = pO.locatenew('R', q4 * A.x + q5 * A.y)
pR.set_vel(A, pR.pos_from(pO).dt(A))
pR.set_vel(B, 0)

# C^ is the point in disk C that comes into contact with plane H.
pC_hat = pR.locatenew('C^', 0)
pC_hat.set_vel(C, 0)

# C* is the point at the center of disk C.
pC_star = pC_hat.locatenew('C*', R * B.y)
pC_star.set_vel(C, 0)
pC_star.set_vel(B, 0)

# calculate velocities in A
pC_star.v2pt_theory(pR, A, B)
pC_hat.v2pt_theory(pC_star, A, C)
예제 #40
0
from sympy.physics.mechanics import ReferenceFrame, RigidBody, Point
from sympy.physics.mechanics import dot, dynamicsymbols, inertia, msprint

m, a, b = symbols('m a b')
q1, q2 = dynamicsymbols('q1, q2')
q1d, q2d = dynamicsymbols('q1, q2', level=1)

# reference frames
# N.x parallel to horizontal line, N.y parallel to line AC
N = ReferenceFrame('N')
A = N.orientnew('A', 'axis', [-q1, N.y])
B = A.orientnew('B', 'axis', [-q2, A.x])

# points B*, O
pO = Point('O')
pB_star = pO.locatenew('B*', S(1) / 3 * (2 * a * B.x - b * B.y))
pO.set_vel(N, 0)
pB_star.v2pt_theory(pO, N, B)

# rigidbody B
I_B_Bs = inertia(B, m * b**2 / 18, m * a**2 / 18, m * (a**2 + b**2) / 18)
rbB = RigidBody('rbB', pB_star, B, m, (I_B_Bs, pB_star))

# kinetic energy
K = rbB.kinetic_energy(N)
print('K = {0}'.format(msprint(trigsimp(K))))

K_expected = m / 4 * ((a**2 + b**2 * sin(q2)**2 / 3) * q1d**2 +
                      a * b * cos(q2) * q1d * q2d + b**2 * q2d**2 / 3)
print('diff = {0}'.format(msprint(expand(trigsimp(K - K_expected)))))
assert expand(trigsimp(K - K_expected)) == 0
예제 #41
0
파일: Ex11.14.py 프로젝트: zizai/pydy
# reference frames
F = ReferenceFrame('F')
P = F.orientnew('P', 'axis', [-theta, F.y])
A = P.orientnew('A', 'axis', [q1, P.x])
A.set_ang_vel(F, u1 * A.x + u3 * A.z)
B = A.orientnew('B', 'axis', [q2, A.z])
C = A.orientnew('C', 'axis', [q3, A.z])

# points D, S*, Q on frame A and their velocities
pD = Point('D')
pD.set_vel(A, 0)
# u3 will not change v_D_F since wheels are still assumed to roll without slip.
pD.set_vel(F, u2 * A.y)

pS_star = pD.locatenew('S*', e * A.y)
pQ = pD.locatenew('Q', f * A.y - R * A.x)
for p in [pS_star, pQ]:
    p.set_vel(A, 0)
    p.v2pt_theory(pD, F, A)

# masscenters of bodies A, B, C
pA_star = pD.locatenew('A*', a * A.y)
pB_star = pD.locatenew('B*', b * A.z)
pC_star = pD.locatenew('C*', -b * A.z)
for p in [pA_star, pB_star, pC_star]:
    p.set_vel(A, 0)
    p.v2pt_theory(pD, F, A)

# points of B, C touching the plane P
pB_hat = pB_star.locatenew('B^', -R * A.x)
예제 #42
0
파일: test_kane.py 프로젝트: ness01/sympy
def test_rolling_disc():
    # Rolling Disc Example
    # Here the rolling disc is formed from the contact point up, removing the
    # need to introduce generalized speeds. Only 3 configuration and three
    # speed variables are need to describe this system, along with the disc's
    # mass and radius, and the local graivty (note that mass will drop out).
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    r, m, g = symbols('r m g')

    # The kinematics are formed by a series of simple rotations. Each simple
    # rotation creates a new frame, and the next rotation is defined by the new
    # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
    # Z, X, Y series of rotations. Angular velocity for this is defined using
    # the second frame's basis (the lean frame).
    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
    R.set_ang_acc(N,
                  R.ang_vel_in(N).dt(R) + (R.ang_vel_in(N) ^ R.ang_vel_in(N)))

    # This is the translational kinematics. We create a point with no velocity
    # in N; this is the contact point between the disc and ground. Next we form
    # the position vector from the contact point to the disc mass center.
    # Finally we form the velocity and acceleration of the disc.
    C = Point('C')
    C.set_vel(N, 0)
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)
    Dmc.a2pt_theory(C, N, R)

    # This is a simple way to form the inertia dyadic.
    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    # Kinematic differential equations; how the generalized coordinate time
    # derivatives relate to generalized speeds.
    kd = [q1d - u3 / cos(q3), q2d - u1, q3d - u2 + u3 * tan(q2)]

    # Creation of the force list; it is the gravitational force at the mass
    # center of the disc. Then we create the disc by assigning a Point to the
    # mass center attribute, a ReferenceFrame to the frame attribute, and mass
    # and inertia. Then we form the body list.
    ForceList = [(Dmc, -m * g * Y.z)]
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
    BodyList = [BodyD]

    # Finally we form the equations of motion, using the same steps we did
    # before. Specify inertial frame, supply generalized speeds, supply
    # kinematic differential equation dictionary, compute Fr from the force
    # list and Fr* fromt the body list, compute the mass matrix and forcing
    # terms, then solve for the u dots (time derivatives of the generalized
    # speeds).
    KM = Kane(N)
    KM.coords([q1, q2, q3])
    KM.speeds([u1, u2, u3])
    KM.kindiffeq(kd)
    KM.kanes_equations(ForceList, BodyList)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    kdd = KM.kindiffdict()
    rhs = rhs.subs(kdd)
    assert rhs.expand() == Matrix([
        (10 * u2 * u3 * r - 5 * u3**2 * r * tan(q2) + 4 * g * sin(q2)) /
        (5 * r), -2 * u1 * u3 / 3, u1 * (-2 * u2 + u3 * tan(q2))
    ]).expand()
예제 #43
0
def test_sub_qdot2():
    # This test solves exercises 8.3 from Kane 1985 and defines
    # all velocities in terms of q, qdot. We check that the generalized active
    # forces are correctly computed if u terms are only defined in the
    # kinematic differential equations.
    #
    # This functionality was added in PR 8948. Without qdot/u substitution, the
    # KanesMethod constructor will fail during the constraint initialization as
    # the B matrix will be poorly formed and inversion of the dependent part
    # will fail.

    g, m, Px, Py, Pz, R, t = symbols('g m Px Py Pz R t')
    q = dynamicsymbols('q:5')
    qd = dynamicsymbols('q:5', level=1)
    u = dynamicsymbols('u:5')

    ## Define inertial, intermediate, and rigid body reference frames
    A = ReferenceFrame('A')
    B_prime = A.orientnew('B_prime', 'Axis', [q[0], A.z])
    B = B_prime.orientnew('B', 'Axis', [pi / 2 - q[1], B_prime.x])
    C = B.orientnew('C', 'Axis', [q[2], B.z])

    ## Define points of interest and their velocities
    pO = Point('O')
    pO.set_vel(A, 0)

    # R is the point in plane H that comes into contact with disk C.
    pR = pO.locatenew('R', q[3] * A.x + q[4] * A.y)
    pR.set_vel(A, pR.pos_from(pO).diff(t, A))
    pR.set_vel(B, 0)

    # C^ is the point in disk C that comes into contact with plane H.
    pC_hat = pR.locatenew('C^', 0)
    pC_hat.set_vel(C, 0)

    # C* is the point at the center of disk C.
    pCs = pC_hat.locatenew('C*', R * B.y)
    pCs.set_vel(C, 0)
    pCs.set_vel(B, 0)

    # calculate velocites of points C* and C^ in frame A
    pCs.v2pt_theory(pR, A, B)  # points C* and R are fixed in frame B
    pC_hat.v2pt_theory(pCs, A, C)  # points C* and C^ are fixed in frame C

    ## Define forces on each point of the system
    R_C_hat = Px * A.x + Py * A.y + Pz * A.z
    R_Cs = -m * g * A.z
    forces = [(pC_hat, R_C_hat), (pCs, R_Cs)]

    ## Define kinematic differential equations
    # let ui = omega_C_A & bi (i = 1, 2, 3)
    # u4 = qd4, u5 = qd5
    u_expr = [C.ang_vel_in(A) & uv for uv in B]
    u_expr += qd[3:]
    kde = [ui - e for ui, e in zip(u, u_expr)]
    km1 = KanesMethod(A, q, u, kde)
    fr1, _ = km1.kanes_equations([], forces)

    ## Calculate generalized active forces if we impose the condition that the
    # disk C is rolling without slipping
    u_indep = u[:3]
    u_dep = list(set(u) - set(u_indep))
    vc = [pC_hat.vel(A) & uv for uv in [A.x, A.y]]
    km2 = KanesMethod(A,
                      q,
                      u_indep,
                      kde,
                      u_dependent=u_dep,
                      velocity_constraints=vc)
    fr2, _ = km2.kanes_equations([], forces)

    fr1_expected = Matrix([
        -R * g * m * sin(q[1]),
        -R * (Px * cos(q[0]) + Py * sin(q[0])) * tan(q[1]),
        R * (Px * cos(q[0]) + Py * sin(q[0])), Px, Py
    ])
    fr2_expected = Matrix([-R * g * m * sin(q[1]), 0, 0])
    assert (trigsimp(fr1.expand()) == trigsimp(fr1_expected.expand()))
    assert (trigsimp(fr2.expand()) == trigsimp(fr2_expected.expand()))
예제 #44
0
class TestVisualizationFrameScene(object):
    def __init__(self):
        #We define some quantities required for tests here..
        self.p = dynamicsymbols('p:3')
        self.q = dynamicsymbols('q:3')
        self.dynamic = list(self.p) + list(self.q)
        self.states = [radians(45) for x in self.p] + \
                               [radians(30) for x in self.q]

        self.I = ReferenceFrame('I')
        self.A = self.I.orientnew('A', 'space', self.p, 'XYZ')
        self.B = self.A.orientnew('B', 'space', self.q, 'XYZ')

        self.O = Point('O')
        self.P1 = self.O.locatenew('P1', 10 * self.I.x + \
                                      10 * self.I.y + 10 * self.I.z)
        self.P2 = self.P1.locatenew('P2', 10 * self.I.x + \
                                    10 * self.I.y + 10 * self.I.z)

        self.point_list1 = [[2, 3, 1], [4, 6, 2], [5, 3, 1], [5, 3, 6]]
        self.point_list2 = [[3, 1, 4], [3, 8, 2], [2, 1, 6], [2, 1, 1]]

        self.shape1 = Cylinder()
        self.shape2 = Cylinder()

        self.Ixx, self.Iyy, self.Izz = symbols('Ixx Iyy Izz')
        self.mass = symbols('mass')
        self.parameters = [self.Ixx, self.Iyy, self.Izz, self.mass]
        self.param_vals = [0, 0, 0, 0]

        self.inertia = inertia(self.A, self.Ixx, self.Iyy, self.Izz)

        self.rigid_body = RigidBody('rigid_body1', self.P1, self.A, \
                                 self.mass, (self.inertia, self.P1))

        self.global_frame1 = VisualizationFrame('global_frame1', \
                                self.A, self.P1, self.shape1)

        self.global_frame2 = VisualizationFrame('global_frame2', \
                                self.B, self.P2, self.shape2)

        self.scene1 = Scene(self.I, self.O, \
                            (self.global_frame1, self.global_frame2), \
                                             name='scene')

        self.particle = Particle('particle1', self.P1, self.mass)

        #To make it more readable
        p = self.p
        q = self.q
        #Here is the dragon ..
        self.transformation_matrix = \
            [[cos(p[1])*cos(p[2]), sin(p[2])*cos(p[1]), -sin(p[1]), 0], \
             [sin(p[0])*sin(p[1])*cos(p[2]) - sin(p[2])*cos(p[0]), \
                  sin(p[0])*sin(p[1])*sin(p[2]) + cos(p[0])*cos(p[2]), \
                  sin(p[0])*cos(p[1]), 0], \
             [sin(p[0])*sin(p[2]) + sin(p[1])*cos(p[0])*cos(p[2]), \
                 -sin(p[0])*cos(p[2]) + sin(p[1])*sin(p[2])*cos(p[0]), \
                  cos(p[0])*cos(p[1]), 0], \
             [10, 10, 10, 1]]

    def test_vframe_with_rframe(self):
        self.frame1 = VisualizationFrame('frame1', self.I, self.O, \
                                                self.shape1)

        assert self.frame1.name == 'frame1'
        assert self.frame1.reference_frame == self.I
        assert self.frame1.origin == self.O
        assert self.frame1.shape is self.shape1

        self.frame1.name = 'frame1_'
        assert self.frame1.name == 'frame1_'

        self.frame1.reference_frame = self.A
        assert self.frame1.reference_frame == self.A

        self.frame1.origin = self.P1
        assert self.frame1.origin == self.P1

        self.frame1.shape = self.shape2
        assert self.frame1.shape is self.shape2

        assert self.frame1.generate_transformation_matrix(self.I, self.O).tolist() == \
                                             self.transformation_matrix

    def test_vframe_with_rbody(self):
        self.frame2 = VisualizationFrame('frame2', self.rigid_body, \
                                                self.shape1)

        assert self.frame2.name == 'frame2'
        assert self.frame2.reference_frame == self.A
        assert self.frame2.origin == self.P1
        assert self.frame2.shape == self.shape1

        self.frame2.name = 'frame2_'
        assert self.frame2.name == 'frame2_'

        self.frame2.reference_frame = self.B
        assert self.frame2.reference_frame == self.B

        self.frame2.origin = self.P2
        assert self.frame2.origin == self.P2

        self.frame2.shape = self.shape2
        assert self.frame2.shape is self.shape2

        self.frame2.reference_frame = self.A
        self.frame2.origin = self.P1
        assert self.frame2.generate_transformation_matrix(self.I, self.O).tolist() == \
                                            self.transformation_matrix

    def test_vframe_with_particle(self):

        self.frame3 = VisualizationFrame('frame3', \
                                          self.A, self.particle, \
                                                self.shape1)

        assert self.frame3.name == 'frame3'
        assert self.frame3.reference_frame == self.A
        assert self.frame3.origin == self.P1
        assert self.frame3.shape is self.shape1

        self.frame3.name = 'frame3_'
        assert self.frame3.name == 'frame3_'

        self.frame3.reference_frame = self.B
        assert self.frame3.reference_frame == self.B

        self.frame3.origin = self.P2
        assert self.frame3.origin == self.P2

        self.frame3.shape = self.shape2
        assert self.frame3.shape is self.shape2

        self.frame3.reference_frame = self.A
        self.frame3.origin = self.P1
        assert self.frame3.generate_transformation_matrix(self.I, self.O).tolist() == \
                                             self.transformation_matrix

    def test_vframe_without_name(self):
        self.frame4 = VisualizationFrame(self.I, self.O, \
                                               self.shape1)

        assert self.frame4.name == 'unnamed'
        #To check if referenceframe and origin are defined
        #properly without name arg
        assert self.frame4.reference_frame == self.I
        assert self.frame4.origin == self.O
        assert self.frame4.shape is self.shape1

        self.frame4.name = 'frame1_'
        assert self.frame4.name == 'frame1_'

    def test_numeric_transform(self):
        self.list1 = [[0.5000000000000001, 0.5, \
                       -0.7071067811865475, 0.0, \
                      -0.14644660940672627, 0.8535533905932737, \
                                       0.5, 0.0, \
                      0.8535533905932737, -0.14644660940672627, \
                         0.5000000000000001, 0.0, \
                      10.0, 10.0, 10.0, 1.0]]


        self.list2 = [[-0.11518993731879767, 0.8178227645734215, \
                            -0.563823734943801, 0.0, \
                      0.1332055011661179, 0.5751927992738988, \
                            0.8070994598700584, 0.0, \
                      0.984371663956036, 0.017865313009926137, \
                          -0.17519491371464685, 0.0, \
                      20.0, 20.0, 20.0, 1.0]]

        self.global_frame1.generate_transformation_matrix(self.I, self.O)
        self.global_frame1.generate_numeric_transform_function(self.dynamic, \
                                                        self.parameters)

        assert_allclose(self.global_frame1.\
                              evaluate_transformation_matrix(self.states, \
                                self.param_vals).tolist(), self.list1)

        self.global_frame2.generate_transformation_matrix(self.I, self.O)
        self.global_frame2.generate_numeric_transform_function(self.dynamic, \
                                                        self.parameters)

        assert_allclose(self.global_frame2.\
                              evaluate_transformation_matrix(self.states, \
                                self.param_vals).tolist(), self.list2)

    def test_perspective_camera(self):
        #Camera is a subclass of VisualizationFrame, but without any
        #specific shape attached. We supply only ReferenceFrame,Point
        #to camera. and it inherits methods from VisualizationFrame

        #Testing with rigid-body ..
        camera = PerspectiveCamera('camera', self.rigid_body, fov=45, \
                                                 near=1, far=1000)

        assert camera.name == 'camera'
        assert camera.reference_frame == self.A
        assert camera.origin == self.P1
        assert camera.fov == 45
        assert camera.near == 1
        assert camera.far == 1000

        #Testing with reference_frame, particle ..
        camera = PerspectiveCamera('camera', self.I, self.particle, \
                                          fov=45, near=1, far=1000)

        assert camera.name == 'camera'
        assert camera.reference_frame == self.I
        assert camera.origin == self.P1
        assert camera.fov == 45
        assert camera.near == 1
        assert camera.far == 1000

        #Testing with reference_frame, point ..
        camera = PerspectiveCamera('camera', self.I, self.O, \
                                          fov=45, near=1, far=1000)

        assert camera.name == 'camera'
        assert camera.reference_frame == self.I
        assert camera.origin == self.O
        assert camera.fov == 45
        assert camera.near == 1
        assert camera.far == 1000

        camera.name = 'camera1'
        assert camera.name == 'camera1'
        assert camera.__str__() == 'PerspectiveCamera: camera1'
        assert camera.__repr__() == 'PerspectiveCamera'

        camera.reference_frame = self.A
        assert camera.reference_frame == self.A

        camera.origin = self.P1
        assert camera.origin == self.P1

        camera.fov = 30
        assert camera.fov == 30

        camera.near = 10
        assert camera.near == 10

        camera.far = 500
        assert camera.far == 500

        #Test unnamed
        camera1 = PerspectiveCamera(self.I, self.O)
        assert camera1.name == 'unnamed'
        assert camera1.reference_frame == self.I
        assert camera1.origin == self.O
        assert camera1.fov == 45
        assert camera1.near == 1
        assert camera1.far == 1000

    def test_orthographic_camera(self):
        #As compared to Perspective Camera, Orthographic Camera doesnt
        #have fov, instead the left,right,top and bottom faces are
        #adjusted by the Scene width, and height

        #Testing with rigid_body
        camera = OrthoGraphicCamera('camera', self.rigid_body, \
                                               near=1, far=1000)

        assert camera.name == 'camera'
        assert camera.reference_frame == self.A
        assert camera.origin == self.P1
        assert camera.near == 1
        assert camera.far == 1000

        #Testing with reference_frame, particle
        camera = OrthoGraphicCamera('camera', self.I, self.particle, \
                                                   near=1, far=1000)

        assert camera.name == 'camera'
        assert camera.reference_frame == self.I
        assert camera.origin == self.P1
        assert camera.near == 1
        assert camera.far == 1000

        #Testing with reference_frame, point ...
        camera = OrthoGraphicCamera('camera', self.I, self.O, near=1, \
                                                               far=1000)

        assert camera.name == 'camera'
        assert camera.reference_frame == self.I
        assert camera.origin == self.O
        assert camera.near == 1
        assert camera.far == 1000

        camera.name = 'camera1'
        assert camera.name == 'camera1'
        assert camera.__str__() == 'OrthoGraphicCamera: camera1'
        assert camera.__repr__() == 'OrthoGraphicCamera'

        camera.reference_frame = self.A
        assert camera.reference_frame == self.A

        camera.origin = self.P1
        assert camera.origin == self.P1

        camera.near = 10
        assert camera.near == 10

        camera.far = 500
        assert camera.far == 500

        camera1 = OrthoGraphicCamera(self.I, self.O)
        assert camera1.name == 'unnamed'
        assert camera1.reference_frame == self.I
        assert camera1.origin == self.O
        assert camera1.near == 1
        assert camera1.far == 1000

    def test_point_light(self):
        #Testing with rigid-body ..
        light = PointLight('light', self.rigid_body, color='blue')

        assert light.name == 'light'
        assert light.reference_frame == self.A
        assert light.origin == self.P1
        assert light.color == 'blue'

        #Testing with reference_frame, particle ..
        light = PointLight('light', self.I, self.particle, color='blue')

        assert light.name == 'light'
        assert light.reference_frame == self.I
        assert light.origin == self.P1
        assert light.color == 'blue'

        #Testing with reference_frame, point ..
        light = PointLight('light', self.I, self.O, color='blue')

        assert light.name == 'light'
        assert light.reference_frame == self.I
        assert light.origin == self.O
        assert light.color == 'blue'

        light.name = 'light1'
        assert light.name == 'light1'
        assert light.__str__() == 'PointLight: light1'
        assert light.__repr__() == 'PointLight'

        light.reference_frame = self.A
        assert light.reference_frame == self.A

        light.origin = self.P1
        assert light.origin == self.P1

        light.color = 'red'
        assert light.color == 'red'

        #Test unnamed
        light1 = PointLight(self.I, self.O)
        assert light1.name == 'unnamed'
        assert light1.reference_frame == self.I
        assert light1.origin == self.O
        assert light1.color == 'white'

    def test_scene_init(self):
        self.scene2 = Scene(self.I, self.O, \
                            self.global_frame1, self.global_frame2, \
                                            name='scene')

        assert self.scene2.name == 'scene'
        assert self.scene2.reference_frame == self.I
        assert self.scene2.origin == self.O
        assert self.scene2.visualization_frames[0] is self.global_frame1
        assert self.scene2.visualization_frames[1] is self.global_frame2

        self.scene2.name = 'scene1'
        assert self.scene2.name == 'scene1'

        self.scene2.reference_frame = self.A
        assert self.scene2.reference_frame == self.A
예제 #45
0
def test_linearize_pendulum_kane_nonminimal():
    # Create generalized coordinates and speeds for this non-minimal realization
    # q1, q2 = N.x and N.y coordinates of pendulum
    # u1, u2 = N.x and N.y velocities of pendulum
    q1, q2 = dynamicsymbols("q1:3")
    q1d, q2d = dynamicsymbols("q1:3", level=1)
    u1, u2 = dynamicsymbols("u1:3")
    u1d, u2d = dynamicsymbols("u1:3", level=1)
    L, m, t = symbols("L, m, t")
    g = 9.8

    # Compose world frame
    N = ReferenceFrame("N")
    pN = Point("N*")
    pN.set_vel(N, 0)

    # A.x is along the pendulum
    theta1 = atan(q2 / q1)
    A = N.orientnew("A", "axis", [theta1, N.z])

    # Locate the pendulum mass
    P = pN.locatenew("P1", q1 * N.x + q2 * N.y)
    pP = Particle("pP", P, m)

    # Calculate the kinematic differential equations
    kde = Matrix([q1d - u1, q2d - u2])
    dq_dict = solve(kde, [q1d, q2d])

    # Set velocity of point P
    P.set_vel(N, P.pos_from(pN).dt(N).subs(dq_dict))

    # Configuration constraint is length of pendulum
    f_c = Matrix([P.pos_from(pN).magnitude() - L])

    # Velocity constraint is that the velocity in the A.x direction is
    # always zero (the pendulum is never getting longer).
    f_v = Matrix([P.vel(N).express(A).dot(A.x)])
    f_v.simplify()

    # Acceleration constraints is the time derivative of the velocity constraint
    f_a = f_v.diff(t)
    f_a.simplify()

    # Input the force resultant at P
    R = m * g * N.x

    # Derive the equations of motion using the KanesMethod class.
    KM = KanesMethod(
        N,
        q_ind=[q2],
        u_ind=[u2],
        q_dependent=[q1],
        u_dependent=[u1],
        configuration_constraints=f_c,
        velocity_constraints=f_v,
        acceleration_constraints=f_a,
        kd_eqs=kde,
    )
    with warns_deprecated_sympy():
        (fr, frstar) = KM.kanes_equations([(P, R)], [pP])

    # Set the operating point to be straight down, and non-moving
    q_op = {q1: L, q2: 0}
    u_op = {u1: 0, u2: 0}
    ud_op = {u1d: 0, u2d: 0}

    A, B, inp_vec = KM.linearize(
        op_point=[q_op, u_op, ud_op], A_and_B=True, simplify=True
    )

    assert A.expand() == Matrix([[0, 1], [-9.8 / L, 0]])
    assert B == Matrix([])
예제 #46
0
q1, q2, q3 = dynamicsymbols('q1:4')
q1d, q2d, q3d = dynamicsymbols('q1:4', level=1)
u1, u2, u3 = dynamicsymbols('u1:4')
g, m, L, t = symbols('g m L t')
Q, R, S = symbols('Q R S')

# --- ReferenceFrames ---
N = ReferenceFrame('N')

# --- Define Points and set their velocities ---
# Simplify the system to 7 points, where each point is the aggregations of
# rods that are parallel horizontally.
pO = Point('O')
pO.set_vel(N, 0)

pP1 = pO.locatenew('P1', L / 2 * (cos(q1) * N.x + sin(q1) * N.y))
pP2 = pP1.locatenew('P2', L / 2 * (cos(q1) * N.x + sin(q1) * N.y))
pP3 = pP2.locatenew('P3', L / 2 * (cos(q2) * N.x - sin(q2) * N.y))
pP4 = pP3.locatenew('P4', L / 2 * (cos(q2) * N.x - sin(q2) * N.y))
pP5 = pP4.locatenew('P5', L / 2 * (cos(q3) * N.x + sin(q3) * N.y))
pP6 = pP5.locatenew('P6', L / 2 * (cos(q3) * N.x + sin(q3) * N.y))

for p in [pP1, pP2, pP3, pP4, pP5, pP6]:
    p.set_vel(N, p.pos_from(pO).diff(t, N))

## --- Define kinematic differential equations/pseudo-generalized speeds ---
kde = [u1 - L * q1d, u2 - L * q2d, u3 - L * q3d]
kde_map = solve(kde, [q1d, q2d, q3d])

## --- Define contact/distance forces ---
forces = [(pP1, 6 * m * g * N.x), (pP2, S * N.y + 5 * m * g * N.x),
예제 #47
0
def test_linearize_rolling_disc_kane():
    # Symbols for time and constant parameters
    t, r, m, g, v = symbols("t r m g v")

    # Configuration variables and their time derivatives
    q1, q2, q3, q4, q5, q6 = q = dynamicsymbols("q1:7")
    q1d, q2d, q3d, q4d, q5d, q6d = qd = [qi.diff(t) for qi in q]

    # Generalized speeds and their time derivatives
    u = dynamicsymbols("u:6")
    u1, u2, u3, u4, u5, u6 = u = dynamicsymbols("u1:7")
    u1d, u2d, u3d, u4d, u5d, u6d = [ui.diff(t) for ui in u]

    # Reference frames
    N = ReferenceFrame("N")  # Inertial frame
    NO = Point("NO")  # Inertial origin
    A = N.orientnew("A", "Axis", [q1, N.z])  # Yaw intermediate frame
    B = A.orientnew("B", "Axis", [q2, A.x])  # Lean intermediate frame
    C = B.orientnew("C", "Axis", [q3, B.y])  # Disc fixed frame
    CO = NO.locatenew("CO", q4 * N.x + q5 * N.y + q6 * N.z)  # Disc center

    # Disc angular velocity in N expressed using time derivatives of coordinates
    w_c_n_qd = C.ang_vel_in(N)
    w_b_n_qd = B.ang_vel_in(N)

    # Inertial angular velocity and angular acceleration of disc fixed frame
    C.set_ang_vel(N, u1 * B.x + u2 * B.y + u3 * B.z)

    # Disc center velocity in N expressed using time derivatives of coordinates
    v_co_n_qd = CO.pos_from(NO).dt(N)

    # Disc center velocity in N expressed using generalized speeds
    CO.set_vel(N, u4 * C.x + u5 * C.y + u6 * C.z)

    # Disc Ground Contact Point
    P = CO.locatenew("P", r * B.z)
    P.v2pt_theory(CO, N, C)

    # Configuration constraint
    f_c = Matrix([q6 - dot(CO.pos_from(P), N.z)])

    # Velocity level constraints
    f_v = Matrix([dot(P.vel(N), uv) for uv in C])

    # Kinematic differential equations
    kindiffs = Matrix(
        [dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B]
        + [dot(v_co_n_qd - CO.vel(N), uv) for uv in N]
    )
    qdots = solve(kindiffs, qd)

    # Set angular velocity of remaining frames
    B.set_ang_vel(N, w_b_n_qd.subs(qdots))
    C.set_ang_acc(N, C.ang_vel_in(N).dt(B) + cross(B.ang_vel_in(N), C.ang_vel_in(N)))

    # Active forces
    F_CO = m * g * A.z

    # Create inertia dyadic of disc C about point CO
    I = (m * r ** 2) / 4
    J = (m * r ** 2) / 2
    I_C_CO = inertia(C, I, J, I)

    Disc = RigidBody("Disc", CO, C, m, (I_C_CO, CO))
    BL = [Disc]
    FL = [(CO, F_CO)]
    KM = KanesMethod(
        N,
        [q1, q2, q3, q4, q5],
        [u1, u2, u3],
        kd_eqs=kindiffs,
        q_dependent=[q6],
        configuration_constraints=f_c,
        u_dependent=[u4, u5, u6],
        velocity_constraints=f_v,
    )
    with warns_deprecated_sympy():
        (fr, fr_star) = KM.kanes_equations(FL, BL)

    # Test generalized form equations
    linearizer = KM.to_linearizer()
    assert linearizer.f_c == f_c
    assert linearizer.f_v == f_v
    assert linearizer.f_a == f_v.diff(t).subs(KM.kindiffdict())
    sol = solve(linearizer.f_0 + linearizer.f_1, qd)
    for qi in qdots.keys():
        assert sol[qi] == qdots[qi]
    assert simplify(linearizer.f_2 + linearizer.f_3 - fr - fr_star) == Matrix([0, 0, 0])

    # Perform the linearization
    # Precomputed operating point
    q_op = {q6: -r * cos(q2)}
    u_op = {
        u1: 0,
        u2: sin(q2) * q1d + q3d,
        u3: cos(q2) * q1d,
        u4: -r * (sin(q2) * q1d + q3d) * cos(q3),
        u5: 0,
        u6: -r * (sin(q2) * q1d + q3d) * sin(q3),
    }
    qd_op = {
        q2d: 0,
        q4d: -r * (sin(q2) * q1d + q3d) * cos(q1),
        q5d: -r * (sin(q2) * q1d + q3d) * sin(q1),
        q6d: 0,
    }
    ud_op = {
        u1d: 4 * g * sin(q2) / (5 * r)
        + sin(2 * q2) * q1d ** 2 / 2
        + 6 * cos(q2) * q1d * q3d / 5,
        u2d: 0,
        u3d: 0,
        u4d: r * (sin(q2) * sin(q3) * q1d * q3d + sin(q3) * q3d ** 2),
        u5d: r
        * (
            4 * g * sin(q2) / (5 * r)
            + sin(2 * q2) * q1d ** 2 / 2
            + 6 * cos(q2) * q1d * q3d / 5
        ),
        u6d: -r * (sin(q2) * cos(q3) * q1d * q3d + cos(q3) * q3d ** 2),
    }

    A, B = linearizer.linearize(
        op_point=[q_op, u_op, qd_op, ud_op], A_and_B=True, simplify=True
    )

    upright_nominal = {q1d: 0, q2: 0, m: 1, r: 1, g: 1}

    # Precomputed solution
    A_sol = Matrix(
        [
            [0, 0, 0, 0, 0, 0, 0, 1],
            [0, 0, 0, 0, 0, 1, 0, 0],
            [0, 0, 0, 0, 0, 0, 1, 0],
            [sin(q1) * q3d, 0, 0, 0, 0, -sin(q1), -cos(q1), 0],
            [-cos(q1) * q3d, 0, 0, 0, 0, cos(q1), -sin(q1), 0],
            [0, Rational(4, 5), 0, 0, 0, 0, 0, 6 * q3d / 5],
            [0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, -2 * q3d, 0, 0],
        ]
    )
    B_sol = Matrix([])

    # Check that linearization is correct
    assert A.subs(upright_nominal) == A_sol
    assert B.subs(upright_nominal) == B_sol

    # Check eigenvalues at critical speed are all zero:
    assert sympify(A.subs(upright_nominal).subs(q3d, 1 / sqrt(3))).eigenvals() == {0: 8}
예제 #48
0
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Exercise 7.8 from Kane 1985."""

from __future__ import division
from sympy import acos, pi, symbols
from sympy.physics.mechanics import ReferenceFrame, Point
from sympy.physics.mechanics import cross, dot

# vectors A, B have equal magnitude 10 N
alpha = 10  # [N]

N = ReferenceFrame('N')
pO = Point('O')
pS = pO.locatenew('S', 10 * N.x + 5 * N.z)
pR = pO.locatenew('R', 10 * N.x + 12 * N.y)
pQ = pO.locatenew('Q', 12 * N.y + 10 * N.z)
pP = pO.locatenew('P', 4 * N.x + 7 * N.z)

A = alpha * pQ.pos_from(pP).normalize()
B = alpha * pS.pos_from(pR).normalize()

R = A + B
M = cross(pP.pos_from(pO), A) + cross(pR.pos_from(pO), B)
Ms = dot(R, M) * R / dot(R, R)
ps = cross(R, M) / dot(R, R)
# Replace set S (vectors A, B) with a wrench consisting of the resultant of S,
# placed on the central axis of S and a couple whose torque is equal to S's
# moment of minimum magnitude.
r = R
C = Ms
예제 #49
0
u1 = dynamicsymbols('u1')
g, m, r, theta = symbols('g m r θ')
omega, t = symbols('ω t')

# reference frames
M = ReferenceFrame('M')
# Plane containing W rotates about a vertical line through center of W.
N = M.orientnew('N', 'Axis', [omega * t, M.z])
C = N.orientnew('C', 'Axis', [q1, N.x])
R = C  # R is fixed relative to C
A = C.orientnew('A', 'Axis', [-theta, R.x])
B = C.orientnew('B', 'Axis', [theta, R.x])

# points, velocities
pO = Point('O')  # Point O is at the center of the circular wire
pA = pO.locatenew('A', -r * A.z)
pB = pO.locatenew('B', -r * B.z)
pR_star = pO.locatenew('R*', 1 / S(2) * (pA.pos_from(pO) + pB.pos_from(pO)))

pO.set_vel(N, 0)
pO.set_vel(C, 0)
for p in [pA, pB, pR_star]:
    p.set_vel(C, 0)
    p.v1pt_theory(pO, N, C)

# kinematic differential equations
kde = [u1 - q1d]
kde_map = solve(kde, [q1d])

# contact/distance forces
forces = [(pR_star, -m * g * N.z)]
예제 #50
0
from sympy.physics.mechanics import inertia, msprint
from sympy.physics.mechanics import Point, RigidBody
from sympy import pi, solve, symbols, simplify
from sympy import acos, sin, cos

# 2a
q1 = dynamicsymbols('q1')

px, py, pz = symbols('px py pz', real=True, positive=True)
sx, sy, sz = symbols('sx sy sz', real=True, sositive=True)
m, g, l0, k = symbols('m g l0 k', real=True, positive=True)
Ixx, Iyy, Izz = symbols('Ixx Iyy Izz', real=True, positive=True)

N = ReferenceFrame('N')
B = N.orientnew('B', 'axis', [q1, N.z])

pA = Point('A')
pA.set_vel(N, 0)

pP = pA.locatenew('P', l0 * N.y - 2 * l0 * N.z)

pS = pP.locatenew('S', -px * B.x - pz * B.z)

I = inertia(B, Ixx, Iyy, Izz, 0, 0, 0)
rb = RigidBody('plane', pS, B, m, (I, pS))
H = rb.angular_momentum(pS, N)
print('H about S in frame N = {}'.format(msprint(H)))
print('dH/dt = {}'.format(msprint(H.dt(N))))

print('a_S_N = {}'.format(pS.acc(N)))
예제 #51
0
g, m1, m2, k, L, omega, t = symbols('g m1 m2 k L ω t')
q1, q2, q3 = dynamicsymbols('q1:4')
qd1, qd2, qd3 = dynamicsymbols('q1:4', level=1)
u1, u2, u3 = dynamicsymbols('u1:4')

## --- Define ReferenceFrames ---
A = ReferenceFrame('A')
B = A.orientnew('B', 'Axis', [omega * t, A.y])
E = B.orientnew('E', 'Axis', [q3, B.z])

## --- Define Points and their velocities ---
pO = Point('O')
pO.set_vel(A, 0)

pP1 = pO.locatenew('P1', q1 * B.x + q2 * B.y)
pD_star = pP1.locatenew('D*', L * E.x)

pP1.set_vel(B, pP1.pos_from(pO).dt(B))
pD_star.v2pt_theory(pP1, B, E)

pP1.v1pt_theory(pO, A, B)
pD_star.v2pt_theory(pP1, A, E)

## --- Expressions for generalized speeds u1, u2, u3 ---
kde = [
    u1 - dot(pP1.vel(A), E.x), u2 - dot(pP1.vel(A), E.y),
    u3 - dot(E.ang_vel_in(B), E.z)
]
kde_map = solve(kde, [qd1, qd2, qd3])
예제 #52
0
r, theta, b = symbols('r θ b', real=True, positive=True)

# define reference frames
R = ReferenceFrame('R')  # fixed race rf, let R.z point upwards
A = R.orientnew('A', 'axis', [q7, R.z])  # rf that rotates with S* about R.z
# B.x, B.z are parallel with face of cone, B.y is perpendicular
B = A.orientnew('B', 'axis', [-theta, A.x])
S = ReferenceFrame('S')
S.set_ang_vel(A, u1 * A.x + u2 * A.y + u3 * A.z)
C = ReferenceFrame('C')
C.set_ang_vel(A, u4 * B.x + u5 * B.y + u6 * B.z)

# define points
pO = Point('O')
pS_star = pO.locatenew('S*', b * A.y)
pS_hat = pS_star.locatenew('S^', -r * B.y)  # S^ touches the cone
pS1 = pS_star.locatenew('S1',
                        -r * A.z)  # S1 touches horizontal wall of the race
pS2 = pS_star.locatenew('S2', r * A.y)  # S2 touches vertical wall of the race

pO.set_vel(R, 0)
pS_star.v2pt_theory(pO, R, A)
pS1.v2pt_theory(pS_star, R, S)
pS2.v2pt_theory(pS_star, R, S)

# Since S is rolling against R, v_S1_R = 0, v_S2_R = 0.
vc = [dot(p.vel(R), basis) for p in [pS1, pS2] for basis in R]

pO.set_vel(C, 0)
pS_star.v2pt_theory(pO, C, A)
예제 #53
0
def test_bicycle():
    if ON_TRAVIS:
        skip("Too slow for travis.")
    # Code to get equations of motion for a bicycle modeled as in:
    # J.P Meijaard, Jim M Papadopoulos, Andy Ruina and A.L Schwab. Linearized
    # dynamics equations for the balance and steer of a bicycle: a benchmark
    # and review. Proceedings of The Royal Society (2007) 463, 1955-1982
    # doi: 10.1098/rspa.2007.1857

    # Note that this code has been crudely ported from Autolev, which is the
    # reason for some of the unusual naming conventions. It was purposefully as
    # similar as possible in order to aide debugging.

    # Declare Coordinates & Speeds
    # Simple definitions for qdots - qd = u
    # Speeds are: yaw frame ang. rate, roll frame ang. rate, rear wheel frame
    # ang.  rate (spinning motion), frame ang. rate (pitching motion), steering
    # frame ang. rate, and front wheel ang. rate (spinning motion).
    # Wheel positions are ignorable coordinates, so they are not introduced.
    q1, q2, q4, q5 = dynamicsymbols('q1 q2 q4 q5')
    q1d, q2d, q4d, q5d = dynamicsymbols('q1 q2 q4 q5', 1)
    u1, u2, u3, u4, u5, u6 = dynamicsymbols('u1 u2 u3 u4 u5 u6')
    u1d, u2d, u3d, u4d, u5d, u6d = dynamicsymbols('u1 u2 u3 u4 u5 u6', 1)

    # Declare System's Parameters
    WFrad, WRrad, htangle, forkoffset = symbols(
        'WFrad WRrad htangle forkoffset')
    forklength, framelength, forkcg1 = symbols(
        'forklength framelength forkcg1')
    forkcg3, framecg1, framecg3, Iwr11 = symbols(
        'forkcg3 framecg1 framecg3 Iwr11')
    Iwr22, Iwf11, Iwf22, Iframe11 = symbols('Iwr22 Iwf11 Iwf22 Iframe11')
    Iframe22, Iframe33, Iframe31, Ifork11 = symbols(
        'Iframe22 Iframe33 Iframe31 Ifork11')
    Ifork22, Ifork33, Ifork31, g = symbols('Ifork22 Ifork33 Ifork31 g')
    mframe, mfork, mwf, mwr = symbols('mframe mfork mwf mwr')

    # Set up reference frames for the system
    # N - inertial
    # Y - yaw
    # R - roll
    # WR - rear wheel, rotation angle is ignorable coordinate so not oriented
    # Frame - bicycle frame
    # TempFrame - statically rotated frame for easier reference inertia definition
    # Fork - bicycle fork
    # TempFork - statically rotated frame for easier reference inertia definition
    # WF - front wheel, again posses a ignorable coordinate
    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    R = Y.orientnew('R', 'Axis', [q2, Y.x])
    Frame = R.orientnew('Frame', 'Axis', [q4 + htangle, R.y])
    WR = ReferenceFrame('WR')
    TempFrame = Frame.orientnew('TempFrame', 'Axis', [-htangle, Frame.y])
    Fork = Frame.orientnew('Fork', 'Axis', [q5, Frame.x])
    TempFork = Fork.orientnew('TempFork', 'Axis', [-htangle, Fork.y])
    WF = ReferenceFrame('WF')

    # Kinematics of the Bicycle First block of code is forming the positions of
    # the relevant points
    # rear wheel contact -> rear wheel mass center -> frame mass center +
    # frame/fork connection -> fork mass center + front wheel mass center ->
    # front wheel contact point
    WR_cont = Point('WR_cont')
    WR_mc = WR_cont.locatenew('WR_mc', WRrad * R.z)
    Steer = WR_mc.locatenew('Steer', framelength * Frame.z)
    Frame_mc = WR_mc.locatenew('Frame_mc',
                               -framecg1 * Frame.x + framecg3 * Frame.z)
    Fork_mc = Steer.locatenew('Fork_mc', -forkcg1 * Fork.x + forkcg3 * Fork.z)
    WF_mc = Steer.locatenew('WF_mc', forklength * Fork.x + forkoffset * Fork.z)
    WF_cont = WF_mc.locatenew(
        'WF_cont',
        WFrad * (dot(Fork.y, Y.z) * Fork.y - Y.z).normalize())

    # Set the angular velocity of each frame.
    # Angular accelerations end up being calculated automatically by
    # differentiating the angular velocities when first needed.
    # u1 is yaw rate
    # u2 is roll rate
    # u3 is rear wheel rate
    # u4 is frame pitch rate
    # u5 is fork steer rate
    # u6 is front wheel rate
    Y.set_ang_vel(N, u1 * Y.z)
    R.set_ang_vel(Y, u2 * R.x)
    WR.set_ang_vel(Frame, u3 * Frame.y)
    Frame.set_ang_vel(R, u4 * Frame.y)
    Fork.set_ang_vel(Frame, u5 * Fork.x)
    WF.set_ang_vel(Fork, u6 * Fork.y)

    # Form the velocities of the previously defined points, using the 2 - point
    # theorem (written out by hand here).  Accelerations again are calculated
    # automatically when first needed.
    WR_cont.set_vel(N, 0)
    WR_mc.v2pt_theory(WR_cont, N, WR)
    Steer.v2pt_theory(WR_mc, N, Frame)
    Frame_mc.v2pt_theory(WR_mc, N, Frame)
    Fork_mc.v2pt_theory(Steer, N, Fork)
    WF_mc.v2pt_theory(Steer, N, Fork)
    WF_cont.v2pt_theory(WF_mc, N, WF)

    # Sets the inertias of each body. Uses the inertia frame to construct the
    # inertia dyadics. Wheel inertias are only defined by principle moments of
    # inertia, and are in fact constant in the frame and fork reference frames;
    # it is for this reason that the orientations of the wheels does not need
    # to be defined. The frame and fork inertias are defined in the 'Temp'
    # frames which are fixed to the appropriate body frames; this is to allow
    # easier input of the reference values of the benchmark paper. Note that
    # due to slightly different orientations, the products of inertia need to
    # have their signs flipped; this is done later when entering the numerical
    # value.

    Frame_I = (inertia(TempFrame, Iframe11, Iframe22, Iframe33, 0, 0,
                       Iframe31), Frame_mc)
    Fork_I = (inertia(TempFork, Ifork11, Ifork22, Ifork33, 0, 0,
                      Ifork31), Fork_mc)
    WR_I = (inertia(Frame, Iwr11, Iwr22, Iwr11), WR_mc)
    WF_I = (inertia(Fork, Iwf11, Iwf22, Iwf11), WF_mc)

    # Declaration of the RigidBody containers. ::

    BodyFrame = RigidBody('BodyFrame', Frame_mc, Frame, mframe, Frame_I)
    BodyFork = RigidBody('BodyFork', Fork_mc, Fork, mfork, Fork_I)
    BodyWR = RigidBody('BodyWR', WR_mc, WR, mwr, WR_I)
    BodyWF = RigidBody('BodyWF', WF_mc, WF, mwf, WF_I)

    # The kinematic differential equations; they are defined quite simply. Each
    # entry in this list is equal to zero.
    kd = [q1d - u1, q2d - u2, q4d - u4, q5d - u5]

    # The nonholonomic constraints are the velocity of the front wheel contact
    # point dotted into the X, Y, and Z directions; the yaw frame is used as it
    # is "closer" to the front wheel (1 less DCM connecting them). These
    # constraints force the velocity of the front wheel contact point to be 0
    # in the inertial frame; the X and Y direction constraints enforce a
    # "no-slip" condition, and the Z direction constraint forces the front
    # wheel contact point to not move away from the ground frame, essentially
    # replicating the holonomic constraint which does not allow the frame pitch
    # to change in an invalid fashion.

    conlist_speed = [
        WF_cont.vel(N) & Y.x,
        WF_cont.vel(N) & Y.y,
        WF_cont.vel(N) & Y.z
    ]

    # The holonomic constraint is that the position from the rear wheel contact
    # point to the front wheel contact point when dotted into the
    # normal-to-ground plane direction must be zero; effectively that the front
    # and rear wheel contact points are always touching the ground plane. This
    # is actually not part of the dynamic equations, but instead is necessary
    # for the lineraization process.

    conlist_coord = [WF_cont.pos_from(WR_cont) & Y.z]

    # The force list; each body has the appropriate gravitational force applied
    # at its mass center.
    FL = [(Frame_mc, -mframe * g * Y.z), (Fork_mc, -mfork * g * Y.z),
          (WF_mc, -mwf * g * Y.z), (WR_mc, -mwr * g * Y.z)]
    BL = [BodyFrame, BodyFork, BodyWR, BodyWF]

    # The N frame is the inertial frame, coordinates are supplied in the order
    # of independent, dependent coordinates, as are the speeds. The kinematic
    # differential equation are also entered here.  Here the dependent speeds
    # are specified, in the same order they were provided in earlier, along
    # with the non-holonomic constraints.  The dependent coordinate is also
    # provided, with the holonomic constraint.  Again, this is only provided
    # for the linearization process.

    KM = KanesMethod(N,
                     q_ind=[q1, q2, q5],
                     q_dependent=[q4],
                     configuration_constraints=conlist_coord,
                     u_ind=[u2, u3, u5],
                     u_dependent=[u1, u4, u6],
                     velocity_constraints=conlist_speed,
                     kd_eqs=kd)
    (fr, frstar) = KM.kanes_equations(FL, BL)

    # This is the start of entering in the numerical values from the benchmark
    # paper to validate the eigen values of the linearized equations from this
    # model to the reference eigen values. Look at the aforementioned paper for
    # more information. Some of these are intermediate values, used to
    # transform values from the paper into the coordinate systems used in this
    # model.
    PaperRadRear = 0.3
    PaperRadFront = 0.35
    HTA = evalf.N(pi / 2 - pi / 10)
    TrailPaper = 0.08
    rake = evalf.N(-(TrailPaper * sin(HTA) - (PaperRadFront * cos(HTA))))
    PaperWb = 1.02
    PaperFrameCgX = 0.3
    PaperFrameCgZ = 0.9
    PaperForkCgX = 0.9
    PaperForkCgZ = 0.7
    FrameLength = evalf.N(PaperWb * sin(HTA) -
                          (rake - (PaperRadFront - PaperRadRear) * cos(HTA)))
    FrameCGNorm = evalf.N((PaperFrameCgZ - PaperRadRear -
                           (PaperFrameCgX / sin(HTA)) * cos(HTA)) * sin(HTA))
    FrameCGPar = evalf.N(
        (PaperFrameCgX / sin(HTA) +
         (PaperFrameCgZ - PaperRadRear - PaperFrameCgX / sin(HTA) * cos(HTA)) *
         cos(HTA)))
    tempa = evalf.N((PaperForkCgZ - PaperRadFront))
    tempb = evalf.N((PaperWb - PaperForkCgX))
    tempc = evalf.N(sqrt(tempa**2 + tempb**2))
    PaperForkL = evalf.N(
        (PaperWb * cos(HTA) - (PaperRadFront - PaperRadRear) * sin(HTA)))
    ForkCGNorm = evalf.N(rake +
                         (tempc * sin(pi / 2 - HTA - acos(tempa / tempc))))
    ForkCGPar = evalf.N(tempc * cos((pi / 2 - HTA) - acos(tempa / tempc)) -
                        PaperForkL)

    # Here is the final assembly of the numerical values. The symbol 'v' is the
    # forward speed of the bicycle (a concept which only makes sense in the
    # upright, static equilibrium case?). These are in a dictionary which will
    # later be substituted in. Again the sign on the *product* of inertia
    # values is flipped here, due to different orientations of coordinate
    # systems.
    v = symbols('v')
    val_dict = {
        WFrad: PaperRadFront,
        WRrad: PaperRadRear,
        htangle: HTA,
        forkoffset: rake,
        forklength: PaperForkL,
        framelength: FrameLength,
        forkcg1: ForkCGPar,
        forkcg3: ForkCGNorm,
        framecg1: FrameCGNorm,
        framecg3: FrameCGPar,
        Iwr11: 0.0603,
        Iwr22: 0.12,
        Iwf11: 0.1405,
        Iwf22: 0.28,
        Ifork11: 0.05892,
        Ifork22: 0.06,
        Ifork33: 0.00708,
        Ifork31: 0.00756,
        Iframe11: 9.2,
        Iframe22: 11,
        Iframe33: 2.8,
        Iframe31: -2.4,
        mfork: 4,
        mframe: 85,
        mwf: 3,
        mwr: 2,
        g: 9.81,
        q1: 0,
        q2: 0,
        q4: 0,
        q5: 0,
        u1: 0,
        u2: 0,
        u3: v / PaperRadRear,
        u4: 0,
        u5: 0,
        u6: v / PaperRadFront
    }

    # Linearizes the forcing vector; the equations are set up as MM udot =
    # forcing, where MM is the mass matrix, udot is the vector representing the
    # time derivatives of the generalized speeds, and forcing is a vector which
    # contains both external forcing terms and internal forcing terms, such as
    # centripital or coriolis forces.  This actually returns a matrix with as
    # many rows as *total* coordinates and speeds, but only as many columns as
    # independent coordinates and speeds.

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        forcing_lin = KM.linearize()[0]

    # As mentioned above, the size of the linearized forcing terms is expanded
    # to include both q's and u's, so the mass matrix must have this done as
    # well.  This will likely be changed to be part of the linearized process,
    # for future reference.
    MM_full = KM.mass_matrix_full

    MM_full_s = MM_full.subs(val_dict)
    forcing_lin_s = forcing_lin.subs(KM.kindiffdict()).subs(val_dict)

    MM_full_s = MM_full_s.evalf()
    forcing_lin_s = forcing_lin_s.evalf()

    # Finally, we construct an "A" matrix for the form xdot = A x (x being the
    # state vector, although in this case, the sizes are a little off). The
    # following line extracts only the minimum entries required for eigenvalue
    # analysis, which correspond to rows and columns for lean, steer, lean
    # rate, and steer rate.
    Amat = MM_full_s.inv() * forcing_lin_s
    A = Amat.extract([1, 2, 4, 6], [1, 2, 3, 5])

    # Precomputed for comparison
    Res = Matrix([[0, 0, 1.0, 0], [0, 0, 0, 1.0],
                  [
                      9.48977444677355,
                      -0.891197738059089 * v**2 - 0.571523173729245,
                      -0.105522449805691 * v, -0.330515398992311 * v
                  ],
                  [
                      11.7194768719633,
                      -1.97171508499972 * v**2 + 30.9087533932407,
                      3.67680523332152 * v, -3.08486552743311 * v
                  ]])

    # Actual eigenvalue comparison
    eps = 1.e-12
    for i in range(6):
        error = Res.subs(v, i) - A.subs(v, i)
        assert all(abs(x) < eps for x in error)
예제 #54
0
파일: test_kane.py 프로젝트: zscore/sympy
def test_rolling_disc():
    # Rolling Disc Example
    # Here the rolling disc is formed from the contact point up, removing the
    # need to introduce generalized speeds. Only 3 configuration and three
    # speed variables are need to describe this system, along with the disc's
    # mass and radius, and the local gravity (note that mass will drop out).
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    r, m, g = symbols('r m g')

    # The kinematics are formed by a series of simple rotations. Each simple
    # rotation creates a new frame, and the next rotation is defined by the new
    # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
    # Z, X, Y series of rotations. Angular velocity for this is defined using
    # the second frame's basis (the lean frame).
    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    w_R_N_qd = R.ang_vel_in(N)
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    # This is the translational kinematics. We create a point with no velocity
    # in N; this is the contact point between the disc and ground. Next we form
    # the position vector from the contact point to the disc's center of mass.
    # Finally we form the velocity and acceleration of the disc.
    C = Point('C')
    C.set_vel(N, 0)
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

    # This is a simple way to form the inertia dyadic.
    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    # Kinematic differential equations; how the generalized coordinate time
    # derivatives relate to generalized speeds.
    kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]

    # Creation of the force list; it is the gravitational force at the mass
    # center of the disc. Then we create the disc by assigning a Point to the
    # center of mass attribute, a ReferenceFrame to the frame attribute, and mass
    # and inertia. Then we form the body list.
    ForceList = [(Dmc, - m * g * Y.z)]
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
    BodyList = [BodyD]

    # Finally we form the equations of motion, using the same steps we did
    # before. Specify inertial frame, supply generalized speeds, supply
    # kinematic differential equation dictionary, compute Fr from the force
    # list and Fr* from the body list, compute the mass matrix and forcing
    # terms, then solve for the u dots (time derivatives of the generalized
    # speeds).
    KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        KM.kanes_equations(ForceList, BodyList)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    kdd = KM.kindiffdict()
    rhs = rhs.subs(kdd)
    rhs.simplify()
    assert rhs.expand() == Matrix([(6*u2*u3*r - u3**2*r*tan(q2) +
        4*g*sin(q2))/(5*r), -2*u1*u3/3, u1*(-2*u2 + u3*tan(q2))]).expand()
    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(6, 1)

    # This code tests our output vs. benchmark values. When r=g=m=1, the
    # critical speed (where all eigenvalues of the linearized equations are 0)
    # is 1 / sqrt(3) for the upright case.
    A = KM.linearize(A_and_B=True, new_method=True)[0]
    A_upright = A.subs({r: 1, g: 1, m: 1}).subs({q1: 0, q2: 0, q3: 0, u1: 0, u3: 0})
    assert A_upright.subs(u2, 1 / sqrt(3)).eigenvals() == {S(0): 6}
예제 #55
0
def test_aux_dep():
    # This test is about rolling disc dynamics, comparing the results found
    # with KanesMethod to those found when deriving the equations "manually"
    # with SymPy.
    # The terms Fr, Fr*, and Fr*_steady are all compared between the two
    # methods. Here, Fr*_steady refers to the generalized inertia forces for an
    # equilibrium configuration.
    # Note: comparing to the test of test_rolling_disc() in test_kane.py, this
    # test also tests auxiliary speeds and configuration and motion constraints
    #, seen in  the generalized dependent coordinates q[3], and depend speeds
    # u[3], u[4] and u[5].

    # First, mannual derivation of Fr, Fr_star, Fr_star_steady.

    # Symbols for time and constant parameters.
    # Symbols for contact forces: Fx, Fy, Fz.
    t, r, m, g, I, J = symbols('t r m g I J')
    Fx, Fy, Fz = symbols('Fx Fy Fz')

    # Configuration variables and their time derivatives:
    # q[0] -- yaw
    # q[1] -- lean
    # q[2] -- spin
    # q[3] -- dot(-r*B.z, A.z) -- distance from ground plane to disc center in
    #         A.z direction
    # Generalized speeds and their time derivatives:
    # u[0] -- disc angular velocity component, disc fixed x direction
    # u[1] -- disc angular velocity component, disc fixed y direction
    # u[2] -- disc angular velocity component, disc fixed z direction
    # u[3] -- disc velocity component, A.x direction
    # u[4] -- disc velocity component, A.y direction
    # u[5] -- disc velocity component, A.z direction
    # Auxiliary generalized speeds:
    # ua[0] -- contact point auxiliary generalized speed, A.x direction
    # ua[1] -- contact point auxiliary generalized speed, A.y direction
    # ua[2] -- contact point auxiliary generalized speed, A.z direction
    q = dynamicsymbols('q:4')
    qd = [qi.diff(t) for qi in q]
    u = dynamicsymbols('u:6')
    ud = [ui.diff(t) for ui in u]
    #ud_zero = {udi : 0 for udi in ud}
    ud_zero = dict(zip(ud, [0.] * len(ud)))
    ua = dynamicsymbols('ua:3')
    #ua_zero = {uai : 0 for uai in ua}
    ua_zero = dict(zip(ua, [0.] * len(ua)))

    # Reference frames:
    # Yaw intermediate frame: A.
    # Lean intermediate frame: B.
    # Disc fixed frame: C.
    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [q[0], N.z])
    B = A.orientnew('B', 'Axis', [q[1], A.x])
    C = B.orientnew('C', 'Axis', [q[2], B.y])

    # Angular velocity and angular acceleration of disc fixed frame
    # u[0], u[1] and u[2] are generalized independent speeds.
    C.set_ang_vel(N, u[0] * B.x + u[1] * B.y + u[2] * B.z)
    C.set_ang_acc(
        N,
        C.ang_vel_in(N).diff(t, B) + cross(B.ang_vel_in(N), C.ang_vel_in(N)))

    # Velocity and acceleration of points:
    # Disc-ground contact point: P.
    # Center of disc: O, defined from point P with depend coordinate: q[3]
    # u[3], u[4] and u[5] are generalized dependent speeds.
    P = Point('P')
    P.set_vel(N, ua[0] * A.x + ua[1] * A.y + ua[2] * A.z)
    O = P.locatenew('O', q[3] * A.z + r * sin(q[1]) * A.y)
    O.set_vel(N, u[3] * A.x + u[4] * A.y + u[5] * A.z)
    O.set_acc(N, O.vel(N).diff(t, A) + cross(A.ang_vel_in(N), O.vel(N)))

    # Kinematic differential equations:
    # Two equalities: one is w_c_n_qd = C.ang_vel_in(N) in three coordinates
    #                 directions of B, for qd0, qd1 and qd2.
    #                 the other is v_o_n_qd = O.vel(N) in A.z direction for qd3.
    # Then, solve for dq/dt's in terms of u's: qd_kd.
    w_c_n_qd = qd[0] * A.z + qd[1] * B.x + qd[2] * B.y
    v_o_n_qd = O.pos_from(P).diff(t, A) + cross(A.ang_vel_in(N), O.pos_from(P))
    kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv)
                       for uv in B] + [dot(v_o_n_qd - O.vel(N), A.z)])
    qd_kd = solve(kindiffs, qd)

    # Values of generalized speeds during a steady turn for later substitution
    # into the Fr_star_steady.
    steady_conditions = solve(kindiffs.subs({qd[1]: 0, qd[3]: 0}), u)
    steady_conditions.update({qd[1]: 0, qd[3]: 0})

    # Partial angular velocities and velocities.
    partial_w_C = [C.ang_vel_in(N).diff(ui, N) for ui in u + ua]
    partial_v_O = [O.vel(N).diff(ui, N) for ui in u + ua]
    partial_v_P = [P.vel(N).diff(ui, N) for ui in u + ua]

    # Configuration constraint: f_c, the projection of radius r in A.z direction
    #                                is q[3].
    # Velocity constraints: f_v, for u3, u4 and u5.
    # Acceleration constraints: f_a.
    f_c = Matrix([dot(-r * B.z, A.z) - q[3]])
    f_v = Matrix([
        dot(O.vel(N) - (P.vel(N) + cross(C.ang_vel_in(N), O.pos_from(P))),
            ai).expand() for ai in A
    ])
    v_o_n = cross(C.ang_vel_in(N), O.pos_from(P))
    a_o_n = v_o_n.diff(t, A) + cross(A.ang_vel_in(N), v_o_n)
    f_a = Matrix([dot(O.acc(N) - a_o_n, ai) for ai in A])

    # Solve for constraint equations in the form of
    #                           u_dependent = A_rs * [u_i; u_aux].
    # First, obtain constraint coefficient matrix:  M_v * [u; ua] = 0;
    # Second, taking u[0], u[1], u[2] as independent,
    #         taking u[3], u[4], u[5] as dependent,
    #         rearranging the matrix of M_v to be A_rs for u_dependent.
    # Third, u_aux ==0 for u_dep, and resulting dictionary of u_dep_dict.
    M_v = zeros(3, 9)
    for i in range(3):
        for j, ui in enumerate(u + ua):
            M_v[i, j] = f_v[i].diff(ui)

    M_v_i = M_v[:, :3]
    M_v_d = M_v[:, 3:6]
    M_v_aux = M_v[:, 6:]
    M_v_i_aux = M_v_i.row_join(M_v_aux)
    A_rs = -M_v_d.inv() * M_v_i_aux

    u_dep = A_rs[:, :3] * Matrix(u[:3])
    u_dep_dict = dict(zip(u[3:], u_dep))
    #u_dep_dict = {udi : u_depi[0] for udi, u_depi in zip(u[3:], u_dep.tolist())}

    # Active forces: F_O acting on point O; F_P acting on point P.
    # Generalized active forces (unconstrained): Fr_u = F_point * pv_point.
    F_O = m * g * A.z
    F_P = Fx * A.x + Fy * A.y + Fz * A.z
    Fr_u = Matrix([
        dot(F_O, pv_o) + dot(F_P, pv_p)
        for pv_o, pv_p in zip(partial_v_O, partial_v_P)
    ])

    # Inertia force: R_star_O.
    # Inertia of disc: I_C_O, where J is a inertia component about principal axis.
    # Inertia torque: T_star_C.
    # Generalized inertia forces (unconstrained): Fr_star_u.
    R_star_O = -m * O.acc(N)
    I_C_O = inertia(B, I, J, I)
    T_star_C = -(dot(I_C_O, C.ang_acc_in(N)) \
                 + cross(C.ang_vel_in(N), dot(I_C_O, C.ang_vel_in(N))))
    Fr_star_u = Matrix([
        dot(R_star_O, pv) + dot(T_star_C, pav)
        for pv, pav in zip(partial_v_O, partial_w_C)
    ])

    # Form nonholonomic Fr: Fr_c, and nonholonomic Fr_star: Fr_star_c.
    # Also, nonholonomic Fr_star in steady turning condition: Fr_star_steady.
    Fr_c = Fr_u[:3, :].col_join(Fr_u[6:, :]) + A_rs.T * Fr_u[3:6, :]
    Fr_star_c = Fr_star_u[:3, :].col_join(Fr_star_u[6:, :])\
                + A_rs.T * Fr_star_u[3:6, :]
    Fr_star_steady = Fr_star_c.subs(ud_zero).subs(u_dep_dict)\
            .subs(steady_conditions).subs({q[3]: -r*cos(q[1])}).expand()

    # Second, using KaneMethod in mechanics for fr, frstar and frstar_steady.

    # Rigid Bodies: disc, with inertia I_C_O.
    iner_tuple = (I_C_O, O)
    disc = RigidBody('disc', O, C, m, iner_tuple)
    bodyList = [disc]

    # Generalized forces: Gravity: F_o; Auxiliary forces: F_p.
    F_o = (O, F_O)
    F_p = (P, F_P)
    forceList = [F_o, F_p]

    # KanesMethod.
    kane = KanesMethod(N,
                       q_ind=q[:3],
                       u_ind=u[:3],
                       kd_eqs=kindiffs,
                       q_dependent=q[3:],
                       configuration_constraints=f_c,
                       u_dependent=u[3:],
                       velocity_constraints=f_v,
                       u_auxiliary=ua)

    # fr, frstar, frstar_steady and kdd(kinematic differential equations).
    (fr, frstar) = kane.kanes_equations(forceList, bodyList)
    frstar_steady = frstar.subs(ud_zero).subs(u_dep_dict).subs(steady_conditions)\
                    .subs({q[3]: -r*cos(q[1])}).expand()
    kdd = kane.kindiffdict()

    assert Matrix(Fr_c).expand() == fr.expand()
    assert Matrix(Fr_star_c.subs(kdd)).expand() == frstar.expand()
    assert (simplify(Matrix(Fr_star_steady).expand()) == simplify(
        frstar_steady.expand()))
예제 #56
0
파일: Ex9.12.py 프로젝트: zizai/pydy
from util import msprint, partial_velocities
from util import generalized_active_forces, potential_energy


q1, q2, q3, q4, q5, q6 = q = dynamicsymbols('q1:7')
u1, u2, u3, u4, u5, u6 = u = dynamicsymbols('u1:7')
# L' is the natural length of the springs
a, k, L_prime = symbols('a k L\'', real=True, positive=True)

# reference frames
X = ReferenceFrame('X')
C = X.orientnew('C', 'body', [q4, q5, q6], 'xyz')

# define points
pO = Point('O') # point O is fixed in X
pC_star = pO.locatenew('C*', a*(q1*X.x + q2*X.y + q3*X.z))
# define points of the cube connected to springs
pC1 = pC_star.locatenew('C1', a*(C.x + C.y - C.z))
pC2 = pC_star.locatenew('C2', a*(C.y + C.z - C.x))
pC3 = pC_star.locatenew('C3', a*(C.z + C.x - C.y))
# define fixed spring points
pk1 = pO.locatenew('k1', L_prime * X.x + a*(X.x + X.y - X.z))
pk2 = pO.locatenew('k2', L_prime * X.y + a*(X.y + X.z - X.x))
pk3 = pO.locatenew('k3', L_prime * X.z + a*(X.z + X.x - X.y))

pC_star.set_vel(X, pC_star.pos_from(pO).dt(X))
pC1.v2pt_theory(pC_star, X, C)
pC2.v2pt_theory(pC_star, X, C)
pC3.v2pt_theory(pC_star, X, C)

# kinematic differential equations
예제 #57
-1
def test_point_funcs():
    q, q2 = dynamicsymbols('q q2')
    qd, q2d = dynamicsymbols('q q2', 1)
    qdd, q2dd = dynamicsymbols('q q2', 2)
    N = ReferenceFrame('N')
    B = ReferenceFrame('B')
    B.set_ang_vel(N, 5 * B.y)
    O = Point('O')
    P = O.locatenew('P', q * B.x)
    assert P.pos_from(O) == q * B.x
    P.set_vel(B, qd * B.x + q2d * B.y)
    assert P.vel(B) == qd * B.x + q2d * B.y
    O.set_vel(N, 0)
    assert O.vel(N) == 0
    assert P.a1pt_theory(O, N, B) == ((-25 * q + qdd) * B.x + (q2dd) * B.y +
                               (-10 * qd) * B.z)

    B = N.orientnew('B', 'Axis', [q, N.z])
    O = Point('O')
    P = O.locatenew('P', 10 * B.x)
    O.set_vel(N, 5 * N.x)
    assert O.vel(N) == 5 * N.x
    assert P.a2pt_theory(O, N, B) == (-10 * qd**2) * B.x + (10 * qdd) * B.y

    B.set_ang_vel(N, 5 * B.y)
    O = Point('O')
    P = O.locatenew('P', q * B.x)
    P.set_vel(B, qd * B.x + q2d * B.y)
    O.set_vel(N, 0)
    assert P.v1pt_theory(O, N, B) == qd * B.x + q2d * B.y - 5 * q * B.z
예제 #58
-1
def test_linearize_pendulum_lagrange_nonminimal():
    q1, q2 = dynamicsymbols('q1:3')
    q1d, q2d = dynamicsymbols('q1:3', level=1)
    L, m, t = symbols('L, m, t')
    g = 9.8
    # Compose World Frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)
    # A.x is along the pendulum
    theta1 = atan(q2/q1)
    A = N.orientnew('A', 'axis', [theta1, N.z])
    # Create point P, the pendulum mass
    P = pN.locatenew('P1', q1*N.x + q2*N.y)
    P.set_vel(N, P.pos_from(pN).dt(N))
    pP = Particle('pP', P, m)
    # Constraint Equations
    f_c = Matrix([q1**2 + q2**2 - L**2])
    # Calculate the lagrangian, and form the equations of motion
    Lag = Lagrangian(N, pP)
    LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N)
    LM.form_lagranges_equations()
    # Compose operating point
    op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0}
    # Solve for multiplier operating point
    lam_op = LM.solve_multipliers(op_point=op_point)
    op_point.update(lam_op)
    # Perform the Linearization
    A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d],
            op_point=op_point, A_and_B=True)
    assert A == Matrix([[0, 1], [-9.8/L, 0]])
    assert B == Matrix([])
예제 #59
-1
def test_nonminimal_pendulum():
    q1, q2 = dynamicsymbols('q1:3')
    q1d, q2d = dynamicsymbols('q1:3', level=1)
    L, m, t = symbols('L, m, t')
    g = 9.8
    # Compose World Frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)
    # Create point P, the pendulum mass
    P = pN.locatenew('P1', q1*N.x + q2*N.y)
    P.set_vel(N, P.pos_from(pN).dt(N))
    pP = Particle('pP', P, m)
    # Constraint Equations
    f_c = Matrix([q1**2 + q2**2 - L**2])
    # Calculate the lagrangian, and form the equations of motion
    Lag = Lagrangian(N, pP)
    LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c,
            forcelist=[(P, m*g*N.x)], frame=N)
    LM.form_lagranges_equations()
    # Check solution
    lam1 = LM.lam_vec[0, 0]
    eom_sol = Matrix([[m*Derivative(q1, t, t) - 9.8*m + 2*lam1*q1],
                      [m*Derivative(q2, t, t) + 2*lam1*q2]])
    assert LM.eom == eom_sol
    # Check multiplier solution
    lam_sol = Matrix([(19.6*q1 + 2*q1d**2 + 2*q2d**2)/(4*q1**2/m + 4*q2**2/m)])
    assert LM.solve_multipliers(sol_type='Matrix') == lam_sol
예제 #60
-1
def test_partial_velocity():
    q1, q2, q3, u1, u2, u3 = dynamicsymbols("q1 q2 q3 u1 u2 u3")
    u4, u5 = dynamicsymbols("u4, u5")
    r = symbols("r")

    N = ReferenceFrame("N")
    Y = N.orientnew("Y", "Axis", [q1, N.z])
    L = Y.orientnew("L", "Axis", [q2, Y.x])
    R = L.orientnew("R", "Axis", [q3, L.y])
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    C = Point("C")
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew("Dmc", r * L.z)
    Dmc.v2pt_theory(C, N, R)

    vel_list = [Dmc.vel(N), C.vel(N), R.ang_vel_in(N)]
    u_list = [u1, u2, u3, u4, u5]
    assert partial_velocity(vel_list, u_list) == [
        [-r * L.y, 0, L.x],
        [r * L.x, 0, L.y],
        [0, 0, L.z],
        [L.x, L.x, 0],
        [cos(q2) * L.y - sin(q2) * L.z, cos(q2) * L.y - sin(q2) * L.z, 0],
    ]