예제 #1
0
파일: densetools.py 프로젝트: msgoff/sympy
def dup_revert(f, n, K):
    """
    Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.

    This function computes first ``2**n`` terms of a polynomial that
    is a result of inversion of a polynomial modulo ``x**n``. This is
    useful to efficiently compute series expansion of ``1/f``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = -QQ(1,720)*x**6 + QQ(1,24)*x**4 - QQ(1,2)*x**2 + 1

    >>> R.dup_revert(f, 8)
    61/720*x**6 + 5/24*x**4 + 1/2*x**2 + 1

    """
    g = [K.revert(dup_TC(f, K))]
    h = [K.one, K.zero, K.zero]

    N = int(_ceil(_log(n, 2)))

    for i in range(1, N + 1):
        a = dup_mul_ground(g, K(2), K)
        b = dup_mul(f, dup_sqr(g, K), K)
        g = dup_rem(dup_sub(a, b, K), h, K)
        h = dup_lshift(h, dup_degree(h), K)

    return g
예제 #2
0
def dup_revert(f, n, K):
    """
    Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.

    This function computes first ``2**n`` terms of a polynomial that
    is a result of inversion of a polynomial modulo ``x**n``. This is
    useful to efficiently compute series expansion of ``1/f``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.densetools import dup_revert

    >>> f = [-QQ(1,720), QQ(0), QQ(1,24), QQ(0), -QQ(1,2), QQ(0), QQ(1)]

    >>> dup_revert(f, 8, QQ)
    [61/720, 0/1, 5/24, 0/1, 1/2, 0/1, 1/1]

    """
    g = [K.revert(dup_TC(f, K))]
    h = [K.one, K.zero, K.zero]

    N = int(_ceil(_log(n, 2)))

    for i in xrange(1, N + 1):
        a = dup_mul_ground(g, K(2), K)
        b = dup_mul(f, dup_sqr(g, K), K)
        g = dup_rem(dup_sub(a, b, K), h, K)
        h = dup_lshift(h, dup_degree(h), K)

    return g
예제 #3
0
def dup_revert(f, n, K):
    """
    Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.

    This function computes first ``2**n`` terms of a polynomial that
    is a result of inversion of a polynomial modulo ``x**n``. This is
    useful to efficiently compute series expansion of ``1/f``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.densetools import dup_revert

    >>> f = [-QQ(1,720), QQ(0), QQ(1,24), QQ(0), -QQ(1,2), QQ(0), QQ(1)]

    >>> dup_revert(f, 8, QQ)
    [61/720, 0/1, 5/24, 0/1, 1/2, 0/1, 1/1]

    """
    g = [K.revert(dup_TC(f, K))]
    h = [K.one, K.zero, K.zero]

    N = int(_ceil(_log(n, 2)))

    for i in xrange(1, N + 1):
        a = dup_mul_ground(g, K(2), K)
        b = dup_mul(f, dup_sqr(g, K), K)
        g = dup_rem(dup_sub(a, b, K), h, K)
        h = dup_lshift(h, dup_degree(h), K)

    return g
예제 #4
0
def dup_revert(f, n, K):
    """
    Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.

    This function computes first ``2**n`` terms of a polynomial that
    is a result of inversion of a polynomial modulo ``x**n``. This is
    useful to efficiently compute series expansion of ``1/f``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = -QQ(1,720)*x**6 + QQ(1,24)*x**4 - QQ(1,2)*x**2 + 1

    >>> R.dup_revert(f, 8)
    61/720*x**6 + 5/24*x**4 + 1/2*x**2 + 1

    """
    g = [K.revert(dup_TC(f, K))]
    h = [K.one, K.zero, K.zero]

    N = int(_ceil(_log(n, 2)))

    for i in range(1, N + 1):
        a = dup_mul_ground(g, K(2), K)
        b = dup_mul(f, dup_sqr(g, K), K)
        g = dup_rem(dup_sub(a, b, K), h, K)
        h = dup_lshift(h, dup_degree(h), K)

    return g
예제 #5
0
파일: factortools.py 프로젝트: tuhina/sympy
def dup_zz_irreducible_p(f, K):
    """Test irreducibility using Eisenstein's criterion. """
    lc = dup_LC(f, K)
    tc = dup_TC(f, K)

    e_fc = dup_content(f[1:], K)

    if e_fc:
        e_ff = factorint(int(e_fc))

        for p in e_ff.iterkeys():
            if (lc % p) and (tc % p**2):
                return True
예제 #6
0
def dup_zz_irreducible_p(f, K):
    """Test irreducibility using Eisenstein's criterion. """
    lc = dup_LC(f, K)
    tc = dup_TC(f, K)

    e_fc = dup_content(f[1:], K)

    if e_fc:
        e_ff = factorint(int(e_fc))

        for p in e_ff.iterkeys():
            if (lc % p) and (tc % p**2):
                return True
예제 #7
0
def dup_zz_cyclotomic_factor(f, K):
    """
    Efficiently factor polynomials `x**n - 1` and `x**n + 1` in `Z[x]`.

    Given a univariate polynomial `f` in `Z[x]` returns a list of factors
    of `f`, provided that `f` is in the form `x**n - 1` or `x**n + 1` for
    `n >= 1`. Otherwise returns None.

    Factorization is performed using using cyclotomic decomposition of `f`,
    which makes this method much faster that any other direct factorization
    approach (e.g. Zassenhaus's).

    References
    ==========

    1. [Weisstein09]_

    """
    lc_f, tc_f = dup_LC(f, K), dup_TC(f, K)

    if dup_degree(f) <= 0:
        return None

    if lc_f != 1 or tc_f not in [-1, 1]:
        return None

    if any(bool(cf) for cf in f[1:-1]):
        return None

    n = dup_degree(f)
    F = _dup_cyclotomic_decompose(n, K)

    if not K.is_one(tc_f):
        return F
    else:
        H = []

        for h in _dup_cyclotomic_decompose(2*n, K):
            if h not in F:
                H.append(h)

        return H
예제 #8
0
파일: factortools.py 프로젝트: tuhina/sympy
def dup_zz_cyclotomic_factor(f, K):
    """
    Efficiently factor polynomials `x**n - 1` and `x**n + 1` in `Z[x]`.

    Given a univariate polynomial `f` in `Z[x]` returns a list of factors
    of `f`, provided that `f` is in the form `x**n - 1` or `x**n + 1` for
    `n >= 1`. Otherwise returns None.

    Factorization is performed using using cyclotomic decomposition of `f`,
    which makes this method much faster that any other direct factorization
    approach (e.g. Zassenhaus's).

    References
    ==========

    1. [Weisstein09]_

    """
    lc_f, tc_f = dup_LC(f, K), dup_TC(f, K)

    if dup_degree(f) <= 0:
        return None

    if lc_f != 1 or tc_f not in [-1, 1]:
        return None

    if any(bool(cf) for cf in f[1:-1]):
        return None

    n = dup_degree(f)
    F = _dup_cyclotomic_decompose(n, K)

    if not K.is_one(tc_f):
        return F
    else:
        H = []

        for h in _dup_cyclotomic_decompose(2 * n, K):
            if h not in F:
                H.append(h)

        return H
예제 #9
0
def dup_eval(f, a, K):
    """
    Evaluate a polynomial at ``x = a`` in ``K[x]`` using Horner scheme.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densetools import dup_eval

    >>> dup_eval([ZZ(1), ZZ(2), ZZ(3)], 2, ZZ)
    11

    """
    if not a:
        return dup_TC(f, K)

    result = K.zero

    for c in f:
        result *= a
        result += c

    return result
예제 #10
0
파일: densetools.py 프로젝트: Jerryy/sympy
def dup_eval(f, a, K):
    """
    Evaluate a polynomial at ``x = a`` in ``K[x]`` using Horner scheme.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densetools import dup_eval

    >>> dup_eval([ZZ(1), ZZ(2), ZZ(3)], 2, ZZ)
    11

    """
    if not a:
        return dup_TC(f, K)

    result = K.zero

    for c in f:
        result *= a
        result += c

    return result
예제 #11
0
파일: densetools.py 프로젝트: msgoff/sympy
def dup_eval(f, a, K):
    """
    Evaluate a polynomial at ``x = a`` in ``K[x]`` using Horner scheme.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_eval(x**2 + 2*x + 3, 2)
    11

    """
    if not a:
        return dup_TC(f, K)

    result = K.zero

    for c in f:
        result *= a
        result += c

    return result
예제 #12
0
def dup_eval(f, a, K):
    """
    Evaluate a polynomial at ``x = a`` in ``K[x]`` using Horner scheme.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_eval(x**2 + 2*x + 3, 2)
    11

    """
    if not a:
        return dup_TC(f, K)

    result = K.zero

    for c in f:
        result *= a
        result += c

    return result
예제 #13
0
파일: factortools.py 프로젝트: tuhina/sympy
def dup_cyclotomic_p(f, K, irreducible=False):
    """
    Efficiently test if ``f`` is a cyclotomic polnomial.

    Examples
    ========

    >>> from sympy.polys.factortools import dup_cyclotomic_p
    >>> from sympy.polys.domains import ZZ

    >>> f = [1, 0, 1, 0, 0, 0,-1, 0, 1, 0,-1, 0, 0, 0, 1, 0, 1]
    >>> dup_cyclotomic_p(f, ZZ)
    False

    >>> g = [1, 0, 1, 0, 0, 0,-1, 0,-1, 0,-1, 0, 0, 0, 1, 0, 1]
    >>> dup_cyclotomic_p(g, ZZ)
    True

    """
    if K.is_QQ:
        try:
            K0, K = K, K.get_ring()
            f = dup_convert(f, K0, K)
        except CoercionFailed:
            return False
    elif not K.is_ZZ:
        return False

    lc = dup_LC(f, K)
    tc = dup_TC(f, K)

    if lc != 1 or (tc != -1 and tc != 1):
        return False

    if not irreducible:
        coeff, factors = dup_factor_list(f, K)

        if coeff != K.one or factors != [(f, 1)]:
            return False

    n = dup_degree(f)
    g, h = [], []

    for i in xrange(n, -1, -2):
        g.insert(0, f[i])

    for i in xrange(n - 1, -1, -2):
        h.insert(0, f[i])

    g = dup_sqr(dup_strip(g), K)
    h = dup_sqr(dup_strip(h), K)

    F = dup_sub(g, dup_lshift(h, 1, K), K)

    if K.is_negative(dup_LC(F, K)):
        F = dup_neg(F, K)

    if F == f:
        return True

    g = dup_mirror(f, K)

    if K.is_negative(dup_LC(g, K)):
        g = dup_neg(g, K)

    if F == g and dup_cyclotomic_p(g, K):
        return True

    G = dup_sqf_part(F, K)

    if dup_sqr(G, K) == F and dup_cyclotomic_p(G, K):
        return True

    return False
예제 #14
0
 def TC(f):
     """Returns the trailing coefficent of `f`. """
     return dup_TC(f.rep, f.dom)
예제 #15
0
def test_dup_TC():
    assert dup_TC([], ZZ) == 0
    assert dup_TC([2,3,4,5], ZZ) == 5
예제 #16
0
파일: polyclasses.py 프로젝트: fxkr/sympy
 def TC(f):
     """Returns the trailing coefficent of `f`. """
     return dup_TC(f.rep, f.dom)
예제 #17
0
def dup_zz_cyclotomic_p(f, K, irreducible=False):
    """
    Efficiently test if ``f`` is a cyclotomic polnomial.

    **Examples**

    >>> from sympy.polys.factortools import dup_zz_cyclotomic_p
    >>> from sympy.polys.domains import ZZ

    >>> f = [1, 0, 1, 0, 0, 0,-1, 0, 1, 0,-1, 0, 0, 0, 1, 0, 1]
    >>> dup_zz_cyclotomic_p(f, ZZ)
    False

    >>> g = [1, 0, 1, 0, 0, 0,-1, 0,-1, 0,-1, 0, 0, 0, 1, 0, 1]
    >>> dup_zz_cyclotomic_p(g, ZZ)
    True

    """
    if K.is_QQ:
        try:
            K0, K = K, K.get_ring()
            f = dup_convert(f, K0, K)
        except CoercionFailed:
            return False
    elif not K.is_ZZ:
        return False

    lc = dup_LC(f, K)
    tc = dup_TC(f, K)

    if lc != 1 or (tc != -1 and tc != 1):
        return False

    if not irreducible:
        coeff, factors = dup_factor_list(f, K)

        if coeff != K.one or factors != [(f, 1)]:
            return False

    n = dup_degree(f)
    g, h = [], []

    for i in xrange(n, -1, -2):
        g.insert(0, f[i])

    for i in xrange(n-1, -1, -2):
        h.insert(0, f[i])

    g = dup_sqr(dup_strip(g), K)
    h = dup_sqr(dup_strip(h), K)

    F = dup_sub(g, dup_lshift(h, 1, K), K)

    if K.is_negative(dup_LC(F, K)):
        F = dup_neg(F, K)

    if F == f:
        return True

    g = dup_mirror(f, K)

    if K.is_negative(dup_LC(g, K)):
        g = dup_neg(g, K)

    if F == g and dup_zz_cyclotomic_p(g, K):
        return True

    G = dup_sqf_part(F, K)

    if dup_sqr(G, K) == F and dup_zz_cyclotomic_p(G, K):
        return True

    return False