def dmp_cancel(f, g, u, K, multout=True): """ Cancel common factors in a rational function ``f/g``. **Examples** >>> from sympy.polys.domains import ZZ >>> from sympy.polys.euclidtools import dmp_cancel >>> f = ZZ.map([[2], [0], [-2]]) >>> g = ZZ.map([[1], [-2], [1]]) >>> dmp_cancel(f, g, 1, ZZ) ([[2], [2]], [[1], [-1]]) """ if dmp_zero_p(f, u) or dmp_zero_p(g, u): if multout: return f, g else: return K.one, K.one, f, g K0 = None if K.has_Field and K.has_assoc_Ring: K0, K = K, K.get_ring() cq, f = dmp_clear_denoms(f, u, K0, K, convert=True) cp, g = dmp_clear_denoms(g, u, K0, K, convert=True) else: cp, cq = K.one, K.one _, p, q = dmp_inner_gcd(f, g, u, K) if K0 is not None: p = dmp_convert(p, u, K, K0) q = dmp_convert(q, u, K, K0) K = K0 p_neg = K.is_negative(dmp_ground_LC(p, u, K)) q_neg = K.is_negative(dmp_ground_LC(q, u, K)) if p_neg and q_neg: p, q = dmp_neg(p, u, K), dmp_neg(q, u, K) elif p_neg: cp, p = -cp, dmp_neg(p, u, K) elif q_neg: cp, q = -cp, dmp_neg(q, u, K) if not multout: return cp, cq, p, q p = dmp_mul_ground(p, cp, u, K) q = dmp_mul_ground(q, cq, u, K) return p, q
def dmp_cancel(f, g, u, K, include=True): """ Cancel common factors in a rational function ``f/g``. **Examples** >>> from sympy.polys.domains import ZZ >>> from sympy.polys.euclidtools import dmp_cancel >>> f = ZZ.map([[2], [0], [-2]]) >>> g = ZZ.map([[1], [-2], [1]]) >>> dmp_cancel(f, g, 1, ZZ) ([[2], [2]], [[1], [-1]]) """ if dmp_zero_p(f, u) or dmp_zero_p(g, u): if include: return f, g else: return K.one, K.one, f, g K0 = None if K.has_Field and K.has_assoc_Ring: K0, K = K, K.get_ring() cq, f = dmp_clear_denoms(f, u, K0, K, convert=True) cp, g = dmp_clear_denoms(g, u, K0, K, convert=True) else: cp, cq = K.one, K.one _, p, q = dmp_inner_gcd(f, g, u, K) if K0 is not None: p = dmp_convert(p, u, K, K0) q = dmp_convert(q, u, K, K0) K = K0 p_neg = K.is_negative(dmp_ground_LC(p, u, K)) q_neg = K.is_negative(dmp_ground_LC(q, u, K)) if p_neg and q_neg: p, q = dmp_neg(p, u, K), dmp_neg(q, u, K) elif p_neg: cp, p = -cp, dmp_neg(p, u, K) elif q_neg: cp, q = -cp, dmp_neg(q, u, K) if not include: return cp, cq, p, q p = dmp_mul_ground(p, cp, u, K) q = dmp_mul_ground(q, cq, u, K) return p, q
def dmp_cancel(f, g, u, K, include=True): """ Cancel common factors in a rational function `f/g`. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> R.dmp_cancel(2*x**2 - 2, x**2 - 2*x + 1) (2*x + 2, x - 1) """ K0 = None if K.has_Field and K.has_assoc_Ring: K0, K = K, K.get_ring() cq, f = dmp_clear_denoms(f, u, K0, K, convert=True) cp, g = dmp_clear_denoms(g, u, K0, K, convert=True) else: cp, cq = K.one, K.one _, p, q = dmp_inner_gcd(f, g, u, K) if K0 is not None: _, cp, cq = K.cofactors(cp, cq) p = dmp_convert(p, u, K, K0) q = dmp_convert(q, u, K, K0) K = K0 p_neg = K.is_negative(dmp_ground_LC(p, u, K)) q_neg = K.is_negative(dmp_ground_LC(q, u, K)) if p_neg and q_neg: p, q = dmp_neg(p, u, K), dmp_neg(q, u, K) elif p_neg: cp, p = -cp, dmp_neg(p, u, K) elif q_neg: cp, q = -cp, dmp_neg(q, u, K) if not include: return cp, cq, p, q p = dmp_mul_ground(p, cp, u, K) q = dmp_mul_ground(q, cq, u, K) return p, q
def dmp_qq_heu_gcd(f, g, u, K0): """ Heuristic polynomial GCD in `Q[X]`. Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``, and ``cfg = quo(g, h)``. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.euclidtools import dmp_qq_heu_gcd >>> f = [[QQ(1,4)], [QQ(1), QQ(0)], [QQ(1), QQ(0), QQ(0)]] >>> g = [[QQ(1,2)], [QQ(1), QQ(0)], []] >>> dmp_qq_heu_gcd(f, g, 1, QQ) ([[1/1], [2/1, 0/1]], [[1/4], [1/2, 0/1]], [[1/2], []]) """ result = _dmp_ff_trivial_gcd(f, g, u, K0) if result is not None: return result K1 = K0.get_ring() cf, f = dmp_clear_denoms(f, u, K0, K1) cg, g = dmp_clear_denoms(g, u, K0, K1) f = dmp_convert(f, u, K0, K1) g = dmp_convert(g, u, K0, K1) h, cff, cfg = dmp_zz_heu_gcd(f, g, u, K1) h = dmp_convert(h, u, K1, K0) c = dmp_ground_LC(h, u, K0) h = dmp_ground_monic(h, u, K0) cff = dmp_convert(cff, u, K1, K0) cfg = dmp_convert(cfg, u, K1, K0) cff = dmp_mul_ground(cff, K0.quo(c, cf), u, K0) cfg = dmp_mul_ground(cfg, K0.quo(c, cg), u, K0) return h, cff, cfg
def dmp_qq_heu_gcd(f, g, u, K0): """ Heuristic polynomial GCD in `Q[X]`. Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``, and ``cfg = quo(g, h)``. Examples ======== >>> from sympy.polys import ring, QQ >>> R, x,y, = ring("x,y", QQ) >>> f = QQ(1,4)*x**2 + x*y + y**2 >>> g = QQ(1,2)*x**2 + x*y >>> R.dmp_qq_heu_gcd(f, g) (x + 2*y, 1/4*x + 1/2*y, 1/2*x) """ result = _dmp_ff_trivial_gcd(f, g, u, K0) if result is not None: return result K1 = K0.get_ring() cf, f = dmp_clear_denoms(f, u, K0, K1) cg, g = dmp_clear_denoms(g, u, K0, K1) f = dmp_convert(f, u, K0, K1) g = dmp_convert(g, u, K0, K1) h, cff, cfg = dmp_zz_heu_gcd(f, g, u, K1) h = dmp_convert(h, u, K1, K0) c = dmp_ground_LC(h, u, K0) h = dmp_ground_monic(h, u, K0) cff = dmp_convert(cff, u, K1, K0) cfg = dmp_convert(cfg, u, K1, K0) cff = dmp_mul_ground(cff, K0.quo(c, cf), u, K0) cfg = dmp_mul_ground(cfg, K0.quo(c, cg), u, K0) return h, cff, cfg
def dmp_qq_collins_resultant(f, g, u, K0): """ Collins's modular resultant algorithm in `Q[X]`. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.euclidtools import dmp_qq_collins_resultant >>> f = [[QQ(1,2)], [QQ(1), QQ(2,3)]] >>> g = [[QQ(2), QQ(1)], [QQ(3)]] >>> dmp_qq_collins_resultant(f, g, 1, QQ) [-2/1, -7/3, 5/6] """ n = dmp_degree(f, u) m = dmp_degree(g, u) if n < 0 or m < 0: return dmp_zero(u-1) K1 = K0.get_ring() cf, f = dmp_clear_denoms(f, u, K0, K1) cg, g = dmp_clear_denoms(g, u, K0, K1) f = dmp_convert(f, u, K0, K1) g = dmp_convert(g, u, K0, K1) r = dmp_zz_collins_resultant(f, g, u, K1) r = dmp_convert(r, u-1, K1, K0) c = K0.convert(cf**m * cg**n, K1) return dmp_quo_ground(r, c, u-1, K0)
def dmp_qq_collins_resultant(f, g, u, K0): """ Collins's modular resultant algorithm in `Q[X]`. Examples ======== >>> from sympy.polys import ring, QQ >>> R, x,y = ring("x,y", QQ) >>> f = QQ(1,2)*x + y + QQ(2,3) >>> g = 2*x*y + x + 3 >>> R.dmp_qq_collins_resultant(f, g) -2*y**2 - 7/3*y + 5/6 """ n = dmp_degree(f, u) m = dmp_degree(g, u) if n < 0 or m < 0: return dmp_zero(u - 1) K1 = K0.get_ring() cf, f = dmp_clear_denoms(f, u, K0, K1) cg, g = dmp_clear_denoms(g, u, K0, K1) f = dmp_convert(f, u, K0, K1) g = dmp_convert(g, u, K0, K1) r = dmp_zz_collins_resultant(f, g, u, K1) r = dmp_convert(r, u - 1, K1, K0) c = K0.convert(cf**m * cg**n, K1) return dmp_quo_ground(r, c, u - 1, K0)
def dmp_qq_collins_resultant(f, g, u, K0): """ Collins's modular resultant algorithm in `Q[X]`. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.euclidtools import dmp_qq_collins_resultant >>> f = [[QQ(1,2)], [QQ(1), QQ(2,3)]] >>> g = [[QQ(2), QQ(1)], [QQ(3)]] >>> dmp_qq_collins_resultant(f, g, 1, QQ) [-2/1, -7/3, 5/6] """ n = dmp_degree(f, u) m = dmp_degree(g, u) if n < 0 or m < 0: return dmp_zero(u - 1) K1 = K0.get_ring() cf, f = dmp_clear_denoms(f, u, K0, K1) cg, g = dmp_clear_denoms(g, u, K0, K1) f = dmp_convert(f, u, K0, K1) g = dmp_convert(g, u, K0, K1) r = dmp_zz_collins_resultant(f, g, u, K1) r = dmp_convert(r, u - 1, K1, K0) c = K0.convert(cf**m * cg**n, K1) return dmp_quo_ground(r, c, u - 1, K0)
def dmp_zz_i_factor(f, u, K0): """Factor multivariate polynomials into irreducibles in `ZZ_I[X]`. """ # First factor in QQ_I K1 = K0.get_field() f = dmp_convert(f, u, K0, K1) coeff, factors = dmp_qq_i_factor(f, u, K1) new_factors = [] for fac, i in factors: # Extract content fac_denom, fac_num = dmp_clear_denoms(fac, u, K1) fac_num_ZZ_I = dmp_convert(fac_num, u, K1, K0) content, fac_prim = dmp_ground_primitive(fac_num_ZZ_I, u, K1) coeff = (coeff * content**i) // fac_denom**i new_factors.append((fac_prim, i)) factors = new_factors coeff = K0.convert(coeff, K1) return coeff, factors
def dmp_factor_list(f, u, K0): """Factor polynomials into irreducibles in `K[X]`. """ if not u: return dup_factor_list(f, K0) J, f = dmp_terms_gcd(f, u, K0) if not K0.has_CharacteristicZero: # pragma: no cover coeff, factors = dmp_gf_factor(f, u, K0) elif K0.is_Algebraic: coeff, factors = dmp_ext_factor(f, u, K0) else: if not K0.is_Exact: K0_inexact, K0 = K0, K0.get_exact() f = dmp_convert(f, u, K0_inexact, K0) else: K0_inexact = None if K0.has_Field: K = K0.get_ring() denom, f = dmp_clear_denoms(f, u, K0, K) f = dmp_convert(f, u, K0, K) else: K = K0 if K.is_ZZ: levels, f, v = dmp_exclude(f, u, K) coeff, factors = dmp_zz_factor(f, v, K) for i, (f, k) in enumerate(factors): factors[i] = (dmp_include(f, levels, v, K), k) elif K.is_Poly: f, v = dmp_inject(f, u, K) coeff, factors = dmp_factor_list(f, v, K.dom) for i, (f, k) in enumerate(factors): factors[i] = (dmp_eject(f, v, K), k) coeff = K.convert(coeff, K.dom) else: # pragma: no cover raise DomainError('factorization not supported over %s' % K0) if K0.has_Field: for i, (f, k) in enumerate(factors): factors[i] = (dmp_convert(f, u, K, K0), k) coeff = K0.convert(coeff, K) denom = K0.convert(denom, K) coeff = K0.quo(coeff, denom) if K0_inexact is not None: for i, (f, k) in enumerate(factors): factors[i] = (dmp_convert(f, u, K0, K0_inexact), k) coeff = K0_inexact.convert(coeff, K0) for i, j in enumerate(reversed(J)): if not j: continue term = {(0,)*(u-i) + (1,) + (0,)*i: K0.one} factors.insert(0, (dmp_from_dict(term, u, K0), j)) return coeff, _sort_factors(factors)
def clear_denoms(f): """Clear denominators, but keep the ground domain. """ coeff, F = dmp_clear_denoms(f.rep, f.lev, f.dom) return coeff, f.per(F)
def test_dmp_clear_denoms(): assert dmp_clear_denoms([[]], 1, QQ, ZZ) == (ZZ(1), [[]]) assert dmp_clear_denoms([[QQ(1)]], 1, QQ, ZZ) == (ZZ(1), [[QQ(1)]]) assert dmp_clear_denoms([[QQ(7)]], 1, QQ, ZZ) == (ZZ(1), [[QQ(7)]]) assert dmp_clear_denoms([[QQ(7, 3)]], 1, QQ) == (ZZ(3), [[QQ(7)]]) assert dmp_clear_denoms([[QQ(7, 3)]], 1, QQ, ZZ) == (ZZ(3), [[QQ(7)]]) assert dmp_clear_denoms([[QQ(3)], [QQ(1)], []], 1, QQ, ZZ) == (ZZ(1), [[QQ(3)], [QQ(1)], []]) assert dmp_clear_denoms([[QQ(1)], [QQ(1, 2)], []], 1, QQ, ZZ) == (ZZ(2), [[QQ(2)], [QQ(1)], []]) assert dmp_clear_denoms([QQ(3), QQ(1), QQ(0)], 0, QQ, ZZ, convert=True) == (ZZ(1), [ZZ(3), ZZ(1), ZZ(0)]) assert dmp_clear_denoms([QQ(1), QQ(1, 2), QQ(0)], 0, QQ, ZZ, convert=True) == (ZZ(2), [ZZ(2), ZZ(1), ZZ(0)]) assert dmp_clear_denoms([[QQ(3)], [QQ(1)], []], 1, QQ, ZZ, convert=True) == (ZZ(1), [[QQ(3)], [QQ(1)], []]) assert dmp_clear_denoms([[QQ(1)], [QQ(1, 2)], []], 1, QQ, ZZ, convert=True) == (ZZ(2), [[QQ(2)], [QQ(1)], []]) assert dmp_clear_denoms([[EX(S(3) / 2)], [EX(S(9) / 4)]], 1, EX) == (EX(4), [[EX(6)], [EX(9)]]) assert dmp_clear_denoms([[EX(7)]], 1, EX) == (EX(1), [[EX(7)]]) assert dmp_clear_denoms([[EX(sin(x) / x), EX(0)]], 1, EX) == (EX(x), [[EX(sin(x)), EX(0)]])
def test_dmp_clear_denoms(): assert dmp_clear_denoms([[]], 1, QQ, ZZ) == (ZZ(1), [[]]) assert dmp_clear_denoms([[QQ(1)]], 1, QQ, ZZ) == (ZZ(1), [[QQ(1)]]) assert dmp_clear_denoms([[QQ(7)]], 1, QQ, ZZ) == (ZZ(1), [[QQ(7)]]) assert dmp_clear_denoms([[QQ(7, 3)]], 1, QQ) == (ZZ(3), [[QQ(7)]]) assert dmp_clear_denoms([[QQ(7, 3)]], 1, QQ, ZZ) == (ZZ(3), [[QQ(7)]]) assert dmp_clear_denoms([[QQ(3)], [QQ(1)], []], 1, QQ, ZZ) == (ZZ(1), [[QQ(3)], [QQ(1)], []]) assert dmp_clear_denoms([[QQ(1)], [QQ(1, 2)], []], 1, QQ, ZZ) == (ZZ(2), [[QQ(2)], [QQ(1)], []]) assert dmp_clear_denoms([QQ(3), QQ(1), QQ(0)], 0, QQ, ZZ, convert=True) == (ZZ(1), [ZZ(3), ZZ(1), ZZ(0)]) assert dmp_clear_denoms([QQ(1), QQ(1, 2), QQ(0)], 0, QQ, ZZ, convert=True) == (ZZ(2), [ZZ(2), ZZ(1), ZZ(0)]) assert dmp_clear_denoms([[QQ(3)], [QQ(1)], []], 1, QQ, ZZ, convert=True) == (ZZ(1), [[QQ(3)], [QQ(1)], []]) assert dmp_clear_denoms([[QQ(1)], [QQ(1, 2)], []], 1, QQ, ZZ, convert=True) == (ZZ(2), [[QQ(2)], [QQ(1)], []]) raises(DomainError, "dmp_clear_denoms([[EX(7)]], 1, EX)")
def test_dmp_clear_denoms(): assert dmp_clear_denoms([[]], 1, QQ, ZZ) == (ZZ(1), [[]]) assert dmp_clear_denoms([[QQ(1)]], 1, QQ, ZZ) == (ZZ(1), [[QQ(1)]]) assert dmp_clear_denoms([[QQ(7)]], 1, QQ, ZZ) == (ZZ(1), [[QQ(7)]]) assert dmp_clear_denoms([[QQ(7, 3)]], 1, QQ) == (ZZ(3), [[QQ(7)]]) assert dmp_clear_denoms([[QQ(7, 3)]], 1, QQ, ZZ) == (ZZ(3), [[QQ(7)]]) assert dmp_clear_denoms( [[QQ(3)], [QQ(1)], []], 1, QQ, ZZ) == (ZZ(1), [[QQ(3)], [QQ(1)], []]) assert dmp_clear_denoms([[QQ( 1)], [QQ(1, 2)], []], 1, QQ, ZZ) == (ZZ(2), [[QQ(2)], [QQ(1)], []]) assert dmp_clear_denoms([QQ(3), QQ( 1), QQ(0)], 0, QQ, ZZ, convert=True) == (ZZ(1), [ZZ(3), ZZ(1), ZZ(0)]) assert dmp_clear_denoms([QQ(1), QQ(1, 2), QQ( 0)], 0, QQ, ZZ, convert=True) == (ZZ(2), [ZZ(2), ZZ(1), ZZ(0)]) assert dmp_clear_denoms([[QQ(3)], [QQ( 1)], []], 1, QQ, ZZ, convert=True) == (ZZ(1), [[QQ(3)], [QQ(1)], []]) assert dmp_clear_denoms([[QQ(1)], [QQ(1, 2)], []], 1, QQ, ZZ, convert=True) == (ZZ(2), [[QQ(2)], [QQ(1)], []]) assert dmp_clear_denoms( [[EX(S(3)/2)], [EX(S(9)/4)]], 1, EX) == (EX(4), [[EX(6)], [EX(9)]]) assert dmp_clear_denoms([[EX(7)]], 1, EX) == (EX(1), [[EX(7)]]) assert dmp_clear_denoms([[EX(sin(x)/x), EX(0)]], 1, EX) == (EX(x), [[EX(sin(x)), EX(0)]])
def dmp_factor_list(f, u, K0): """Factor multivariate polynomials into irreducibles in `K[X]`. """ if not u: return dup_factor_list(f, K0) J, f = dmp_terms_gcd(f, u, K0) cont, f = dmp_ground_primitive(f, u, K0) if K0.is_FiniteField: # pragma: no cover coeff, factors = dmp_gf_factor(f, u, K0) elif K0.is_Algebraic: coeff, factors = dmp_ext_factor(f, u, K0) # elif K0.is_GaussianRing: # coeff, factors = dmp_zz_i_factor(f, u, K0) # elif K0.is_GaussianField: # coeff, factors = dmp_qq_i_factor(f, u, K0) else: if not K0.is_Exact: K0_inexact, K0 = K0, K0.get_exact() f = dmp_convert(f, u, K0_inexact, K0) else: K0_inexact = None if K0.is_Field: K = K0.get_ring() denom, f = dmp_clear_denoms(f, u, K0, K) f = dmp_convert(f, u, K0, K) else: K = K0 if K.is_ZZ: levels, f, v = dmp_exclude(f, u, K) coeff, factors = dmp_zz_factor(f, v, K) for i, (f, k) in enumerate(factors): factors[i] = (dmp_include(f, levels, v, K), k) elif K.is_Poly: f, v = dmp_inject(f, u, K) coeff, factors = dmp_factor_list(f, v, K.dom) for i, (f, k) in enumerate(factors): factors[i] = (dmp_eject(f, v, K), k) coeff = K.convert(coeff, K.dom) else: # pragma: no cover raise DomainError('factorization not supported over %s' % K0) if K0.is_Field: for i, (f, k) in enumerate(factors): factors[i] = (dmp_convert(f, u, K, K0), k) coeff = K0.convert(coeff, K) coeff = K0.quo(coeff, denom) if K0_inexact: for i, (f, k) in enumerate(factors): max_norm = dmp_max_norm(f, u, K0) f = dmp_quo_ground(f, max_norm, u, K0) f = dmp_convert(f, u, K0, K0_inexact) factors[i] = (f, k) coeff = K0.mul(coeff, K0.pow(max_norm, k)) coeff = K0_inexact.convert(coeff, K0) K0 = K0_inexact for i, j in enumerate(reversed(J)): if not j: continue term = {(0, ) * (u - i) + (1, ) + (0, ) * i: K0.one} factors.insert(0, (dmp_from_dict(term, u, K0), j)) return coeff * cont, _sort_factors(factors)
def dmp_factor_list(f, u, K0): """Factor polynomials into irreducibles in `K[X]`. """ if not u: return dup_factor_list(f, K0) J, f = dmp_terms_gcd(f, u, K0) if not K0.has_CharacteristicZero: # pragma: no cover coeff, factors = dmp_gf_factor(f, u, K0) elif K0.is_Algebraic: coeff, factors = dmp_ext_factor(f, u, K0) else: if not K0.is_Exact: K0_inexact, K0 = K0, K0.get_exact() f = dmp_convert(f, u, K0_inexact, K0) else: K0_inexact = None if K0.has_Field: K = K0.get_ring() denom, f = dmp_clear_denoms(f, u, K0, K) f = dmp_convert(f, u, K0, K) else: K = K0 if K.is_ZZ: levels, f, v = dmp_exclude(f, u, K) coeff, factors = dmp_zz_factor(f, v, K) for i, (f, k) in enumerate(factors): factors[i] = (dmp_include(f, levels, v, K), k) elif K.is_Poly: f, v = dmp_inject(f, u, K) coeff, factors = dmp_factor_list(f, v, K.dom) for i, (f, k) in enumerate(factors): factors[i] = (dmp_eject(f, v, K), k) coeff = K.convert(coeff, K.dom) else: # pragma: no cover raise DomainError('factorization not supported over %s' % K0) if K0.has_Field: for i, (f, k) in enumerate(factors): factors[i] = (dmp_convert(f, u, K, K0), k) coeff = K0.convert(coeff, K) denom = K0.convert(denom, K) coeff = K0.quo(coeff, denom) if K0_inexact is not None: for i, (f, k) in enumerate(factors): factors[i] = (dmp_convert(f, u, K0, K0_inexact), k) coeff = K0_inexact.convert(coeff, K0) for i, j in enumerate(reversed(J)): if not j: continue term = {(0, ) * (u - i) + (1, ) + (0, ) * i: K0.one} factors.insert(0, (dmp_from_dict(term, u, K0), j)) return coeff, _sort_factors(factors)