def test_dmp_ground_extract(): f = dmp_normal([[2930944], [], [2198208], [], [549552], [], [45796]], 1, ZZ) g = dmp_normal([[17585664], [], [8792832], [], [1099104], []], 1, ZZ) F = dmp_normal([[64], [], [48], [], [12], [], [1]], 1, ZZ) G = dmp_normal([[384], [], [192], [], [24], []], 1, ZZ) assert dmp_ground_extract(f, g, 1, ZZ) == (45796, F, G)
def dmp_zz_heu_gcd(f, g, u, K): """ Heuristic polynomial GCD in ``Z[X]``. Given univariate polynomials ``f`` and ``g`` in ``Z[X]``, returns their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg`` such that:: h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h) The algorithm is purely heuristic which means it may fail to compute the GCD. This will be signaled by raising an exception. In this case you will need to switch to another GCD method. The algorithm computes the polynomial GCD by evaluating polynomials f and g at certain points and computing (fast) integer GCD of those evaluations. The polynomial GCD is recovered from the integer image by interpolation. The evaluation proces reduces f and g variable by variable into a large integer. The final step is to verify if the interpolated polynomial is the correct GCD. This gives cofactors of the input polynomials as a side effect. **Examples** >>> from sympy.polys.domains import ZZ >>> from sympy.polys.euclidtools import dmp_zz_heu_gcd >>> f = ZZ.map([[1], [2, 0], [1, 0, 0]]) >>> g = ZZ.map([[1], [1, 0], []]) >>> dmp_zz_heu_gcd(f, g, 1, ZZ) ([[1], [1, 0]], [[1], [1, 0]], [[1], []]) **References** 1. [Liao95]_ """ if not u: return dup_zz_heu_gcd(f, g, K) result = _dmp_rr_trivial_gcd(f, g, u, K) if result is not None: return result df = dmp_degree(f, u) dg = dmp_degree(g, u) gcd, f, g = dmp_ground_extract(f, g, u, K) f_norm = dmp_max_norm(f, u, K) g_norm = dmp_max_norm(g, u, K) B = 2*min(f_norm, g_norm) + 29 x = max(min(B, 99*K.sqrt(B)), 2*min(f_norm // abs(dmp_ground_LC(f, u, K)), g_norm // abs(dmp_ground_LC(g, u, K))) + 2) for i in xrange(0, HEU_GCD_MAX): ff = dmp_eval(f, x, u, K) gg = dmp_eval(g, x, u, K) v = u - 1 if not (dmp_zero_p(ff, v) or dmp_zero_p(gg, v)): h, cff, cfg = dmp_zz_heu_gcd(ff, gg, v, K) h = _dmp_zz_gcd_interpolate(h, x, v, K) h = dmp_ground_primitive(h, u, K)[1] cff_, r = dmp_div(f, h, u, K) if dmp_zero_p(r, u): cfg_, r = dmp_div(g, h, u, K) if dmp_zero_p(r, u): h = dmp_mul_ground(h, gcd, u, K) return h, cff_, cfg_ cff = _dmp_zz_gcd_interpolate(cff, x, v, K) h, r = dmp_div(f, cff, u, K) if dmp_zero_p(r, u): cfg_, r = dmp_div(g, h, u, K) if dmp_zero_p(r, u): h = dmp_mul_ground(h, gcd, u, K) return h, cff, cfg_ cfg = _dmp_zz_gcd_interpolate(cfg, x, v, K) h, r = dmp_div(g, cfg, u, K) if dmp_zero_p(r, u): cff_, r = dmp_div(f, h, u, K) if dmp_zero_p(r, u): h = dmp_mul_ground(h, gcd, u, K) return h, cff_, cfg x = 73794*x * K.sqrt(K.sqrt(x)) // 27011 raise HeuristicGCDFailed('no luck')
def dmp_zz_heu_gcd(f, g, u, K): """ Heuristic polynomial GCD in `Z[X]`. Given univariate polynomials `f` and `g` in `Z[X]`, returns their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg`` such that:: h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h) The algorithm is purely heuristic which means it may fail to compute the GCD. This will be signaled by raising an exception. In this case you will need to switch to another GCD method. The algorithm computes the polynomial GCD by evaluating polynomials f and g at certain points and computing (fast) integer GCD of those evaluations. The polynomial GCD is recovered from the integer image by interpolation. The evaluation proces reduces f and g variable by variable into a large integer. The final step is to verify if the interpolated polynomial is the correct GCD. This gives cofactors of the input polynomials as a side effect. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.euclidtools import dmp_zz_heu_gcd >>> f = ZZ.map([[1], [2, 0], [1, 0, 0]]) >>> g = ZZ.map([[1], [1, 0], []]) >>> dmp_zz_heu_gcd(f, g, 1, ZZ) ([[1], [1, 0]], [[1], [1, 0]], [[1], []]) References ========== 1. [Liao95]_ """ if not u: return dup_zz_heu_gcd(f, g, K) result = _dmp_rr_trivial_gcd(f, g, u, K) if result is not None: return result gcd, f, g = dmp_ground_extract(f, g, u, K) f_norm = dmp_max_norm(f, u, K) g_norm = dmp_max_norm(g, u, K) B = 2*min(f_norm, g_norm) + 29 x = max(min(B, 99*K.sqrt(B)), 2*min(f_norm // abs(dmp_ground_LC(f, u, K)), g_norm // abs(dmp_ground_LC(g, u, K))) + 2) for i in xrange(0, HEU_GCD_MAX): ff = dmp_eval(f, x, u, K) gg = dmp_eval(g, x, u, K) v = u - 1 if not (dmp_zero_p(ff, v) or dmp_zero_p(gg, v)): h, cff, cfg = dmp_zz_heu_gcd(ff, gg, v, K) h = _dmp_zz_gcd_interpolate(h, x, v, K) h = dmp_ground_primitive(h, u, K)[1] cff_, r = dmp_div(f, h, u, K) if dmp_zero_p(r, u): cfg_, r = dmp_div(g, h, u, K) if dmp_zero_p(r, u): h = dmp_mul_ground(h, gcd, u, K) return h, cff_, cfg_ cff = _dmp_zz_gcd_interpolate(cff, x, v, K) h, r = dmp_div(f, cff, u, K) if dmp_zero_p(r, u): cfg_, r = dmp_div(g, h, u, K) if dmp_zero_p(r, u): h = dmp_mul_ground(h, gcd, u, K) return h, cff, cfg_ cfg = _dmp_zz_gcd_interpolate(cfg, x, v, K) h, r = dmp_div(g, cfg, u, K) if dmp_zero_p(r, u): cff_, r = dmp_div(f, h, u, K) if dmp_zero_p(r, u): h = dmp_mul_ground(h, gcd, u, K) return h, cff_, cfg x = 73794*x * K.sqrt(K.sqrt(x)) // 27011 raise HeuristicGCDFailed('no luck')