def test_polys(): x = Symbol("X") ZZ = PythonIntegerRing() QQ = PythonRationalField() for c in (Poly, Poly(x, x)): check(c) for c in (DMP, DMP([[ZZ(1)], [ZZ(2)], [ZZ(3)]], ZZ)): check(c) for c in (DMF, DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(3)]), ZZ)): check(c) for c in (ANP, ANP([QQ(1), QQ(2)], [QQ(1), QQ(2), QQ(3)], QQ)): check(c) for c in (PythonIntegerRing, PythonIntegerRing()): check(c) for c in (PythonRationalField, PythonRationalField()): check(c) for c in (PolynomialRing, PolynomialRing(ZZ, 'x', 'y')): check(c) for c in (FractionField, FractionField(ZZ, 'x', 'y')): check(c) for c in (ExpressionDomain, ExpressionDomain()): check(c) from sympy.core.compatibility import HAS_GMPY if HAS_GMPY: from sympy.polys.domains import GMPYIntegerRing, GMPYRationalField for c in (GMPYIntegerRing, GMPYIntegerRing()): check(c) for c in (GMPYRationalField, GMPYRationalField()): check(c) f = x**3 + x + 3 g = exp for c in (RootOf, RootOf(f, 0), RootSum, RootSum(f, g)): check(c)
def test_polys(): x = Symbol("x") ZZ = PythonIntegerRing() QQ = SymPyRationalField() for c in (Poly, Poly(x, x)): check(c) for c in (GFP, GFP([ZZ(1), ZZ(2), ZZ(3)], ZZ(7), ZZ)): check(c) for c in (DMP, DMP([ZZ(1), ZZ(2), ZZ(3)], 0, ZZ)): check(c) for c in (DMF, DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(3)], ZZ))): check(c) for c in (ANP, ANP([QQ(1), QQ(2)], [QQ(1), QQ(2), QQ(3)], QQ)): check(c) for c in (PythonIntegerRing, PythonIntegerRing()): check(c) for c in (SymPyIntegerRing, SymPyIntegerRing()): check(c) for c in (SymPyRationalField, SymPyRationalField()): check(c) for c in (PolynomialRing, PolynomialRing(ZZ, 'x', 'y')): check(c) for c in (FractionField, FractionField(ZZ, 'x', 'y')): check(c) for c in (ExpressionDomain, ExpressionDomain()): check(c) from sympy.polys.domains import HAS_FRACTION, HAS_GMPY if HAS_FRACTION: from sympy.polys.domains import PythonRationalField for c in (PythonRationalField, PythonRationalField()): check(c) if HAS_GMPY: from sympy.polys.domains import GMPYIntegerRing, GMPYRationalField for c in (GMPYIntegerRing, GMPYIntegerRing()): check(c) for c in (GMPYRationalField, GMPYRationalField()): check(c) f = x**3 + x + 3 g = lambda x: x for c in (RootOf, RootOf(f, 0), RootSum, RootSum(f, g)): check(c)
def parent(self): from sympy.polys.domains import PythonRationalField return PythonRationalField()