def test_puiseux(): R, x, y = ring('x, y', QQ) p = x**QQ(2, 5) + x**QQ(2, 3) + x r = rs_series_inversion(p, x, 1) r1 = -x**QQ(14,15) + x**QQ(4,5) - 3*x**QQ(11,15) + x**QQ(2,3) + \ 2*x**QQ(7,15) - x**QQ(2,5) - x**QQ(1,5) + x**QQ(2,15) - x**QQ(-2,15) \ + x**QQ(-2,5) assert r == r1 r = rs_nth_root(1 + p, 3, x, 1) assert r == -x**QQ(4, 5) / 9 + x**QQ(2, 3) / 3 + x**QQ(2, 5) / 3 + 1 r = rs_log(1 + p, x, 1) assert r == -x**QQ(4, 5) / 2 + x**QQ(2, 3) + x**QQ(2, 5) r = rs_LambertW(p, x, 1) assert r == -x**QQ(4, 5) + x**QQ(2, 3) + x**QQ(2, 5) p1 = x + x**QQ(1, 5) * y r = rs_exp(p1, x, 1) assert r == x**QQ(4,5)*y**4/24 + x**QQ(3,5)*y**3/6 + x**QQ(2,5)*y**2/2 + \ x**QQ(1,5)*y + 1 r = rs_atan(p, x, 2) assert r == -x**QQ(9,5) - x**QQ(26,15) - x**QQ(22,15) - x**QQ(6,5)/3 + \ x + x**QQ(2,3) + x**QQ(2,5) r = rs_atan(p1, x, 2) assert r == x**QQ(9,5)*y**9/9 + x**QQ(9,5)*y**4 - x**QQ(7,5)*y**7/7 - \ x**QQ(7,5)*y**2 + x*y**5/5 + x - x**QQ(3,5)*y**3/3 + x**QQ(1,5)*y r = rs_asin(p, x, 2) assert r == x**QQ(9,5)/2 + x**QQ(26,15)/2 + x**QQ(22,15)/2 + \ x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5) r = rs_cot(p, x, 1) assert r == -x**QQ(14,15) + x**QQ(4,5) - 3*x**QQ(11,15) + \ 2*x**QQ(2,3)/3 + 2*x**QQ(7,15) - 4*x**QQ(2,5)/3 - x**QQ(1,5) + \ x**QQ(2,15) - x**QQ(-2,15) + x**QQ(-2,5) r = rs_cos_sin(p, x, 2) assert r[0] == x**QQ(28,15)/6 - x**QQ(5,3) + x**QQ(8,5)/24 - x**QQ(7,5) - \ x**QQ(4,3)/2 - x**QQ(16,15) - x**QQ(4,5)/2 + 1 assert r[1] == -x**QQ(9,5)/2 - x**QQ(26,15)/2 - x**QQ(22,15)/2 - \ x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5) r = rs_atanh(p, x, 2) assert r == x**QQ(9,5) + x**QQ(26,15) + x**QQ(22,15) + x**QQ(6,5)/3 + x + \ x**QQ(2,3) + x**QQ(2,5) r = rs_sinh(p, x, 2) assert r == x**QQ(9,5)/2 + x**QQ(26,15)/2 + x**QQ(22,15)/2 + \ x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5) r = rs_cosh(p, x, 2) assert r == x**QQ(28,15)/6 + x**QQ(5,3) + x**QQ(8,5)/24 + x**QQ(7,5) + \ x**QQ(4,3)/2 + x**QQ(16,15) + x**QQ(4,5)/2 + 1 r = rs_tanh(p, x, 2) assert r == -x**QQ(9,5) - x**QQ(26,15) - x**QQ(22,15) - x**QQ(6,5)/3 + \ x + x**QQ(2,3) + x**QQ(2,5)
def test_puiseux(): R, x, y = ring('x, y', QQ) p = x**QQ(2,5) + x**QQ(2,3) + x r = rs_series_inversion(p, x, 1) r1 = -x**QQ(14,15) + x**QQ(4,5) - 3*x**QQ(11,15) + x**QQ(2,3) + \ 2*x**QQ(7,15) - x**QQ(2,5) - x**QQ(1,5) + x**QQ(2,15) - x**QQ(-2,15) \ + x**QQ(-2,5) assert r == r1 r = rs_nth_root(1 + p, 3, x, 1) assert r == -x**QQ(4,5)/9 + x**QQ(2,3)/3 + x**QQ(2,5)/3 + 1 r = rs_log(1 + p, x, 1) assert r == -x**QQ(4,5)/2 + x**QQ(2,3) + x**QQ(2,5) r = rs_LambertW(p, x, 1) assert r == -x**QQ(4,5) + x**QQ(2,3) + x**QQ(2,5) p1 = x + x**QQ(1,5)*y r = rs_exp(p1, x, 1) assert r == x**QQ(4,5)*y**4/24 + x**QQ(3,5)*y**3/6 + x**QQ(2,5)*y**2/2 + \ x**QQ(1,5)*y + 1 r = rs_atan(p, x, 2) assert r == -x**QQ(9,5) - x**QQ(26,15) - x**QQ(22,15) - x**QQ(6,5)/3 + \ x + x**QQ(2,3) + x**QQ(2,5) r = rs_atan(p1, x, 2) assert r == x**QQ(9,5)*y**9/9 + x**QQ(9,5)*y**4 - x**QQ(7,5)*y**7/7 - \ x**QQ(7,5)*y**2 + x*y**5/5 + x - x**QQ(3,5)*y**3/3 + x**QQ(1,5)*y r = rs_asin(p, x, 2) assert r == x**QQ(9,5)/2 + x**QQ(26,15)/2 + x**QQ(22,15)/2 + \ x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5) r = rs_cot(p, x, 1) assert r == -x**QQ(14,15) + x**QQ(4,5) - 3*x**QQ(11,15) + \ 2*x**QQ(2,3)/3 + 2*x**QQ(7,15) - 4*x**QQ(2,5)/3 - x**QQ(1,5) + \ x**QQ(2,15) - x**QQ(-2,15) + x**QQ(-2,5) r = rs_cos_sin(p, x, 2) assert r[0] == x**QQ(28,15)/6 - x**QQ(5,3) + x**QQ(8,5)/24 - x**QQ(7,5) - \ x**QQ(4,3)/2 - x**QQ(16,15) - x**QQ(4,5)/2 + 1 assert r[1] == -x**QQ(9,5)/2 - x**QQ(26,15)/2 - x**QQ(22,15)/2 - \ x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5) r = rs_atanh(p, x, 2) assert r == x**QQ(9,5) + x**QQ(26,15) + x**QQ(22,15) + x**QQ(6,5)/3 + x + \ x**QQ(2,3) + x**QQ(2,5) r = rs_sinh(p, x, 2) assert r == x**QQ(9,5)/2 + x**QQ(26,15)/2 + x**QQ(22,15)/2 + \ x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5) r = rs_cosh(p, x, 2) assert r == x**QQ(28,15)/6 + x**QQ(5,3) + x**QQ(8,5)/24 + x**QQ(7,5) + \ x**QQ(4,3)/2 + x**QQ(16,15) + x**QQ(4,5)/2 + 1 r = rs_tanh(p, x, 2) assert r == -x**QQ(9,5) - x**QQ(26,15) - x**QQ(22,15) - x**QQ(6,5)/3 + \ x + x**QQ(2,3) + x**QQ(2,5)