def test_RootOf_evalf(): real = RootOf(x**3 + x + 3, 0).evalf(n=20) assert real.epsilon_eq(Float("-1.2134116627622296341")) re, im = RootOf(x**3 + x + 3, 1).evalf(n=20).as_real_imag() assert re.epsilon_eq( Float("0.60670583138111481707")) assert im.epsilon_eq(-Float("1.45061224918844152650")) re, im = RootOf(x**3 + x + 3, 2).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("0.60670583138111481707")) assert im.epsilon_eq(Float("1.45061224918844152650"))
def test_RootOf_is_imaginary(): r = RootOf(x**4 + 4 * x**2 + 1, 1) i = r._get_interval() assert r.is_imaginary and i.ax * i.bx <= 0
def test_CRootOf_evalf(): real = rootof(x**3 + x + 3, 0).evalf(n=20) assert real.epsilon_eq(Float("-1.2134116627622296341")) re, im = rootof(x**3 + x + 3, 1).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("0.60670583138111481707")) assert im.epsilon_eq(-Float("1.45061224918844152650")) re, im = rootof(x**3 + x + 3, 2).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("0.60670583138111481707")) assert im.epsilon_eq(Float("1.45061224918844152650")) p = legendre_poly(4, x, polys=True) roots = [str(r.n(17)) for r in p.real_roots()] # magnitudes are given by # sqrt(3/S(7) - 2*sqrt(6/S(5))/7) # and # sqrt(3/S(7) + 2*sqrt(6/S(5))/7) assert roots == [ "-0.86113631159405258", "-0.33998104358485626", "0.33998104358485626", "0.86113631159405258", ] re = rootof(x**5 - 5 * x + 12, 0).evalf(n=20) assert re.epsilon_eq(Float("-1.84208596619025438271")) re, im = rootof(x**5 - 5 * x + 12, 1).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("-0.351854240827371999559")) assert im.epsilon_eq(Float("-1.709561043370328882010")) re, im = rootof(x**5 - 5 * x + 12, 2).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("-0.351854240827371999559")) assert im.epsilon_eq(Float("+1.709561043370328882010")) re, im = rootof(x**5 - 5 * x + 12, 3).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("+1.272897223922499190910")) assert im.epsilon_eq(Float("-0.719798681483861386681")) re, im = rootof(x**5 - 5 * x + 12, 4).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("+1.272897223922499190910")) assert im.epsilon_eq(Float("+0.719798681483861386681")) # issue 6393 assert str(rootof(x**5 + 2 * x**4 + x**3 - 68719476736, 0).n(3)) == '147.' eq = (531441 * x**11 + 3857868 * x**10 + 13730229 * x**9 + 32597882 * x**8 + 55077472 * x**7 + 60452000 * x**6 + 32172064 * x**5 - 4383808 * x**4 - 11942912 * x**3 - 1506304 * x**2 + 1453312 * x + 512) a, b = rootof(eq, 1).n(2).as_real_imag() c, d = rootof(eq, 2).n(2).as_real_imag() assert a == c assert b < d assert b == -d # issue 6451 r = rootof(legendre_poly(64, x), 7) assert r.n(2) == r.n(100).n(2) # issue 9019 r0 = rootof(x**2 + 1, 0, radicals=False) r1 = rootof(x**2 + 1, 1, radicals=False) assert r0.n(4) == -1.0 * I assert r1.n(4) == 1.0 * I # make sure verification is used in case a max/min traps the "root" assert str(rootof(4 * x**5 + 16 * x**3 + 12 * x**2 + 7, 0).n(3)) == '-0.976' # watch out for UnboundLocalError c = CRootOf(90720 * x**6 - 4032 * x**4 + 84 * x**2 - 1, 0) assert c._eval_evalf(2) # doesn't fail # watch out for imaginary parts that don't want to evaluate assert str( RootOf( x**16 + 32 * x**14 + 508 * x**12 + 5440 * x**10 + 39510 * x**8 + 204320 * x**6 + 755548 * x**4 + 1434496 * x**2 + 877969, 10).n(2)) == '-3.4*I' assert abs(RootOf(x**4 + 10 * x**2 + 1, 0).n(2)) < 0.4 # check reset and args r = [RootOf(x**3 + x + 3, i) for i in range(3)] r[0]._reset() for ri in r: i = ri._get_interval() ri.n(2) assert i != ri._get_interval() ri._reset() assert i == ri._get_interval() assert i == i.func(*i.args)
def test_minpoly_compose(): # issue 6868 eq = S(''' -1/(800*sqrt(-1/240 + 1/(18000*(-1/17280000 + sqrt(15)*I/28800000)**(1/3)) + 2*(-1/17280000 + sqrt(15)*I/28800000)**(1/3)))''') mp = minimal_polynomial(eq + 3, x) assert mp == 8000*x**2 - 48000*x + 71999 # issue 5888 assert minimal_polynomial(exp(I*pi/8), x) == x**8 + 1 mp = minimal_polynomial(sin(pi/7) + sqrt(2), x) assert mp == 4096*x**12 - 63488*x**10 + 351488*x**8 - 826496*x**6 + \ 770912*x**4 - 268432*x**2 + 28561 mp = minimal_polynomial(cos(pi/7) + sqrt(2), x) assert mp == 64*x**6 - 64*x**5 - 432*x**4 + 304*x**3 + 712*x**2 - \ 232*x - 239 mp = minimal_polynomial(exp(I*pi/7) + sqrt(2), x) assert mp == x**12 - 2*x**11 - 9*x**10 + 16*x**9 + 43*x**8 - 70*x**7 - 97*x**6 + 126*x**5 + 211*x**4 - 212*x**3 - 37*x**2 + 142*x + 127 mp = minimal_polynomial(sin(pi/7) + sqrt(2), x) assert mp == 4096*x**12 - 63488*x**10 + 351488*x**8 - 826496*x**6 + \ 770912*x**4 - 268432*x**2 + 28561 mp = minimal_polynomial(cos(pi/7) + sqrt(2), x) assert mp == 64*x**6 - 64*x**5 - 432*x**4 + 304*x**3 + 712*x**2 - \ 232*x - 239 mp = minimal_polynomial(exp(I*pi/7) + sqrt(2), x) assert mp == x**12 - 2*x**11 - 9*x**10 + 16*x**9 + 43*x**8 - 70*x**7 - 97*x**6 + 126*x**5 + 211*x**4 - 212*x**3 - 37*x**2 + 142*x + 127 mp = minimal_polynomial(exp(2*I*pi/7), x) assert mp == x**6 + x**5 + x**4 + x**3 + x**2 + x + 1 mp = minimal_polynomial(exp(2*I*pi/15), x) assert mp == x**8 - x**7 + x**5 - x**4 + x**3 - x + 1 mp = minimal_polynomial(cos(2*pi/7), x) assert mp == 8*x**3 + 4*x**2 - 4*x - 1 mp = minimal_polynomial(sin(2*pi/7), x) ex = (5*cos(2*pi/7) - 7)/(9*cos(pi/7) - 5*cos(3*pi/7)) mp = minimal_polynomial(ex, x) assert mp == x**3 + 2*x**2 - x - 1 assert minimal_polynomial(-1/(2*cos(pi/7)), x) == x**3 + 2*x**2 - x - 1 assert minimal_polynomial(sin(2*pi/15), x) == \ 256*x**8 - 448*x**6 + 224*x**4 - 32*x**2 + 1 assert minimal_polynomial(sin(5*pi/14), x) == 8*x**3 - 4*x**2 - 4*x + 1 assert minimal_polynomial(cos(pi/15), x) == 16*x**4 + 8*x**3 - 16*x**2 - 8*x + 1 ex = RootOf(x**3 +x*4 + 1, 0) mp = minimal_polynomial(ex, x) assert mp == x**3 + 4*x + 1 mp = minimal_polynomial(ex + 1, x) assert mp == x**3 - 3*x**2 + 7*x - 4 assert minimal_polynomial(exp(I*pi/3), x) == x**2 - x + 1 assert minimal_polynomial(exp(I*pi/4), x) == x**4 + 1 assert minimal_polynomial(exp(I*pi/6), x) == x**4 - x**2 + 1 assert minimal_polynomial(exp(I*pi/9), x) == x**6 - x**3 + 1 assert minimal_polynomial(exp(I*pi/10), x) == x**8 - x**6 + x**4 - x**2 + 1 assert minimal_polynomial(sin(pi/9), x) == 64*x**6 - 96*x**4 + 36*x**2 - 3 assert minimal_polynomial(sin(pi/11), x) == 1024*x**10 - 2816*x**8 + \ 2816*x**6 - 1232*x**4 + 220*x**2 - 11 ex = 2**Rational(1, 3)*exp(Rational(2, 3)*I*pi) assert minimal_polynomial(ex, x) == x**3 - 2 raises(NotAlgebraic, lambda: minimal_polynomial(cos(pi*sqrt(2)), x)) raises(NotAlgebraic, lambda: minimal_polynomial(sin(pi*sqrt(2)), x)) raises(NotAlgebraic, lambda: minimal_polynomial(exp(I*pi*sqrt(2)), x)) # issue 5934 ex = 1/(-36000 - 7200*sqrt(5) + (12*sqrt(10)*sqrt(sqrt(5) + 5) + 24*sqrt(10)*sqrt(-sqrt(5) + 5))**2) + 1 raises(ZeroDivisionError, lambda: minimal_polynomial(ex, x)) ex = sqrt(1 + 2**Rational(1,3)) + sqrt(1 + 2**Rational(1,4)) + sqrt(2) mp = minimal_polynomial(ex, x) assert degree(mp) == 48 and mp.subs({x:0}) == -16630256576
def test_RootOf_is_complex(): assert RootOf(x**3 + x + 3, 0).is_complex == False assert RootOf(x**3 + x + 3, 1).is_complex == True assert RootOf(x**3 + x + 3, 2).is_complex == True
def test_RootOf_evalf(): real = RootOf(x**3 + x + 3, 0).evalf(n=20) assert real.epsilon_eq(Float("-1.2134116627622296341")) re, im = RootOf(x**3 + x + 3, 1).evalf(n=20).as_real_imag() assert re.epsilon_eq( Float("0.60670583138111481707")) assert im.epsilon_eq(-Float("1.45061224918844152650")) re, im = RootOf(x**3 + x + 3, 2).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("0.60670583138111481707")) assert im.epsilon_eq(Float("1.45061224918844152650")) p = legendre_poly(4, x, polys=True) roots = [str(r.n(17)) for r in p.real_roots()] assert roots == [ "-0.86113631159405258", "-0.33998104358485626", "0.33998104358485626", "0.86113631159405258", ] re = RootOf(x**5 - 5*x + 12, 0).evalf(n=20) assert re.epsilon_eq(Float("-1.84208596619025438271")) re, im = RootOf(x**5 - 5*x + 12, 1).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("-0.351854240827371999559")) assert im.epsilon_eq(Float("-1.709561043370328882010")) re, im = RootOf(x**5 - 5*x + 12, 2).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("-0.351854240827371999559")) assert im.epsilon_eq(Float("+1.709561043370328882010")) re, im = RootOf(x**5 - 5*x + 12, 3).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("+1.272897223922499190910")) assert im.epsilon_eq(Float("-0.719798681483861386681")) re, im = RootOf(x**5 - 5*x + 12, 4).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("+1.272897223922499190910")) assert im.epsilon_eq(Float("+0.719798681483861386681")) # issue 6393 assert str(RootOf(x**5 + 2*x**4 + x**3 - 68719476736, 0).n(3)) == '147.' eq = (531441*x**11 + 3857868*x**10 + 13730229*x**9 + 32597882*x**8 + 55077472*x**7 + 60452000*x**6 + 32172064*x**5 - 4383808*x**4 - 11942912*x**3 - 1506304*x**2 + 1453312*x + 512) a, b = RootOf(eq, 1).n(2).as_real_imag() c, d = RootOf(eq, 2).n(2).as_real_imag() assert a == c assert b < d assert b == -d # issue 6451 r = RootOf(legendre_poly(64, x), 7) assert r.n(2) == r.n(100).n(2) # issue 8617 ans = [w.n(2) for w in solve(x**3 - x - 4)] assert RootOf(exp(x)**3 - exp(x) - 4, 0).n(2) in ans # make sure verification is used in case a max/min traps the "root" assert str(RootOf(4*x**5 + 16*x**3 + 12*x**2 + 7, 0).n(3)) == '-0.976'
def test_RootOf_is_real(): assert RootOf(x**3 + x + 3, 0).is_real == True assert RootOf(x**3 + x + 3, 1).is_real == False assert RootOf(x**3 + x + 3, 2).is_real == False
def test_RootOf_free_symbols(): assert RootOf(x**3 + x + 3, 0).free_symbols == set()
def test_RootOf_subs(): assert RootOf(x**3 + x + 1, 0).subs(x, y) == RootOf(y**3 + y + 1, 0)
def test_RootOf_is_complex(): assert RootOf(x**3 + x + 3, 0).is_complex is True
def test_RootOf_issue_10092(): x = Symbol('x', real=True) eq = x**3 - 17 * x**2 + 81 * x - 118 r = RootOf(eq, 0) assert (x < r).subs(x, r) is S.false
def test_issue_7876(): l1 = Poly(x**6 - x + 1, x).all_roots() l2 = [RootOf(x**6 - x + 1, i) for i in range(6)] assert frozenset(l1) == frozenset(l2)
def test_sympy__polys__rootoftools__RootOf(): from sympy.polys.rootoftools import RootOf assert _test_args(RootOf(x**3 + x + 1, 0))
def test_RootOf_evalf(): real = RootOf(x**3 + x + 3, 0).evalf(n=20) assert real.epsilon_eq(Float("-1.2134116627622296341")) re, im = RootOf(x**3 + x + 3, 1).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("0.60670583138111481707")) assert im.epsilon_eq(-Float("1.45061224918844152650")) re, im = RootOf(x**3 + x + 3, 2).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("0.60670583138111481707")) assert im.epsilon_eq(Float("1.45061224918844152650")) p = legendre_poly(4, x, polys=True) roots = [str(r.n(17)) for r in p.real_roots()] assert roots == [ "-0.86113631159405258", "-0.33998104358485626", "0.33998104358485626", "0.86113631159405258", ] re = RootOf(x**5 - 5 * x + 12, 0).evalf(n=20) assert re.epsilon_eq(Float("-1.84208596619025438271")) re, im = RootOf(x**5 - 5 * x + 12, 1).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("-0.351854240827371999559")) assert im.epsilon_eq(Float("-1.709561043370328882010")) re, im = RootOf(x**5 - 5 * x + 12, 2).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("-0.351854240827371999559")) assert im.epsilon_eq(Float("+1.709561043370328882010")) re, im = RootOf(x**5 - 5 * x + 12, 3).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("+1.272897223922499190910")) assert im.epsilon_eq(Float("-0.719798681483861386681")) re, im = RootOf(x**5 - 5 * x + 12, 4).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("+1.272897223922499190910")) assert im.epsilon_eq(Float("+0.719798681483861386681")) # issue 6393 assert str(RootOf(x**5 + 2 * x**4 + x**3 - 68719476736, 0).n(3)) == '147.' eq = (531441 * x**11 + 3857868 * x**10 + 13730229 * x**9 + 32597882 * x**8 + 55077472 * x**7 + 60452000 * x**6 + 32172064 * x**5 - 4383808 * x**4 - 11942912 * x**3 - 1506304 * x**2 + 1453312 * x + 512) a, b = RootOf(eq, 1).n(2).as_real_imag() c, d = RootOf(eq, 2).n(2).as_real_imag() assert a == c assert b < d assert b == -d # issue 6451 r = RootOf(legendre_poly(64, x), 7) assert r.n(2) == r.n(100).n(2) # issue 8617 ans = [w.n(2) for w in solve(x**3 - x - 4)] assert RootOf(exp(x)**3 - exp(x) - 4, 0).n(2) in ans # make sure verification is used in case a max/min traps the "root" assert str(RootOf(4 * x**5 + 16 * x**3 + 12 * x**2 + 7, 0).n(3)) == '-0.976'
def test_slow_general_univariate(): r = RootOf(x**5 - x**2 + 1, 0) assert solve(sqrt(x) + 1/root(x, 3) > 1) == \ Or(And(S(0) < x, x < r**6), And(r**6 < x, x < oo))
def test_issue_3693(): assert solve(x*(x-1)**2*(x+1)*(x**6-x+1)) == [ -1, 0, 1, RootOf(x**6 - x + 1, 0), RootOf(x**6 - x + 1, 1), RootOf(x**6 - x + 1, 2), RootOf(x**6 - x + 1, 3), RootOf(x**6 - x + 1, 4), RootOf(x**6 - x + 1, 5)]
def test_RootOf_diff(): assert RootOf(x**3 + x + 1, 0).diff(x) == 0 assert RootOf(x**3 + x + 1, 0).diff(y) == 0
def test_RootOf___eq__(): assert (RootOf(x**3 + x + 3, 0) == RootOf(x**3 + x + 3, 0)) == True assert (RootOf(x**3 + x + 3, 0) == RootOf(x**3 + x + 3, 1)) == False assert (RootOf(x**3 + x + 3, 1) == RootOf(x**3 + x + 3, 1)) == True assert (RootOf(x**3 + x + 3, 1) == RootOf(x**3 + x + 3, 2)) == False assert (RootOf(x**3 + x + 3, 2) == RootOf(x**3 + x + 3, 2)) == True assert (RootOf(x**3 + x + 3, 0) == RootOf(y**3 + y + 3, 0)) == True assert (RootOf(x**3 + x + 3, 0) == RootOf(y**3 + y + 3, 1)) == False assert (RootOf(x**3 + x + 3, 1) == RootOf(y**3 + y + 3, 1)) == True assert (RootOf(x**3 + x + 3, 1) == RootOf(y**3 + y + 3, 2)) == False assert (RootOf(x**3 + x + 3, 2) == RootOf(y**3 + y + 3, 2)) == True
def test_RootOf_evalf(): real = RootOf(x**3 + x + 3, 0).evalf(n=20) assert real.epsilon_eq(Float("-1.2134116627622296341")) re, im = RootOf(x**3 + x + 3, 1).evalf(n=20).as_real_imag() assert re.epsilon_eq( Float("0.60670583138111481707")) assert im.epsilon_eq(-Float("1.45061224918844152650")) re, im = RootOf(x**3 + x + 3, 2).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("0.60670583138111481707")) assert im.epsilon_eq(Float("1.45061224918844152650")) p = legendre_poly(4, x, polys=True) roots = [str(r.n(17)) for r in p.real_roots()] assert roots == [ "-0.86113631159405258", "-0.33998104358485626", "0.33998104358485626", "0.86113631159405258", ] re = RootOf(x**5 - 5*x + 12, 0).evalf(n=20) assert re.epsilon_eq(Float("-1.84208596619025438271")) re, im = RootOf(x**5 - 5*x + 12, 1).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("-0.351854240827371999559")) assert im.epsilon_eq(Float("-1.709561043370328882010")) re, im = RootOf(x**5 - 5*x + 12, 2).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("-0.351854240827371999559")) assert im.epsilon_eq(Float("+1.709561043370328882010")) re, im = RootOf(x**5 - 5*x + 12, 3).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("+1.272897223922499190910")) assert im.epsilon_eq(Float("-0.719798681483861386681")) re, im = RootOf(x**5 - 5*x + 12, 4).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("+1.272897223922499190910")) assert im.epsilon_eq(Float("+0.719798681483861386681"))
def test_RootOf_real_roots(): assert Poly(x**5 + x + 1).real_roots() == [RootOf(x**3 - x**2 + 1, 0)] assert Poly(x**5 + x + 1).real_roots(radicals=False) == [RootOf( x**3 - x**2 + 1, 0)]
def test_RootOf___new__(): assert RootOf(x, 0) == 0 assert RootOf(x, -1) == 0 assert RootOf(x, S.Zero) == 0 assert RootOf(x - 1, 0) == 1 assert RootOf(x - 1, -1) == 1 assert RootOf(x + 1, 0) == -1 assert RootOf(x + 1, -1) == -1 assert RootOf(x**2 + 2*x + 3, 0) == -1 - I*sqrt(2) assert RootOf(x**2 + 2*x + 3, 1) == -1 + I*sqrt(2) assert RootOf(x**2 + 2*x + 3, -1) == -1 + I*sqrt(2) assert RootOf(x**2 + 2*x + 3, -2) == -1 - I*sqrt(2) r = RootOf(x**2 + 2*x + 3, 0, radicals=False) assert isinstance(r, RootOf) is True r = RootOf(x**2 + 2*x + 3, 1, radicals=False) assert isinstance(r, RootOf) is True r = RootOf(x**2 + 2*x + 3, -1, radicals=False) assert isinstance(r, RootOf) is True r = RootOf(x**2 + 2*x + 3, -2, radicals=False) assert isinstance(r, RootOf) is True assert RootOf((x - 1)*(x + 1), 0, radicals=False) == -1 assert RootOf((x - 1)*(x + 1), 1, radicals=False) == 1 assert RootOf((x - 1)*(x + 1), -1, radicals=False) == 1 assert RootOf((x - 1)*(x + 1), -2, radicals=False) == -1 assert RootOf((x - 1)*(x + 1), 0, radicals=True) == -1 assert RootOf((x - 1)*(x + 1), 1, radicals=True) == 1 assert RootOf((x - 1)*(x + 1), -1, radicals=True) == 1 assert RootOf((x - 1)*(x + 1), -2, radicals=True) == -1 assert RootOf((x - 1)*(x**3 + x + 3), 0) == RootOf(x**3 + x + 3, 0) assert RootOf((x - 1)*(x**3 + x + 3), 1) == 1 assert RootOf((x - 1)*(x**3 + x + 3), 2) == RootOf(x**3 + x + 3, 1) assert RootOf((x - 1)*(x**3 + x + 3), 3) == RootOf(x**3 + x + 3, 2) assert RootOf((x - 1)*(x**3 + x + 3), -1) == RootOf(x**3 + x + 3, 2) assert RootOf((x - 1)*(x**3 + x + 3), -2) == RootOf(x**3 + x + 3, 1) assert RootOf((x - 1)*(x**3 + x + 3), -3) == 1 assert RootOf((x - 1)*(x**3 + x + 3), -4) == RootOf(x**3 + x + 3, 0) assert RootOf(x**4 + 3*x**3, 0) == -3 assert RootOf(x**4 + 3*x**3, 1) == 0 assert RootOf(x**4 + 3*x**3, 2) == 0 assert RootOf(x**4 + 3*x**3, 3) == 0 raises(GeneratorsNeeded, lambda: RootOf(0, 0)) raises(GeneratorsNeeded, lambda: RootOf(1, 0)) raises(PolynomialError, lambda: RootOf(Poly(0, x), 0)) raises(PolynomialError, lambda: RootOf(Poly(1, x), 0)) raises(PolynomialError, lambda: RootOf(x - y, 0)) raises(NotImplementedError, lambda: RootOf(x**3 - x + sqrt(2), 0)) raises(NotImplementedError, lambda: RootOf(x**3 - x + I, 0)) raises(IndexError, lambda: RootOf(x**2 - 1, -4)) raises(IndexError, lambda: RootOf(x**2 - 1, -3)) raises(IndexError, lambda: RootOf(x**2 - 1, 2)) raises(IndexError, lambda: RootOf(x**2 - 1, 3)) assert RootOf(Poly(x - y, x), 0) == y assert RootOf(Poly(x**2 - y, x), 0) == -sqrt(y) assert RootOf(Poly(x**2 - y, x), 1) == sqrt(y) assert RootOf(Poly(x**3 - y, x), 0) == y**Rational(1, 3) assert RootOf(y*x**3 + y*x + 2*y, x, 0) == -1 raises(NotImplementedError, lambda: RootOf(x**3 + x + 2*y, x, 0)) assert RootOf(x**3 + x + 1, 0).is_commutative is True
def test_RootOf___new___indices(): f = x**3 + x + 3 r0 = RootOf(f, 0) r1 = RootOf(f, 1) r2 = RootOf(f, 2) assert RootOf(f) == [r0] assert RootOf(f, (0, )) == [r0] assert RootOf(f, (0, 1)) == [r0, r1] assert RootOf(f, (0, 1, 2)) == [r0, r1, r2] assert RootOf(f, (-3, )) == [r0] assert RootOf(f, (-3, -2)) == [r0, r1] assert RootOf(f, (-3, -2, -1)) == [r0, r1, r2] assert RootOf(f, True) == [r0, r1, r2]