예제 #1
0
 def entry(i, j):
     ret = (pivot_val*tmp_mat[i, j + 1] - mat[pivot_pos, j + 1]*tmp_mat[i, 0]) / cumm
     if _get_intermediate_simp_bool(True):
         return _dotprodsimp(ret)
     elif not ret.is_Atom:
         return cancel(ret)
     return ret
예제 #2
0
 def entry(i, j):
     ret = (pivot_val*tmp_mat[i, j + 1] - mat[pivot_pos, j + 1]*tmp_mat[i, 0]) / cumm
     if dotprodsimp:
         return _dotprodsimp(ret)
     elif not ret.is_Atom:
         return cancel(ret)
     return ret
예제 #3
0
def no_cancel_equal(b, c, n, DE):
    """
    Poly Risch Differential Equation - No cancellation: deg(b) == deg(D) - 1

    Explanation
    ===========

    Given a derivation D on k[t] with deg(D) >= 2, n either an integer
    or +oo, and b, c in k[t] with deg(b) == deg(D) - 1, either raise
    NonElementaryIntegralException, in which case the equation Dq + b*q == c has
    no solution of degree at most n in k[t], or a solution q in k[t] of
    this equation with deg(q) <= n, or the tuple (h, m, C) such that h
    in k[t], m in ZZ, and C in k[t], and for any solution q in k[t] of
    degree at most n of Dq + b*q == c, y == q - h is a solution in k[t]
    of degree at most m of Dy + b*y == C.
    """
    q = Poly(0, DE.t)
    lc = cancel(-b.as_poly(DE.t).LC()/DE.d.as_poly(DE.t).LC())
    if lc.is_Integer and lc.is_positive:
        M = lc
    else:
        M = -1

    while not c.is_zero:
        m = max(M, c.degree(DE.t) - DE.d.degree(DE.t) + 1)

        if not 0 <= m <= n:  # n < 0 or m < 0 or m > n
            raise NonElementaryIntegralException

        u = cancel(m*DE.d.as_poly(DE.t).LC() + b.as_poly(DE.t).LC())
        if u.is_zero:
            return (q, m, c)
        if m > 0:
            p = Poly(c.as_poly(DE.t).LC()/u*DE.t**m, DE.t, expand=False)
        else:
            if c.degree(DE.t) != DE.d.degree(DE.t) - 1:
                raise NonElementaryIntegralException
            else:
                p = c.as_poly(DE.t).LC()/b.as_poly(DE.t).LC()

        q = q + p
        n = m - 1
        c = c - derivation(p, DE) - b*p

    return q
예제 #4
0
파일: rde.py 프로젝트: Abhityagi16/sympy
def no_cancel_equal(b, c, n, DE):
    """
    Poly Risch Differential Equation - No cancellation: deg(b) == deg(D) - 1

    Given a derivation D on k[t] with deg(D) >= 2, n either an integer
    or +oo, and b, c in k[t] with deg(b) == deg(D) - 1, either raise
    NonElementaryIntegralException, in which case the equation Dq + b*q == c has
    no solution of degree at most n in k[t], or a solution q in k[t] of
    this equation with deg(q) <= n, or the tuple (h, m, C) such that h
    in k[t], m in ZZ, and C in k[t], and for any solution q in k[t] of
    degree at most n of Dq + b*q == c, y == q - h is a solution in k[t]
    of degree at most m of Dy + b*y == C.
    """
    q = Poly(0, DE.t)
    lc = cancel(-b.as_poly(DE.t).LC()/DE.d.as_poly(DE.t).LC())
    if lc.is_Integer and lc.is_positive:
        M = lc
    else:
        M = -1

    while not c.is_zero:
        m = max(M, c.degree(DE.t) - DE.d.degree(DE.t) + 1)

        if not 0 <= m <= n:  # n < 0 or m < 0 or m > n
            raise NonElementaryIntegralException

        u = cancel(m*DE.d.as_poly(DE.t).LC() + b.as_poly(DE.t).LC())
        if u.is_zero:
            return (q, m, c)
        if m > 0:
            p = Poly(c.as_poly(DE.t).LC()/u*DE.t**m, DE.t, expand=False)
        else:
            if c.degree(DE.t) != DE.d.degree(DE.t) - 1:
                raise NonElementaryIntegralException
            else:
                p = c.as_poly(DE.t).LC()/b.as_poly(DE.t).LC()

        q = q + p
        n = m - 1
        c = c - derivation(p, DE) - b*p

    return q
예제 #5
0
파일: ratsimp.py 프로젝트: asmeurer/sympy
def ratsimp(expr):
    """
    Put an expression over a common denominator, cancel and reduce.

    Examples
    ========

    >>> from sympy import ratsimp
    >>> from sympy.abc import x, y
    >>> ratsimp(1/x + 1/y)
    (x + y)/(x*y)
    """

    f, g = cancel(expr).as_numer_denom()
    try:
        Q, r = reduced(f, [g], field=True, expand=False)
    except ComputationFailed:
        return f/g

    return Add(*Q) + cancel(r/g)
예제 #6
0
def ratsimp(expr):
    """
    Put an expression over a common denominator, cancel and reduce.

    Examples
    ========

    >>> from sympy import ratsimp
    >>> from sympy.abc import x, y
    >>> ratsimp(1/x + 1/y)
    (x + y)/(x*y)
    """

    f, g = cancel(expr).as_numer_denom()
    try:
        Q, r = reduced(f, [g], field=True, expand=False)
    except ComputationFailed:
        return f / g

    return Add(*Q) + cancel(r / g)
예제 #7
0
def calculate_series(e, x, logx=None):
    """ Calculates at least one term of the series of "e" in "x".

    This is a place that fails most often, so it is in its own function.
    """
    from sympy.polys import cancel

    for t in e.lseries(x, logx=logx):
        t = cancel(t)

        if t.simplify():
            break

    return t
예제 #8
0
def calculate_series(e, x, logx=None):
    """ Calculates at least one term of the series of "e" in "x".

    This is a place that fails most often, so it is in its own function.
    """
    from sympy.polys import cancel

    for t in e.lseries(x, logx=logx):
        t = cancel(t)

        if t:
            break

    return t
    def get_diff(self, f):
        cache = self.cache

        if f in cache:
            pass
        elif (not hasattr(f, 'func') or not _bessel_table.has(f.func)):
            cache[f] = cancel(f.diff(self.x))
        else:
            n, z = f.args
            d0, d1 = _bessel_table.diffs(f.func, n, z)
            dz = self.get_diff(z)
            cache[f] = d0 * dz
            cache[f.func(n - 1, z)] = d1 * dz

        return cache[f]
예제 #10
0
    def get_diff(self, f):
        cache = self.cache

        if f in cache:
            pass
        elif not hasattr(f, "func") or not _bessel_table.has(f.func):
            cache[f] = cancel(f.diff(self.x))
        else:
            n, z = f.args
            d0, d1 = _bessel_table.diffs(f.func, n, z)
            dz = self.get_diff(z)
            cache[f] = d0 * dz
            cache[f.func(n - 1, z)] = d1 * dz

        return cache[f]
예제 #11
0
 def find_fuzzy(l, x):
     if not l:
         return
     S1, T1 = compute_ST(x)
     for y in l:
         S2, T2 = inv[y]
         if T1 != T2 or (not S1.intersection(S2) and
                         (S1 != set() or S2 != set())):
             continue
         # XXX we want some simplification (e.g. cancel or
         # simplify) but no matter what it's slow.
         a = len(cancel(x / y).free_symbols)
         b = len(x.free_symbols)
         c = len(y.free_symbols)
         # TODO is there a better heuristic?
         if a == 0 and (b > 0 or c > 0):
             return y
예제 #12
0
 def find_fuzzy(l, x):
     if not l:
         return
     S1, T1 = compute_ST(x)
     for y in l:
         S2, T2 = inv[y]
         if T1 != T2 or (not S1.intersection(S2) and
                         (S1 != set() or S2 != set())):
             continue
         # XXX we want some simplification (e.g. cancel or
         # simplify) but no matter what it's slow.
         a = len(cancel(x/y).free_symbols)
         b = len(x.free_symbols)
         c = len(y.free_symbols)
         # TODO is there a better heuristic?
         if a == 0 and (b > 0 or c > 0):
             return y
예제 #13
0
def calculate_series(e, x, logx=None):
    """ Calculates at least one term of the series of ``e`` in ``x``.

    This is a place that fails most often, so it is in its own function.
    """
    from sympy.polys import cancel

    for t in e.lseries(x, logx=logx):
        t = cancel(t)

        if t.has(exp) and t.has(log):
            t = powdenest(t)

        if t.simplify():
            break

    return t
예제 #14
0
def roots_binomial(f):
    """Returns a list of roots of a binomial polynomial."""
    n = f.degree()

    a, b = f.nth(n), f.nth(0)
    alpha = (-cancel(b/a))**Rational(1, n)

    if alpha.is_number:
        alpha = alpha.expand(complex=True)

    roots, I = [], S.ImaginaryUnit

    for k in xrange(n):
        zeta = exp(2*k*S.Pi*I/n).expand(complex=True)
        roots.append((alpha*zeta).expand(power_base=False))

    return roots
예제 #15
0
def calculate_series(e, x, logx=None):
    """ Calculates at least one term of the series of ``e`` in ``x``.

    This is a place that fails most often, so it is in its own function.
    """
    from sympy.polys import cancel
    from sympy.simplify import bottom_up

    for t in e.lseries(x, logx=logx):
        # bottom_up function is required for a specific case - when e is
        # -exp(p/(p + 1)) + exp(-p**2/(p + 1) + p). No current simplification
        # methods reduce this to 0 while not expanding polynomials.
        t = bottom_up(t, lambda w: getattr(w, 'normal', lambda: w)())
        t = cancel(t, expand=False).factor()

        if t.has(exp) and t.has(log):
            t = powdenest(t)

        if not t.is_zero:
            break

    return t
예제 #16
0
파일: heurisch.py 프로젝트: AALEKH/sympy
    def _splitter(p):
        for y in V:
            if not p.has(y):
                continue

            if _derivation(y) is not S.Zero:
                c, q = p.as_poly(y).primitive()

                q = q.as_expr()

                h = gcd(q, _derivation(q), y)
                s = quo(h, gcd(q, q.diff(y), y), y)

                c_split = _splitter(c)

                if s.as_poly(y).degree() == 0:
                    return (c_split[0], q * c_split[1])

                q_split = _splitter(cancel(q / s))

                return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1])
        else:
            return (S.One, p)
예제 #17
0
    def _splitter(p):
        for y in V:
            if not p.has(y):
                continue

            if _derivation(y) is not S.Zero:
                c, q = p.as_poly(y).primitive()

                q = q.as_expr()

                h = gcd(q, _derivation(q), y)
                s = quo(h, gcd(q, q.diff(y), y), y)

                c_split = _splitter(c)

                if s.as_poly(y).degree() == 0:
                    return (c_split[0], q * c_split[1])

                q_split = _splitter(cancel(q / s))

                return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1])

        return (S.One, p)
예제 #18
0
파일: solvers.py 프로젝트: mackaka/sympy
def solve_undetermined_coeffs(equ, coeffs, sym, **flags):
    """Solve equation of a type p(x; a_1, ..., a_k) == q(x) where both
       p, q are univariate polynomials and f depends on k parameters.
       The result of this functions is a dictionary with symbolic
       values of those parameters with respect to coefficients in q.

       This functions accepts both Equations class instances and ordinary
       SymPy expressions. Specification of parameters and variable is
       obligatory for efficiency and simplicity reason.

       >>> from sympy import Eq
       >>> from sympy.abc import a, b, c, x
       >>> from sympy.solvers import solve_undetermined_coeffs

       >>> solve_undetermined_coeffs(Eq(2*a*x + a+b, x), [a, b], x)
       {a: 1/2, b: -1/2}

       >>> solve_undetermined_coeffs(Eq(a*c*x + a+b, x), [a, b], x)
       {a: 1/c, b: -1/c}

    """
    if isinstance(equ, Equality):
        # got equation, so move all the
        # terms to the left hand side
        equ = equ.lhs - equ.rhs

    equ = cancel(equ).as_numer_denom()[0]

    system = collect(equ.expand(), sym, evaluate=False).values()

    if not any([equ.has(sym) for equ in system]):
        # consecutive powers in the input expressions have
        # been successfully collected, so solve remaining
        # system using Gaussian elimination algorithm
        return solve(system, *coeffs, **flags)
    else:
        return None  # no solutions
예제 #19
0
파일: solvers.py 프로젝트: pyc111/sympy
def solve_undetermined_coeffs(equ, coeffs, sym, **flags):
    """Solve equation of a type p(x; a_1, ..., a_k) == q(x) where both
       p, q are univariate polynomials and f depends on k parameters.
       The result of this functions is a dictionary with symbolic
       values of those parameters with respect to coefficients in q.

       This functions accepts both Equations class instances and ordinary
       SymPy expressions. Specification of parameters and variable is
       obligatory for efficiency and simplicity reason.

       >>> from sympy import Eq
       >>> from sympy.abc import a, b, c, x
       >>> from sympy.solvers import solve_undetermined_coeffs

       >>> solve_undetermined_coeffs(Eq(2*a*x + a+b, x), [a, b], x)
       {a: 1/2, b: -1/2}

       >>> solve_undetermined_coeffs(Eq(a*c*x + a+b, x), [a, b], x)
       {a: 1/c, b: -1/c}

    """
    if isinstance(equ, Equality):
        # got equation, so move all the
        # terms to the left hand side
        equ = equ.lhs - equ.rhs

    equ = cancel(equ).as_numer_denom()[0]

    system = collect(equ.expand(), sym, evaluate=False).values()

    if not any([equ.has(sym) for equ in system]):
        # consecutive powers in the input expressions have
        # been successfully collected, so solve remaining
        # system using Gaussian elimination algorithm
        return solve(system, *coeffs, **flags)
    else:
        return None  # no solutions
예제 #20
0
파일: rewrite.py 프로젝트: silver1543/sympy
def apart(f, z=None, **args):
    """Computes partial fraction decomposition of a rational function.

       Given a rational function 'f', performing only gcd operations
       over the algebraic closure of the initial field of definition,
       compute full partial fraction decomposition with fractions
       having linear denominators.

       For all other kinds of expressions the input is returned in an
       unchanged form. Note however, that `apart` function can thread
       over sums and relational operators.

       Note that no factorization of the initial denominator of `f` is
       needed.  The final decomposition is formed in terms of a sum of
       RootSum instances.  By default RootSum tries to compute all its
       roots to simplify itself. This behavior can be however avoided
       by setting the keyword flag evaluate=False, which will make this
       function return a formal decomposition.

           >>> from sympy import apart
           >>> from sympy.abc import x, y

           >>> apart(y/(x+2)/(x+1), x)
           y/(1 + x) - y/(2 + x)

           >>> apart(1/(1+x**5), x, evaluate=False)
           RootSum(Lambda(_a, -_a/(5*(x - _a))), x**5 + 1, x, domain='ZZ')

       References
       ==========

       .. [Bronstein93] M. Bronstein, B. Salvy, Full partial fraction
           decomposition of rational functions, Proceedings ISSAC '93,
           ACM Press, Kiev, Ukraine, 1993, pp. 157-160.

    """
    f = cancel(f)

    if z is None:
        symbols = f.atoms(Symbol)

        if not symbols:
            return f

        if len(symbols) == 1:
            z = list(symbols)[0]
        else:
            raise ValueError("multivariate partial fractions are not supported")

    P, Q = f.as_numer_denom()

    if not Q.has(z):
        return f

    partial, r = div(P, Q, z)
    f, q, U = r / Q, Q, []

    u = Function('u')(z)
    a = Dummy('a')

    q = Poly(q, z)

    for d, n in q.sqf_list(all=True, include=True):
        b = d.as_basic()
        U += [ u.diff(z, n-1) ]

        h = cancel(f*b**n) / u**n

        H, subs = [h], []

        for j in range(1, n):
            H += [ H[-1].diff(z) / j ]

        for j in range(1, n+1):
            subs += [ (U[j-1], b.diff(z, j) / j) ]

        for j in range(0, n):
            P, Q = cancel(H[j]).as_numer_denom()

            for i in range(0, j+1):
                P = P.subs(*subs[j-i])

            Q = Q.subs(*subs[0])

            P = Poly(P, z)
            Q = Poly(Q, z)

            G = P.gcd(d)
            D = d.exquo(G)

            B, g = Q.half_gcdex(D)
            b = (P * B.exquo(g)).rem(D)

            numer = b.as_basic()
            denom = (z-a)**(n-j)

            expr = numer.subs(z, a) / denom

            partial += RootSum(Lambda(a, expr), D, **args)

    return partial
예제 #21
0
파일: solvers.py 프로젝트: fxkr/sympy
def _solve(f, *symbols, **flags):
    """Solves equations and systems of equations.

       Currently supported are univariate polynomial, transcendental
       equations, piecewise combinations thereof and systems of linear
       and polynomial equations.  Input is formed as a single expression
       or an equation,  or an iterable container in case of an equation
       system.  The type of output may vary and depends heavily on the
       input. For more details refer to more problem specific functions.

       By default all solutions are simplified to make the output more
       readable. If this is not the expected behavior (e.g., because of
       speed issues) set simplified=False in function arguments.

       To solve equations and systems of equations like recurrence relations
       or differential equations, use rsolve() or dsolve(), respectively.

       >>> from sympy import I, solve
       >>> from sympy.abc import x, y

       Solve a polynomial equation:

       >>> solve(x**4-1, x)
       [1, -1, -I, I]

       Solve a linear system:

       >>> solve((x+5*y-2, -3*x+6*y-15), x, y)
       {x: -3, y: 1}

    """

    def sympified_list(w):
        return map(sympify, iff(isinstance(w,(list, tuple, set)), w, [w]))
    # make f and symbols into lists of sympified quantities
    # keeping track of how f was passed since if it is a list
    # a dictionary of results will be returned.
    bare_f = not iterable(f)
    f, symbols = (sympified_list(w) for w in [f, symbols])

    for i, fi in enumerate(f):
        if isinstance(fi, Equality):
            f[i] = fi.lhs - fi.rhs
        elif isinstance(fi, Poly):
            f[i] = fi.as_expr()
        elif isinstance(fi, bool) or fi.is_Relational:
            return reduce_inequalities(f, assume=flags.get('assume'))

    if not symbols:
        #get symbols from equations or supply dummy symbols since
        #solve(3,x) returns []...though it seems that it should raise some sort of error TODO
        symbols = set([])
        for fi in f:
            symbols |= fi.free_symbols or set([Dummy('x')])
        symbols = list(symbols)
        symbols.sort(key=Basic.sort_key)

    if len(symbols) == 1:
        if isinstance(symbols[0], (list, tuple, set)):
            symbols = symbols[0]

    result = list()

    # Begin code handling for Function and Derivative instances
    # Basic idea:  store all the passed symbols in symbols_passed, check to see
    # if any of them are Function or Derivative types, if so, use a dummy
    # symbol in their place, and set symbol_swapped = True so that other parts
    # of the code can be aware of the swap.  Once all swapping is done, the
    # continue on with regular solving as usual, and swap back at the end of
    # the routine, so that whatever was passed in symbols is what is returned.
    symbols_new = []
    symbol_swapped = False

    symbols_passed = list(symbols)

    for i, s in enumerate(symbols):
        if s.is_Symbol:
            s_new = s
        elif s.is_Function:
            symbol_swapped = True
            s_new = Dummy('F%d' % i)
        elif s.is_Derivative:
            symbol_swapped = True
            s_new = Dummy('D%d' % i)
        else:
            raise TypeError('not a Symbol or a Function')
        symbols_new.append(s_new)

        if symbol_swapped:
            swap_back_dict = dict(zip(symbols_new, symbols))
    # End code for handling of Function and Derivative instances

    if bare_f:
        f = f[0]

        # Create a swap dictionary for storing the passed symbols to be solved
        # for, so that they may be swapped back.
        if symbol_swapped:
            swap_dict = zip(symbols, symbols_new)
            f = f.subs(swap_dict)
            symbols = symbols_new

        # Any embedded piecewise functions need to be brought out to the
        # top level so that the appropriate strategy gets selected.
        f = piecewise_fold(f)

        if len(symbols) != 1:
            soln = None
            free = f.free_symbols
            ex = free - set(symbols)
            if len(ex) == 1:
                ex = ex.pop()
                try:
                    # may come back as dict or list (if non-linear)
                    soln = solve_undetermined_coeffs(f, symbols, ex)
                except NotImplementedError:
                    pass
            if soln is None:
                n, d = solve_linear(f, x=symbols)
                if n.is_Symbol:
                    soln = {n: cancel(d)}
            if soln:
                if symbol_swapped and isinstance(soln, dict):
                    return dict([(swap_back_dict[k],
                                  v.subs(swap_back_dict))
                                  for k, v in soln.iteritems()])
                return soln

        symbol = symbols[0]

        # first see if it really depends on symbol and whether there
        # is a linear solution
        f_num, sol = solve_linear(f, x=symbols)
        if not symbol in f_num.free_symbols:
            return []
        elif f_num.is_Symbol:
            return [cancel(sol)]

        strategy = guess_solve_strategy(f, symbol)
        result = False # no solution was obtained

        if strategy == GS_POLY:
            poly = f.as_poly(symbol)
            if poly is None:
                msg = "Cannot solve equation %s for %s" % (f, symbol)
            else:
                # for cubics and quartics, if the flag wasn't set, DON'T do it
                # by default since the results are quite long. Perhaps one could
                # base this decision on a certain crtical length of the roots.
                if poly.degree() > 2:
                    flags['simplified'] = flags.get('simplified', False)
                result = roots(poly, cubics=True, quartics=True).keys()

        elif strategy == GS_RATIONAL:
            P, _ = f.as_numer_denom()
            dens = denoms(f, x=symbols)
            # reject any result that makes Q affirmatively 0;
            # if in doubt, keep it
            try:
                soln = _solve(P, symbol, **flags)
            except NotImplementedError:
                msg = "Cannot solve equation %s for %s" % (P, symbol)
                result = []
            else:
                if dens:
                    result = [s for s in soln if all(not checksol(den, {symbol: s}) for den in dens)]
                else:
                    result = soln

        elif strategy == GS_POLY_CV_1:
            args = list(f.args)
            if isinstance(f, Pow):
                result = _solve(args[0], symbol, **flags)
            elif isinstance(f, Add):
                # we must search for a suitable change of variables
                # collect exponents
                exponents_denom = list()
                for arg in args:
                    if isinstance(arg, Pow):
                        exponents_denom.append(arg.exp.q)
                    elif isinstance(arg, Mul):
                        for mul_arg in arg.args:
                            if isinstance(mul_arg, Pow):
                                exponents_denom.append(mul_arg.exp.q)
                assert len(exponents_denom) > 0
                if len(exponents_denom) == 1:
                    m = exponents_denom[0]
                else:
                    # get the LCM of the denominators
                    m = reduce(ilcm, exponents_denom)
                # x -> y**m.
                # we assume positive for simplification purposes
                t = Dummy('t', positive=True)
                f_ = f.subs(symbol, t**m)
                if guess_solve_strategy(f_, t) != GS_POLY:
                    msg = "Could not convert to a polynomial equation: %s" % f_
                    result = []
                else:
                    soln = [s**m for s in _solve(f_, t)]
                    # we might have introduced solutions from another branch
                    # when changing variables; check and keep solutions
                    # unless they definitely aren't a solution
                    result = [s for s in soln if checksol(f, {symbol: s}) is not False]

            elif isinstance(f, Mul):
                result = []
                for m in f.args:
                    result.extend(_solve(m, symbol, **flags) or [])

        elif strategy == GS_POLY_CV_2:
            m = 0
            args = list(f.args)
            if isinstance(f, Add):
                for arg in args:
                    if isinstance(arg, Pow):
                        m = min(m, arg.exp)
                    elif isinstance(arg, Mul):
                        for mul_arg in arg.args:
                            if isinstance(mul_arg, Pow):
                                m = min(m, mul_arg.exp)
            elif isinstance(f, Mul):
                for mul_arg in args:
                    if isinstance(mul_arg, Pow):
                        m = min(m, mul_arg.exp)

            if m and m != 1:
                f_ = simplify(f*symbol**(-m))
                try:
                    sols = _solve(f_, symbol)
                except NotImplementedError:
                    msg = 'Could not solve %s for %s' % (f_, symbol)
                else:
                    # we might have introduced unwanted solutions
                    # when multiplying by x**-m; check and keep solutions
                    # unless they definitely aren't a solution
                    if sols:
                        result = [s for s in sols if checksol(f, {symbol: s}) is not False]
            else:
                msg = 'CV_2 calculated %d but it should have been other than 0 or 1' % m

        elif strategy == GS_PIECEWISE:
            result = set()
            for expr, cond in f.args:
                candidates = _solve(expr, *symbols)
                if isinstance(cond, bool) or cond.is_Number:
                    if not cond:
                        continue

                    # Only include solutions that do not match the condition
                    # of any of the other pieces.
                    for candidate in candidates:
                        matches_other_piece = False
                        for other_expr, other_cond in f.args:
                            if isinstance(other_cond, bool) \
                               or other_cond.is_Number:
                                continue
                            if bool(other_cond.subs(symbol, candidate)):
                                matches_other_piece = True
                                break
                        if not matches_other_piece:
                            result.add(candidate)
                else:
                    for candidate in candidates:
                        if bool(cond.subs(symbol, candidate)):
                            result.add(candidate)

            result = list(result)

        elif strategy == -1:
            raise ValueError('Could not parse expression %s' % f)

        # this is the fallback for not getting any other solution
        if result is False or strategy == GS_TRANSCENDENTAL:
            # reject any result that makes any dens affirmatively 0,
            # if in doubt, keep it
            soln = tsolve(f_num, symbol)
            dens = denoms(f, x=symbols)
            if not dens:
                result = soln
            else:
                result = [s for s in soln if all(not checksol(den, {symbol: s}) for den in dens)]

        if result is False:
            raise NotImplementedError(msg + "\nNo algorithms are implemented to solve equation %s" % f)

        if flags.get('simplified', True) and strategy != GS_RATIONAL:
            result = map(simplify, result)

        return result
    else:
        if not f:
            return []
        else:
            # Create a swap dictionary for storing the passed symbols to be
            # solved for, so that they may be swapped back.
            if symbol_swapped:
                swap_dict = zip(symbols, symbols_new)
                f = [fi.subs(swap_dict) for fi in f]
                symbols = symbols_new

            polys = []

            for g in f:

                poly = g.as_poly(*symbols, extension=True)

                if poly is not None:
                    polys.append(poly)
                else:
                    raise NotImplementedError()

            if all(p.is_linear for p in polys):
                n, m = len(f), len(symbols)
                matrix = zeros((n, m + 1))

                for i, poly in enumerate(polys):
                    for monom, coeff in poly.terms():
                        try:
                            j = list(monom).index(1)
                            matrix[i, j] = coeff
                        except ValueError:
                            matrix[i, m] = -coeff

                # a dictionary of symbols: values or None
                soln = solve_linear_system(matrix, *symbols, **flags)
                # Use swap_dict to ensure we return the same type as what was
                # passed; this is not necessary in the poly-system case which
                # only supports zero-dimensional systems
                if symbol_swapped and soln:
                        soln = dict([(swap_back_dict[k],
                                      v.subs(swap_back_dict))
                                      for k, v in soln.iteritems()])
                return soln
            else:
                # a list of tuples, T, where T[i] [j] corresponds to the ith solution for symbols[j]
                return solve_poly_system(polys)
예제 #22
0
파일: solvers.py 프로젝트: qmattpap/sympy
def _solve(f, *symbols, **flags):
    """ Return a checked solution for f in terms of one or more of the symbols."""

    if not iterable(f):

        if len(symbols) != 1:
            soln = None
            free = f.free_symbols
            ex = free - set(symbols)
            if len(ex) == 1:
                ex = ex.pop()
                try:
                    # may come back as dict or list (if non-linear)
                    soln = solve_undetermined_coeffs(f, symbols, ex)
                except NotImplementedError:
                    pass
            if not soln is None:
                return soln
            # find first successful solution
            failed = []
            for s in symbols:
                n, d = solve_linear(f, x=[s])
                if n.is_Symbol:
                    soln = {n: cancel(d)}
                    return soln
                failed.append(s)
            for s in failed:
                try:
                    soln = _solve(f, s, **flags)
                    return soln
                except NotImplementedError:
                    pass
            else:
                msg = "No algorithms are implemented to solve equation %s"
                raise NotImplementedError(msg % f)

        symbol = symbols[0]

        # first see if it really depends on symbol and whether there
        # is a linear solution
        f_num, sol = solve_linear(f, x=symbols)
        if not symbol in f_num.free_symbols:
            return []
        elif f_num.is_Symbol:
            return [cancel(sol)]

        strategy = guess_solve_strategy(f, symbol)
        result = False # no solution was obtained

        if strategy == GS_POLY:
            poly = f.as_poly(symbol)
            if poly is None:
                msg = "Cannot solve equation %s for %s" % (f, symbol)
            else:
                # for cubics and quartics, if the flag wasn't set, DON'T do it
                # by default since the results are quite long. Perhaps one could
                # base this decision on a certain critical length of the roots.
                if poly.degree() > 2:
                    flags['simplified'] = flags.get('simplified', False)
                result = roots(poly, cubics=True, quartics=True).keys()

        elif strategy == GS_RATIONAL:
            P, _ = f.as_numer_denom()
            dens = denoms(f, x=symbols)
            try:
                soln = _solve(P, symbol, **flags)
            except NotImplementedError:
                msg = "Cannot solve equation %s for %s" % (P, symbol)
                result = []
            else:
                if dens:
                    # reject any result that makes any denom. affirmatively 0;
                    # if in doubt, keep it
                    result = [s for s in soln if all(not checksol(den, {symbol: s}, **flags) for den in dens)]
                else:
                    result = soln

        elif strategy == GS_POLY_CV_1:
            args = list(f.args)
            if isinstance(f, Pow):
                result = _solve(args[0], symbol, **flags)
            elif isinstance(f, Add):
                # we must search for a suitable change of variables
                # collect exponents
                exponents_denom = list()
                for arg in args:
                    if isinstance(arg, Pow):
                        exponents_denom.append(arg.exp.q)
                    elif isinstance(arg, Mul):
                        for mul_arg in arg.args:
                            if isinstance(mul_arg, Pow):
                                exponents_denom.append(mul_arg.exp.q)
                assert len(exponents_denom) > 0
                if len(exponents_denom) == 1:
                    m = exponents_denom[0]
                else:
                    # get the LCM of the denominators
                    m = reduce(ilcm, exponents_denom)
                # x -> y**m.
                # we assume positive for simplification purposes
                t = Dummy('t', positive=True)
                f_ = f.subs(symbol, t**m)
                if guess_solve_strategy(f_, t) != GS_POLY:
                    msg = "Could not convert to a polynomial equation: %s" % f_
                    result = []
                else:
                    soln = [s**m for s in _solve(f_, t)]
                    # we might have introduced solutions from another branch
                    # when changing variables; check and keep solutions
                    # unless they definitely aren't a solution
                    result = [s for s in soln if checksol(f, {symbol: s}, **flags) is not False]

            elif isinstance(f, Mul):
                result = []
                for m in f.args:
                    result.extend(_solve(m, symbol, **flags) or [])

        elif strategy == GS_POLY_CV_2:
            m = 0
            args = list(f.args)
            if isinstance(f, Add):
                for arg in args:
                    if isinstance(arg, Pow):
                        m = min(m, arg.exp)
                    elif isinstance(arg, Mul):
                        for mul_arg in arg.args:
                            if isinstance(mul_arg, Pow):
                                m = min(m, mul_arg.exp)
            elif isinstance(f, Mul):
                for mul_arg in args:
                    if isinstance(mul_arg, Pow):
                        m = min(m, mul_arg.exp)

            if m and m != 1:
                f_ = simplify(f*symbol**(-m))
                try:
                    sols = _solve(f_, symbol)
                except NotImplementedError:
                    msg = 'Could not solve %s for %s' % (f_, symbol)
                else:
                    # we might have introduced unwanted solutions
                    # when multiplying by x**-m; check and keep solutions
                    # unless they definitely aren't a solution
                    if sols:
                        result = [s for s in sols if checksol(f, {symbol: s}, **flags) is not False]
            else:
                msg = 'CV_2 calculated %d but it should have been other than 0 or 1' % m

        elif strategy == GS_PIECEWISE:
            result = set()
            for expr, cond in f.args:
                candidates = _solve(expr, *symbols)
                if isinstance(cond, bool) or cond.is_Number:
                    if not cond:
                        continue

                    # Only include solutions that do not match the condition
                    # of any of the other pieces.
                    for candidate in candidates:
                        matches_other_piece = False
                        for other_expr, other_cond in f.args:
                            if isinstance(other_cond, bool) \
                               or other_cond.is_Number:
                                continue
                            if bool(other_cond.subs(symbol, candidate)):
                                matches_other_piece = True
                                break
                        if not matches_other_piece:
                            result.add(candidate)
                else:
                    for candidate in candidates:
                        if bool(cond.subs(symbol, candidate)):
                            result.add(candidate)

            result = list(result)

        elif strategy == -1:
            raise ValueError('Could not parse expression %s' % f)

        # this is the fallback for not getting any other solution
        if result is False or strategy == GS_TRANSCENDENTAL:
            soln = tsolve(f_num, symbol)
            dens = denoms(f, x=symbols)
            if not dens:
                result = soln
            else:
                # reject any result that makes any denom. affirmatively 0;
                # if in doubt, keep it
                result = [s for s in soln if all(not checksol(den, {symbol: s}, **flags) for den in dens)]

        if result is False:
            raise NotImplementedError(msg + "\nNo algorithms are implemented to solve equation %s" % f)

        if flags.get('simplified', True) and strategy != GS_RATIONAL:
            result = map(simplify, result)

        return result
    else:
        if not f:
            return []
        else:

            polys = []

            for g in f:

                poly = g.as_poly(*symbols, **{'extension': True})

                if poly is not None:
                    polys.append(poly)
                else:
                    raise NotImplementedError()

            if all(p.is_linear for p in polys):
                n, m = len(f), len(symbols)
                matrix = zeros((n, m + 1))

                for i, poly in enumerate(polys):
                    for monom, coeff in poly.terms():
                        try:
                            j = list(monom).index(1)
                            matrix[i, j] = coeff
                        except ValueError:
                            matrix[i, m] = -coeff

                # a dictionary of symbols: values or None
                result = solve_linear_system(matrix, *symbols, **flags)
                return result
            else:
                # a list of tuples, T, where T[i] [j] corresponds to the ith solution for symbols[j]
                result = solve_poly_system(polys)
                return result
예제 #23
0
파일: risch.py 프로젝트: haz/sympy
def heurisch(f, x, **kwargs):
    """Compute indefinite integral using heuristic Risch algorithm.

       This is a heuristic approach to indefinite integration in finite
       terms using the extended heuristic (parallel) Risch algorithm, based
       on Manuel Bronstein's "Poor Man's Integrator".

       The algorithm supports various classes of functions including
       transcendental elementary or special functions like Airy,
       Bessel, Whittaker and Lambert.

       Note that this algorithm is not a decision procedure. If it isn't
       able to compute the antiderivative for a given function, then this is
       not a proof that such a functions does not exist.  One should use
       recursive Risch algorithm in such case.  It's an open question if
       this algorithm can be made a full decision procedure.

       This is an internal integrator procedure. You should use toplevel
       'integrate' function in most cases,  as this procedure needs some
       preprocessing steps and otherwise may fail.

       Specification
       ============

         heurisch(f, x, rewrite=False, hints=None)

           where
             f : expression
             x : symbol

             rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh'
             hints   -> a list of functions that may appear in anti-derivate

              - hints = None          --> no suggestions at all
              - hints = [ ]           --> try to figure out
              - hints = [f1, ..., fn] --> we know better

       Examples
       ========

       >>> from sympy import tan
       >>> from sympy.integrals.risch import heurisch
       >>> from sympy.abc import x, y

       >>> heurisch(y*tan(x), x)
       y*log(1 + tan(x)**2)/2

       See Manuel Bronstein's "Poor Man's Integrator":

       [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html

       For more information on the implemented algorithm refer to:

       [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration
           Method and its Implementation in Maple, Proceedings of
           ISSAC'89, ACM Press, 212-217.

       [3] J. H. Davenport, On the Parallel Risch Algorithm (I),
           Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157.

       [4] J. H. Davenport, On the Parallel Risch Algorithm (III):
           Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6.

       [5] J. H. Davenport, B. M. Trager, On the Parallel Risch
           Algorithm (II), ACM Transactions on Mathematical
           Software 11 (1985), 356-362.

    """
    f = sympify(f)

    if not f.is_Add:
        indep, f = f.as_independent(x)
    else:
        indep = S.One

    if not f.has(x):
        return indep * f * x

    rewritables = {
        (sin, cos, cot)     : tan,
        (sinh, cosh, coth)  : tanh,
    }

    rewrite = kwargs.pop('rewrite', False)

    if rewrite:
        for candidates, rule in rewritables.iteritems():
            f = f.rewrite(candidates, rule)
    else:
        for candidates in rewritables.iterkeys():
            if f.has(*candidates):
                break
        else:
            rewrite = True

    terms = components(f, x)

    hints = kwargs.get('hints', None)

    if hints is not None:
        if not hints:
            a = Wild('a', exclude=[x])
            b = Wild('b', exclude=[x])

            for g in set(terms):
                if g.is_Function:
                    if g.func is exp:
                        M = g.args[0].match(a*x**2)

                        if M is not None:
                            terms.add(erf(sqrt(-M[a])*x))

                        M = g.args[0].match(a*log(x)**2)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(-I*erf(I*(sqrt(M[a])*log(x)+1/(2*sqrt(M[a])))))
                            if M[a].is_negative:
                                terms.add(erf(sqrt(-M[a])*log(x)-1/(2*sqrt(-M[a]))))

                elif g.is_Pow:
                    if g.exp.is_Rational and g.exp.q == 2:
                        M = g.base.match(a*x**2 + b)

                        if M is not None and M[b].is_positive:
                            if M[a].is_positive:
                                terms.add(asinh(sqrt(M[a]/M[b])*x))
                            elif M[a].is_negative:
                                terms.add(asin(sqrt(-M[a]/M[b])*x))

                        M = g.base.match(a*x**2 - b)

                        if M is not None and M[b].is_positive:
                            if M[a].is_positive:
                                terms.add(acosh(sqrt(M[a]/M[b])*x))
                            elif M[a].is_negative:
                                terms.add((-M[b]/2*sqrt(-M[a])*\
                                           atan(sqrt(-M[a])*x/sqrt(M[a]*x**2-M[b]))))

        else:
            terms |= set(hints)

    for g in set(terms):
        terms |= components(cancel(g.diff(x)), x)

    V = _symbols('x', len(terms))

    mapping = dict(zip(terms, V))

    rev_mapping = {}

    for k, v in mapping.iteritems():
        rev_mapping[v] = k

    def substitute(expr):
        return expr.subs(mapping)

    diffs = [ substitute(cancel(g.diff(x))) for g in terms ]

    denoms = [ g.as_numer_denom()[1] for g in diffs ]
    try:
        denom = reduce(lambda p, q: lcm(p, q, *V), denoms)
    except PolynomialError:
        # lcm can fail with this. See issue 1418.
        return None

    numers = [ cancel(denom * g) for g in diffs ]

    def derivation(h):
        return Add(*[ d * h.diff(v) for d, v in zip(numers, V) ])

    def deflation(p):
        for y in V:
            if not p.has(y):
                continue

            if derivation(p) is not S.Zero:
                c, q = p.as_poly(y).primitive()
                return deflation(c)*gcd(q, q.diff(y)).as_expr()
        else:
            return p

    def splitter(p):
        for y in V:
            if not p.has(y):
                continue

            if derivation(y) is not S.Zero:
                c, q = p.as_poly(y).primitive()

                q = q.as_expr()

                h = gcd(q, derivation(q), y)
                s = quo(h, gcd(q, q.diff(y), y), y)

                c_split = splitter(c)

                if s.as_poly(y).degree() == 0:
                    return (c_split[0], q * c_split[1])

                q_split = splitter(cancel(q / s))

                return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1])
        else:
            return (S.One, p)

    special = {}

    for term in terms:
        if term.is_Function:
            if term.func is tan:
                special[1 + substitute(term)**2] = False
            elif term.func is tanh:
                special[1 + substitute(term)] = False
                special[1 - substitute(term)] = False
            elif term.func is C.LambertW:
                special[substitute(term)] = True

    F = substitute(f)

    P, Q = F.as_numer_denom()

    u_split = splitter(denom)
    v_split = splitter(Q)

    polys = list(v_split) + [ u_split[0] ] + special.keys()

    s = u_split[0] * Mul(*[ k for k, v in special.iteritems() if v ])
    polified = [ p.as_poly(*V) for p in [s, P, Q] ]
    if None in polified:
        return
    a, b, c = [ p.total_degree() for p in polified ]

    poly_denom = (s * v_split[0] * deflation(v_split[1])).as_expr()

    def exponent(g):
        if g.is_Pow:
            if g.exp.is_Rational and g.exp.q != 1:
                if g.exp.p > 0:
                    return g.exp.p + g.exp.q - 1
                else:
                    return abs(g.exp.p + g.exp.q)
            else:
                return 1
        elif not g.is_Atom:
            return max([ exponent(h) for h in g.args ])
        else:
            return 1

    A, B = exponent(f), a + max(b, c)

    if A > 1 and B > 1:
        monoms = monomials(V, A + B - 1)
    else:
        monoms = monomials(V, A + B)

    poly_coeffs = _symbols('A', len(monoms))

    poly_part = Add(*[ poly_coeffs[i]*monomial
        for i, monomial in enumerate(monoms) ])

    reducibles = set()

    for poly in polys:
        if poly.has(*V):
            try:
                factorization = factor(poly, greedy=True)
            except PolynomialError:
                factorization = poly
            factorization = poly

            if factorization.is_Mul:
                reducibles |= set(factorization.args)
            else:
                reducibles.add(factorization)

    def integrate(field=None):
        irreducibles = set()

        for poly in reducibles:
            for z in poly.atoms(Symbol):
                if z in V:
                    break
            else:
                continue

            irreducibles |= set(root_factors(poly, z, filter=field))

        log_coeffs, log_part = [], []
        B = _symbols('B', len(irreducibles))

        for i, poly in enumerate(irreducibles):
            if poly.has(*V):
                log_coeffs.append(B[i])
                log_part.append(log_coeffs[-1] * log(poly))

        coeffs = poly_coeffs + log_coeffs

        candidate = poly_part/poly_denom + Add(*log_part)

        h = F - derivation(candidate) / denom

        numer = h.as_numer_denom()[0].expand()

        equations = {}

        for term in Add.make_args(numer):
            coeff, dependent = term.as_independent(*V)

            if dependent in equations:
                equations[dependent] += coeff
            else:
                equations[dependent] = coeff

        solution = solve(equations.values(), *coeffs)

        if solution is not None:
            return (solution, candidate, coeffs)
        else:
            return None

    if not (F.atoms(Symbol) - set(V)):
        result = integrate('Q')

        if result is None:
            result = integrate()
    else:
        result = integrate()

    if result is not None:
        (solution, candidate, coeffs) = result

        antideriv = candidate.subs(solution)

        for coeff in coeffs:
            if coeff not in solution:
                antideriv = antideriv.subs(coeff, S.Zero)

        antideriv = antideriv.subs(rev_mapping)
        antideriv = cancel(antideriv).expand()

        if antideriv.is_Add:
            antideriv = antideriv.as_independent(x)[1]

        return indep * antideriv
    else:
        if not rewrite:
            result = heurisch(f, x, rewrite=True, **kwargs)

            if result is not None:
                return indep * result

        return None
예제 #24
0
                                      is_log_deriv_k_t_radical_in_field)
    # TODO: finish writing this and write tests

    if case == 'auto':
        case = DE.case

    da = a.degree(DE.t)
    db = b.degree(DE.t)

    # The parametric and regular cases are identical, except for this part
    if parametric:
        dc = max([i.degree(DE.t) for i in cQ])
    else:
        dc = cQ.degree(DE.t)

    alpha = cancel(-b.as_poly(DE.t).LC().as_expr() /
                   a.as_poly(DE.t).LC().as_expr())

    if case == 'base':
        n = max(0, dc - max(db, da - 1))
        if db == da - 1 and alpha.is_Integer:
            n = max(0, alpha, dc - db)

    elif case == 'primitive':
        if db > da:
            n = max(0, dc - db)
        else:
            n = max(0, dc - da + 1)

        etaa, etad = frac_in(DE.d, DE.T[DE.level - 1])

        t1 = DE.t
예제 #25
0
파일: prde.py 프로젝트: pducks32/intergrala
def is_log_deriv_k_t_radical(fa, fd, DE, Df=True):
    """
    Checks if Df is the logarithmic derivative of a k(t)-radical.

    b in k(t) can be written as the logarithmic derivative of a k(t) radical if
    there exist n in ZZ and u in k(t) with n, u != 0 such that n*b == Du/u.
    Either returns (ans, u, n, const) or None, which means that Df cannot be
    written as the logarithmic derivative of a k(t)-radical.  ans is a list of
    tuples such that Mul(*[i**j for i, j in ans]) == u.  This is useful for
    seeing exactly what elements of k(t) produce u.

    This function uses the structure theorem approach, which says that for any
    f in K, Df is the logarithmic derivative of a K-radical if and only if there
    are ri in QQ such that::

            ---               ---       Dt
            \    r  * Dt   +  \    r  *   i
            /     i     i     /     i   ---   =  Df.
            ---               ---        t
         i in L            i in E         i
               K/C(x)            K/C(x)


    Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is
    transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i
    in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic
    monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i
    is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some
    a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of
    hyperexponential monomials of K over C(x)).  If K is an elementary extension
    over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the
    transcendence degree of K over C(x).  Furthermore, because Const_D(K) ==
    Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and
    deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x)
    and L_K/C(x) are disjoint.

    The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed
    recursively using this same function.  Therefore, it is required to pass
    them as indices to D (or T).  L_args are the arguments of the logarithms
    indexed by L_K (i.e., if i is in L_K, then T[i] == log(L_args[i])).  This is
    needed to compute the final answer u such that n*f == Du/u.

    exp(f) will be the same as u up to a multiplicative constant.  This is
    because they will both behave the same as monomials.  For example, both
    exp(x) and exp(x + 1) == E*exp(x) satisfy Dt == t. Therefore, the term const
    is returned.  const is such that exp(const)*f == u.  This is calculated by
    subtracting the arguments of one exponential from the other.  Therefore, it
    is necessary to pass the arguments of the exponential terms in E_args.

    To handle the case where we are given Df, not f, use
    is_log_deriv_k_t_radical_in_field().
    """
    H = []
    if Df:
        dfa, dfd = (fd * derivation(fa, DE) - fa * derivation(fd, DE)).cancel(
            fd**2, include=True)
    else:
        dfa, dfd = fa, fd

    # Our assumption here is that each monomial is recursively transcendental
    if len(DE.L_K) + len(DE.E_K) != len(DE.D) - 1:
        if [i for i in DE.cases if i == 'tan'] or \
                set([i for i in DE.cases if i == 'primitive']) - set(DE.L_K):
            raise NotImplementedError(
                "Real version of the structure "
                "theorems with hypertangent support is not yet implemented.")

        # TODO: What should really be done in this case?
        raise NotImplementedError("Nonelementary extensions not supported "
                                  "in the structure theorems.")

    E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.E_K]
    L_part = [DE.D[i].as_expr() for i in DE.L_K]

    lhs = Matrix([E_part + L_part])
    rhs = Matrix([dfa.as_expr() / dfd.as_expr()])

    A, u = constant_system(lhs, rhs, DE)
    if not all(derivation(i, DE, basic=True).is_zero for i in u) or not A:
        # If the elements of u are not all constant
        # Note: See comment in constant_system

        # Also note: derivation(basic=True) calls cancel()
        return None
    else:
        if not all(i.is_Rational for i in u):
            # TODO: But maybe we can tell if they're not rational, like
            # log(2)/log(3). Also, there should be an option to continue
            # anyway, even if the result might potentially be wrong.
            raise NotImplementedError("Cannot work with non-rational "
                                      "coefficients in this case.")
        else:
            n = reduce(ilcm, [i.as_numer_denom()[1] for i in u])
            u *= n
            terms = [DE.T[i] for i in DE.E_K] + DE.L_args
            ans = list(zip(terms, u))
            result = Mul(*[Pow(i, j) for i, j in ans])

            # exp(f) will be the same as result up to a multiplicative
            # constant.  We now find the log of that constant.
            argterms = DE.E_args + [DE.T[i] for i in DE.L_K]
            const = cancel(fa.as_expr() / fd.as_expr() -
                           Add(*[Mul(i, j / n) for i, j in zip(argterms, u)]))

            return (ans, result, n, const)
예제 #26
0
파일: prde.py 프로젝트: pducks32/intergrala
def constant_system(A, u, DE):
    """
    Generate a system for the constant solutions.

    Given a differential field (K, D) with constant field C = Const(K), a Matrix
    A, and a vector (Matrix) u with coefficients in K, returns the tuple
    (B, v, s), where B is a Matrix with coefficients in C and v is a vector
    (Matrix) such that either v has coefficients in C, in which case s is True
    and the solutions in C of Ax == u are exactly all the solutions of Bx == v,
    or v has a non-constant coefficient, in which case s is False Ax == u has no
    constant solution.

    This algorithm is used both in solving parametric problems and in
    determining if an element a of K is a derivative of an element of K or the
    logarithmic derivative of a K-radical using the structure theorem approach.

    Because Poly does not play well with Matrix yet, this algorithm assumes that
    all matrix entries are Basic expressions.
    """
    if not A:
        return A, u
    Au = A.row_join(u)
    Au = Au.rref(simplify=cancel)[0]
    # Warning: This will NOT return correct results if cancel() cannot reduce
    # an identically zero expression to 0.  The danger is that we might
    # incorrectly prove that an integral is nonelementary (such as
    # risch_integrate(exp((sin(x)**2 + cos(x)**2 - 1)*x**2), x).
    # But this is a limitation in computer algebra in general, and implicit
    # in the correctness of the Risch Algorithm is the computability of the
    # constant field (actually, this same correctness problem exists in any
    # algorithm that uses rref()).
    #
    # We therefore limit ourselves to constant fields that are computable
    # via the cancel() function, in order to prevent a speed bottleneck from
    # calling some more complex simplification function (rational function
    # coefficients will fall into this class).  Furthermore, (I believe) this
    # problem will only crop up if the integral explicitly contains an
    # expression in the constant field that is identically zero, but cannot
    # be reduced to such by cancel().  Therefore, a careful user can avoid this
    # problem entirely by being careful with the sorts of expressions that
    # appear in his integrand in the variables other than the integration
    # variable (the structure theorems should be able to completely decide these
    # problems in the integration variable).

    Au = Au.applyfunc(cancel)
    A, u = Au[:, :-1], Au[:, -1]

    for j in range(A.cols):
        for i in range(A.rows):
            if A[i, j].has(*DE.T):
                # This assumes that const(F(t0, ..., tn) == const(K) == F
                Ri = A[i, :]
                # Rm+1; m = A.rows
                Rm1 = Ri.applyfunc(lambda x: derivation(x, DE, basic=True) /
                                   derivation(A[i, j], DE, basic=True))
                Rm1 = Rm1.applyfunc(cancel)
                um1 = cancel(
                    derivation(u[i], DE, basic=True) /
                    derivation(A[i, j], DE, basic=True))

                for s in range(A.rows):
                    # A[s, :] = A[s, :] - A[s, i]*A[:, m+1]
                    Asj = A[s, j]
                    A.row_op(s, lambda r, jj: cancel(r - Asj * Rm1[jj]))
                    # u[s] = u[s] - A[s, j]*u[m+1
                    u.row_op(s, lambda r, jj: cancel(r - Asj * um1))

                A = A.col_join(Rm1)
                u = u.col_join(Matrix([um1]))

    return (A, u)
예제 #27
0
파일: partfrac.py 프로젝트: vidyar/sympy
def apart_list_full_decomposition(P, Q, dummygen):
    """
    Bronstein's full partial fraction decomposition algorithm.

    Given a univariate rational function ``f``, performing only GCD
    operations over the algebraic closure of the initial ground domain
    of definition, compute full partial fraction decomposition with
    fractions having linear denominators.

    Note that no factorization of the initial denominator of ``f`` is
    performed. The final decomposition is formed in terms of a sum of
    :class:`RootSum` instances.

    References
    ==========

    1. [Bronstein93]_

    """
    f, x, U = P/Q, P.gen, []

    u = Function('u')(x)
    a = Dummy('a')

    partial = []

    for d, n in Q.sqf_list_include(all=True):
        b = d.as_expr()
        U += [ u.diff(x, n - 1) ]

        h = cancel(f*b**n) / u**n

        H, subs = [h], []

        for j in range(1, n):
            H += [ H[-1].diff(x) / j ]

        for j in range(1, n + 1):
            subs += [ (U[j - 1], b.diff(x, j) / j) ]

        for j in range(0, n):
            P, Q = cancel(H[j]).as_numer_denom()

            for i in range(0, j + 1):
                P = P.subs(*subs[j - i])

            Q = Q.subs(*subs[0])

            P = Poly(P, x)
            Q = Poly(Q, x)

            G = P.gcd(d)
            D = d.quo(G)

            B, g = Q.half_gcdex(D)
            b = (P * B.quo(g)).rem(D)

            Dw = D.subs(x, dummygen.next())
            numer = Lambda(a, b.as_expr().subs(x, a))
            denom = Lambda(a, (x - a))
            exponent = n-j

            partial.append((Dw, numer, denom, exponent))

    return partial
예제 #28
0
파일: rde.py 프로젝트: Abhityagi16/sympy
def bound_degree(a, b, cQ, DE, case='auto', parametric=False):
    """
    Bound on polynomial solutions.

    Given a derivation D on k[t] and a, b, c in k[t] with a != 0, return
    n in ZZ such that deg(q) <= n for any solution q in k[t] of
    a*Dq + b*q == c, when parametric=False, or deg(q) <= n for any solution
    c1, ..., cm in Const(k) and q in k[t] of a*Dq + b*q == Sum(ci*gi, (i, 1, m))
    when parametric=True.

    For parametric=False, cQ is c, a Poly; for parametric=True, cQ is Q ==
    [q1, ..., qm], a list of Polys.

    This constitutes step 3 of the outline given in the rde.py docstring.
    """
    from sympy.integrals.prde import (parametric_log_deriv, limited_integrate,
        is_log_deriv_k_t_radical_in_field)
    # TODO: finish writing this and write tests

    if case == 'auto':
        case = DE.case

    da = a.degree(DE.t)
    db = b.degree(DE.t)

    # The parametric and regular cases are identical, except for this part
    if parametric:
        dc = max([i.degree(DE.t) for i in cQ])
    else:
        dc = cQ.degree(DE.t)

    alpha = cancel(-b.as_poly(DE.t).LC().as_expr()/
        a.as_poly(DE.t).LC().as_expr())

    if case == 'base':
        n = max(0, dc - max(db, da - 1))
        if db == da - 1 and alpha.is_Integer:
            n = max(0, alpha, dc - db)

    elif case == 'primitive':
        if db > da:
            n = max(0, dc - db)
        else:
            n = max(0, dc - da + 1)

        etaa, etad = frac_in(DE.d, DE.T[DE.level - 1])

        t1 = DE.t
        with DecrementLevel(DE):
            alphaa, alphad = frac_in(alpha, DE.t)
            if db == da - 1:
                # if alpha == m*Dt + Dz for z in k and m in ZZ:
                try:
                    (za, zd), m = limited_integrate(alphaa, alphad, [(etaa, etad)],
                        DE)
                except NonElementaryIntegralException:
                    pass
                else:
                    assert len(m) == 1
                    n = max(n, m[0])

            elif db == da:
                # if alpha == Dz/z for z in k*:
                    # beta = -lc(a*Dz + b*z)/(z*lc(a))
                    # if beta == m*Dt + Dw for w in k and m in ZZ:
                        # n = max(n, m)
                A = is_log_deriv_k_t_radical_in_field(alphaa, alphad, DE)
                if A is not None:
                    aa, z = A
                    if aa == 1:
                        beta = -(a*derivation(z, DE).as_poly(t1) +
                            b*z.as_poly(t1)).LC()/(z.as_expr()*a.LC())
                        betaa, betad = frac_in(beta, DE.t)
                        try:
                            (za, zd), m = limited_integrate(betaa, betad,
                                [(etaa, etad)], DE)
                        except NonElementaryIntegralException:
                            pass
                        else:
                            assert len(m) == 1
                            n = max(n, m[0])

    elif case == 'exp':
        n = max(0, dc - max(db, da))
        if da == db:
            etaa, etad = frac_in(DE.d.quo(Poly(DE.t, DE.t)), DE.T[DE.level - 1])
            with DecrementLevel(DE):
                alphaa, alphad = frac_in(alpha, DE.t)
                A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
                if A is not None:
                    # if alpha == m*Dt/t + Dz/z for z in k* and m in ZZ:
                        # n = max(n, m)
                    a, m, z = A
                    if a == 1:
                        n = max(n, m)

    elif case in ['tan', 'other_nonlinear']:
        delta = DE.d.degree(DE.t)
        lam = DE.d.LC()
        alpha = cancel(alpha/lam)
        n = max(0, dc - max(da + delta - 1, db))
        if db == da + delta - 1 and alpha.is_Integer:
            n = max(0, alpha, dc - db)

    else:
        raise ValueError("case must be one of {'exp', 'tan', 'primitive', "
            "'other_nonlinear', 'base'}, not %s." % case)

    return n
예제 #29
0
def _solve(f, *symbols, **flags):
    """Solves equations and systems of equations.

       Currently supported are univariate polynomial, transcendental
       equations, piecewise combinations thereof and systems of linear
       and polynomial equations.  Input is formed as a single expression
       or an equation,  or an iterable container in case of an equation
       system.  The type of output may vary and depends heavily on the
       input. For more details refer to more problem specific functions.

       By default all solutions are simplified to make the output more
       readable. If this is not the expected behavior (e.g., because of
       speed issues) set simplified=False in function arguments.

       To solve equations and systems of equations like recurrence relations
       or differential equations, use rsolve() or dsolve(), respectively.

       >>> from sympy import I, solve
       >>> from sympy.abc import x, y

       Solve a polynomial equation:

       >>> solve(x**4-1, x)
       [1, -1, -I, I]

       Solve a linear system:

       >>> solve((x+5*y-2, -3*x+6*y-15), x, y)
       {x: -3, y: 1}

    """
    def sympified_list(w):
        return map(sympify, iff(isinstance(w, (list, tuple, set)), w, [w]))

    # make f and symbols into lists of sympified quantities
    # keeping track of how f was passed since if it is a list
    # a dictionary of results will be returned.
    bare_f = not iterable(f)
    f, symbols = (sympified_list(w) for w in [f, symbols])

    for i, fi in enumerate(f):
        if isinstance(fi, Equality):
            f[i] = fi.lhs - fi.rhs
        elif isinstance(fi, Poly):
            f[i] = fi.as_expr()
        elif isinstance(fi, bool) or fi.is_Relational:
            return reduce_inequalities(f, assume=flags.get('assume'))

    if not symbols:
        #get symbols from equations or supply dummy symbols since
        #solve(3,x) returns []...though it seems that it should raise some sort of error TODO
        symbols = set([])
        for fi in f:
            symbols |= fi.free_symbols or set([Dummy('x')])
        symbols = list(symbols)
        symbols.sort(key=Basic.sort_key)

    if len(symbols) == 1:
        if isinstance(symbols[0], (list, tuple, set)):
            symbols = symbols[0]

    result = list()

    # Begin code handling for Function and Derivative instances
    # Basic idea:  store all the passed symbols in symbols_passed, check to see
    # if any of them are Function or Derivative types, if so, use a dummy
    # symbol in their place, and set symbol_swapped = True so that other parts
    # of the code can be aware of the swap.  Once all swapping is done, the
    # continue on with regular solving as usual, and swap back at the end of
    # the routine, so that whatever was passed in symbols is what is returned.
    symbols_new = []
    symbol_swapped = False

    symbols_passed = list(symbols)

    for i, s in enumerate(symbols):
        if s.is_Symbol:
            s_new = s
        elif s.is_Function:
            symbol_swapped = True
            s_new = Dummy('F%d' % i)
        elif s.is_Derivative:
            symbol_swapped = True
            s_new = Dummy('D%d' % i)
        else:
            raise TypeError('not a Symbol or a Function')
        symbols_new.append(s_new)

        if symbol_swapped:
            swap_back_dict = dict(zip(symbols_new, symbols))
    # End code for handling of Function and Derivative instances

    if bare_f:
        f = f[0]

        # Create a swap dictionary for storing the passed symbols to be solved
        # for, so that they may be swapped back.
        if symbol_swapped:
            swap_dict = zip(symbols, symbols_new)
            f = f.subs(swap_dict)
            symbols = symbols_new

        # Any embedded piecewise functions need to be brought out to the
        # top level so that the appropriate strategy gets selected.
        f = piecewise_fold(f)

        if len(symbols) != 1:
            soln = None
            free = f.free_symbols
            ex = free - set(symbols)
            if len(ex) == 1:
                ex = ex.pop()
                try:
                    # may come back as dict or list (if non-linear)
                    soln = solve_undetermined_coeffs(f, symbols, ex)
                except NotImplementedError:
                    pass
            if soln is None:
                n, d = solve_linear(f, x=symbols)
                if n.is_Symbol:
                    soln = {n: cancel(d)}
            if soln:
                if symbol_swapped and isinstance(soln, dict):
                    return dict([(swap_back_dict[k], v.subs(swap_back_dict))
                                 for k, v in soln.iteritems()])
                return soln

        symbol = symbols[0]

        # first see if it really depends on symbol and whether there
        # is a linear solution
        f_num, sol = solve_linear(f, x=symbols)
        if not symbol in f_num.free_symbols:
            return []
        elif f_num.is_Symbol:
            return [cancel(sol)]

        strategy = guess_solve_strategy(f, symbol)
        result = False  # no solution was obtained

        if strategy == GS_POLY:
            poly = f.as_poly(symbol)
            if poly is None:
                msg = "Cannot solve equation %s for %s" % (f, symbol)
            else:
                # for cubics and quartics, if the flag wasn't set, DON'T do it
                # by default since the results are quite long. Perhaps one could
                # base this decision on a certain crtical length of the roots.
                if poly.degree() > 2:
                    flags['simplified'] = flags.get('simplified', False)
                result = roots(poly, cubics=True, quartics=True).keys()

        elif strategy == GS_RATIONAL:
            P, _ = f.as_numer_denom()
            dens = denoms(f, x=symbols)
            # reject any result that makes Q affirmatively 0;
            # if in doubt, keep it
            try:
                soln = _solve(P, symbol, **flags)
            except NotImplementedError:
                msg = "Cannot solve equation %s for %s" % (P, symbol)
                result = []
            else:
                if dens:
                    result = [
                        s for s in soln
                        if all(not checksol(den, {symbol: s}) for den in dens)
                    ]
                else:
                    result = soln

        elif strategy == GS_POLY_CV_1:
            args = list(f.args)
            if isinstance(f, Pow):
                result = _solve(args[0], symbol, **flags)
            elif isinstance(f, Add):
                # we must search for a suitable change of variables
                # collect exponents
                exponents_denom = list()
                for arg in args:
                    if isinstance(arg, Pow):
                        exponents_denom.append(arg.exp.q)
                    elif isinstance(arg, Mul):
                        for mul_arg in arg.args:
                            if isinstance(mul_arg, Pow):
                                exponents_denom.append(mul_arg.exp.q)
                assert len(exponents_denom) > 0
                if len(exponents_denom) == 1:
                    m = exponents_denom[0]
                else:
                    # get the LCM of the denominators
                    m = reduce(ilcm, exponents_denom)
                # x -> y**m.
                # we assume positive for simplification purposes
                t = Dummy('t', positive=True)
                f_ = f.subs(symbol, t**m)
                if guess_solve_strategy(f_, t) != GS_POLY:
                    msg = "Could not convert to a polynomial equation: %s" % f_
                    result = []
                else:
                    soln = [s**m for s in _solve(f_, t)]
                    # we might have introduced solutions from another branch
                    # when changing variables; check and keep solutions
                    # unless they definitely aren't a solution
                    result = [
                        s for s in soln
                        if checksol(f, {symbol: s}) is not False
                    ]

            elif isinstance(f, Mul):
                result = []
                for m in f.args:
                    result.extend(_solve(m, symbol, **flags) or [])

        elif strategy == GS_POLY_CV_2:
            m = 0
            args = list(f.args)
            if isinstance(f, Add):
                for arg in args:
                    if isinstance(arg, Pow):
                        m = min(m, arg.exp)
                    elif isinstance(arg, Mul):
                        for mul_arg in arg.args:
                            if isinstance(mul_arg, Pow):
                                m = min(m, mul_arg.exp)
            elif isinstance(f, Mul):
                for mul_arg in args:
                    if isinstance(mul_arg, Pow):
                        m = min(m, mul_arg.exp)

            if m and m != 1:
                f_ = simplify(f * symbol**(-m))
                try:
                    sols = _solve(f_, symbol)
                except NotImplementedError:
                    msg = 'Could not solve %s for %s' % (f_, symbol)
                else:
                    # we might have introduced unwanted solutions
                    # when multiplying by x**-m; check and keep solutions
                    # unless they definitely aren't a solution
                    if sols:
                        result = [
                            s for s in sols
                            if checksol(f, {symbol: s}) is not False
                        ]
            else:
                msg = 'CV_2 calculated %d but it should have been other than 0 or 1' % m

        elif strategy == GS_PIECEWISE:
            result = set()
            for expr, cond in f.args:
                candidates = _solve(expr, *symbols)
                if isinstance(cond, bool) or cond.is_Number:
                    if not cond:
                        continue

                    # Only include solutions that do not match the condition
                    # of any of the other pieces.
                    for candidate in candidates:
                        matches_other_piece = False
                        for other_expr, other_cond in f.args:
                            if isinstance(other_cond, bool) \
                               or other_cond.is_Number:
                                continue
                            if bool(other_cond.subs(symbol, candidate)):
                                matches_other_piece = True
                                break
                        if not matches_other_piece:
                            result.add(candidate)
                else:
                    for candidate in candidates:
                        if bool(cond.subs(symbol, candidate)):
                            result.add(candidate)

            result = list(result)

        elif strategy == -1:
            raise ValueError('Could not parse expression %s' % f)

        # this is the fallback for not getting any other solution
        if result is False or strategy == GS_TRANSCENDENTAL:
            # reject any result that makes any dens affirmatively 0,
            # if in doubt, keep it
            soln = tsolve(f_num, symbol)
            dens = denoms(f, x=symbols)
            if not dens:
                result = soln
            else:
                result = [
                    s for s in soln
                    if all(not checksol(den, {symbol: s}) for den in dens)
                ]

        if result is False:
            raise NotImplementedError(
                msg +
                "\nNo algorithms are implemented to solve equation %s" % f)

        if flags.get('simplified', True) and strategy != GS_RATIONAL:
            result = map(simplify, result)

        return result
    else:
        if not f:
            return []
        else:
            # Create a swap dictionary for storing the passed symbols to be
            # solved for, so that they may be swapped back.
            if symbol_swapped:
                swap_dict = zip(symbols, symbols_new)
                f = [fi.subs(swap_dict) for fi in f]
                symbols = symbols_new

            polys = []

            for g in f:

                poly = g.as_poly(*symbols, extension=True)

                if poly is not None:
                    polys.append(poly)
                else:
                    raise NotImplementedError()

            if all(p.is_linear for p in polys):
                n, m = len(f), len(symbols)
                matrix = zeros((n, m + 1))

                for i, poly in enumerate(polys):
                    for monom, coeff in poly.terms():
                        try:
                            j = list(monom).index(1)
                            matrix[i, j] = coeff
                        except ValueError:
                            matrix[i, m] = -coeff

                # a dictionary of symbols: values or None
                soln = solve_linear_system(matrix, *symbols, **flags)
                # Use swap_dict to ensure we return the same type as what was
                # passed; this is not necessary in the poly-system case which
                # only supports zero-dimensional systems
                if symbol_swapped and soln:
                    soln = dict([(swap_back_dict[k], v.subs(swap_back_dict))
                                 for k, v in soln.iteritems()])
                return soln
            else:
                # a list of tuples, T, where T[i] [j] corresponds to the ith solution for symbols[j]
                return solve_poly_system(polys)
예제 #30
0
def ratsimpmodprime(expr, G, *gens, **args):
    """
    Simplifies a rational expression ``expr`` modulo the prime ideal
    generated by ``G``.  ``G`` should be a Groebner basis of the
    ideal.

    >>> from sympy.simplify.ratsimp import ratsimpmodprime
    >>> from sympy.abc import x, y
    >>> eq = (x + y**5 + y)/(x - y)
    >>> ratsimpmodprime(eq, [x*y**5 - x - y], x, y, order='lex')
    (x**2 + x*y + x + y)/(x**2 - x*y)

    If ``polynomial`` is False, the algorithm computes a rational
    simplification which minimizes the sum of the total degrees of
    the numerator and the denominator.

    If ``polynomial`` is True, this function just brings numerator and
    denominator into a canonical form. This is much faster, but has
    potentially worse results.

    References
    ==========

    M. Monagan, R. Pearce, Rational Simplification Modulo a Polynomial
    Ideal,
    http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.6984
    (specifically, the second algorithm)
    """
    from sympy import solve

    quick = args.pop('quick', True)
    polynomial = args.pop('polynomial', False)
    debug('ratsimpmodprime', expr)

    # usual preparation of polynomials:

    num, denom = cancel(expr).as_numer_denom()

    try:
        polys, opt = parallel_poly_from_expr([num, denom] + G, *gens, **args)
    except PolificationFailed:
        return expr

    domain = opt.domain

    if domain.has_assoc_Field:
        opt.domain = domain.get_field()
    else:
        raise DomainError("can't compute rational simplification over %s" %
                          domain)

    # compute only once
    leading_monomials = [g.LM(opt.order) for g in polys[2:]]
    tested = set()

    def staircase(n):
        """
        Compute all monomials with degree less than ``n`` that are
        not divisible by any element of ``leading_monomials``.
        """
        if n == 0:
            return [1]
        S = []
        for mi in combinations_with_replacement(range(len(opt.gens)), n):
            m = [0] * len(opt.gens)
            for i in mi:
                m[i] += 1
            if all([monomial_div(m, lmg) is None
                    for lmg in leading_monomials]):
                S.append(m)

        return [Monomial(s).as_expr(*opt.gens) for s in S] + staircase(n - 1)

    def _ratsimpmodprime(a, b, allsol, N=0, D=0):
        """
        Computes a rational simplification of ``a/b`` which minimizes
        the sum of the total degrees of the numerator and the denominator.

        The algorithm proceeds by looking at ``a * d - b * c`` modulo
        the ideal generated by ``G`` for some ``c`` and ``d`` with degree
        less than ``a`` and ``b`` respectively.
        The coefficients of ``c`` and ``d`` are indeterminates and thus
        the coefficients of the normalform of ``a * d - b * c`` are
        linear polynomials in these indeterminates.
        If these linear polynomials, considered as system of
        equations, have a nontrivial solution, then `\frac{a}{b}
        \equiv \frac{c}{d}` modulo the ideal generated by ``G``. So,
        by construction, the degree of ``c`` and ``d`` is less than
        the degree of ``a`` and ``b``, so a simpler representation
        has been found.
        After a simpler representation has been found, the algorithm
        tries to reduce the degree of the numerator and denominator
        and returns the result afterwards.

        As an extension, if quick=False, we look at all possible degrees such
        that the total degree is less than *or equal to* the best current
        solution. We retain a list of all solutions of minimal degree, and try
        to find the best one at the end.
        """
        c, d = a, b
        steps = 0

        maxdeg = a.total_degree() + b.total_degree()
        if quick:
            bound = maxdeg - 1
        else:
            bound = maxdeg
        while N + D <= bound:
            if (N, D) in tested:
                break
            tested.add((N, D))

            M1 = staircase(N)
            M2 = staircase(D)
            debug('%s / %s: %s, %s' % (N, D, M1, M2))

            Cs = symbols("c:%d" % len(M1), cls=Dummy)
            Ds = symbols("d:%d" % len(M2), cls=Dummy)
            ng = Cs + Ds

            c_hat = Poly(sum([Cs[i] * M1[i] for i in range(len(M1))]),
                         opt.gens + ng)
            d_hat = Poly(sum([Ds[i] * M2[i] for i in range(len(M2))]),
                         opt.gens + ng)

            r = reduced(a * d_hat - b * c_hat,
                        G,
                        opt.gens + ng,
                        order=opt.order,
                        polys=True)[1]

            S = Poly(r, gens=opt.gens).coeffs()
            sol = solve(S, Cs + Ds, particular=True, quick=True)

            if sol and not all([s == 0 for s in sol.values()]):
                c = c_hat.subs(sol)
                d = d_hat.subs(sol)

                # The "free" variables occuring before as parameters
                # might still be in the substituted c, d, so set them
                # to the value chosen before:
                c = c.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))
                d = d.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))

                c = Poly(c, opt.gens)
                d = Poly(d, opt.gens)
                if d == 0:
                    raise ValueError('Ideal not prime?')

                allsol.append((c_hat, d_hat, S, Cs + Ds))
                if N + D != maxdeg:
                    allsol = [allsol[-1]]

                break

            steps += 1
            N += 1
            D += 1

        if steps > 0:
            c, d, allsol = _ratsimpmodprime(c, d, allsol, N, D - steps)
            c, d, allsol = _ratsimpmodprime(c, d, allsol, N - steps, D)

        return c, d, allsol

    # preprocessing. this improves performance a bit when deg(num)
    # and deg(denom) are large:
    num = reduced(num, G, opt.gens, order=opt.order)[1]
    denom = reduced(denom, G, opt.gens, order=opt.order)[1]

    if polynomial:
        return (num / denom).cancel()

    c, d, allsol = _ratsimpmodprime(Poly(num, opt.gens), Poly(denom, opt.gens),
                                    [])
    if not quick and allsol:
        debug('Looking for best minimal solution. Got: %s' % len(allsol))
        newsol = []
        for c_hat, d_hat, S, ng in allsol:
            sol = solve(S, ng, particular=True, quick=False)
            newsol.append((c_hat.subs(sol), d_hat.subs(sol)))
        c, d = min(newsol, key=lambda x: len(x[0].terms()) + len(x[1].terms()))

    if not domain.has_Field:
        cn, c = c.clear_denoms(convert=True)
        dn, d = d.clear_denoms(convert=True)
    r = Rational(cn, dn)

    return (c * r.q) / (d * r.p)
예제 #31
0
파일: expr.py 프로젝트: goriccardo/sympy
 def cancel(self, *gens, **args):
     """See the cancel function in sympy.polys"""
     from sympy.polys import cancel
     return cancel(self, *gens, **args)
예제 #32
0
def simplify(expr, ratio=1.7, measure=count_ops, rational=False):
    # type: (object, object, object, object) -> object
    """
    Simplifies the given expression.

    Simplification is not a well defined term and the exact strategies
    this function tries can change in the future versions of SymPy. If
    your algorithm relies on "simplification" (whatever it is), try to
    determine what you need exactly  -  is it powsimp()?, radsimp()?,
    together()?, logcombine()?, or something else? And use this particular
    function directly, because those are well defined and thus your algorithm
    will be robust.

    Nonetheless, especially for interactive use, or when you don't know
    anything about the structure of the expression, simplify() tries to apply
    intelligent heuristics to make the input expression "simpler".  For
    example:

    >>> from sympy import simplify, cos, sin
    >>> from sympy.abc import x, y
    >>> a = (x + x**2)/(x*sin(y)**2 + x*cos(y)**2)
    >>> a
    (x**2 + x)/(x*sin(y)**2 + x*cos(y)**2)
    >>> simplify(a)
    x + 1

    Note that we could have obtained the same result by using specific
    simplification functions:

    >>> from sympy import trigsimp, cancel
    >>> trigsimp(a)
    (x**2 + x)/x
    >>> cancel(_)
    x + 1

    In some cases, applying :func:`simplify` may actually result in some more
    complicated expression. The default ``ratio=1.7`` prevents more extreme
    cases: if (result length)/(input length) > ratio, then input is returned
    unmodified.  The ``measure`` parameter lets you specify the function used
    to determine how complex an expression is.  The function should take a
    single argument as an expression and return a number such that if
    expression ``a`` is more complex than expression ``b``, then
    ``measure(a) > measure(b)``.  The default measure function is
    :func:`count_ops`, which returns the total number of operations in the
    expression.

    For example, if ``ratio=1``, ``simplify`` output can't be longer
    than input.

    ::

        >>> from sympy import sqrt, simplify, count_ops, oo
        >>> root = 1/(sqrt(2)+3)

    Since ``simplify(root)`` would result in a slightly longer expression,
    root is returned unchanged instead::

       >>> simplify(root, ratio=1) == root
       True

    If ``ratio=oo``, simplify will be applied anyway::

        >>> count_ops(simplify(root, ratio=oo)) > count_ops(root)
        True

    Note that the shortest expression is not necessary the simplest, so
    setting ``ratio`` to 1 may not be a good idea.
    Heuristically, the default value ``ratio=1.7`` seems like a reasonable
    choice.

    You can easily define your own measure function based on what you feel
    should represent the "size" or "complexity" of the input expression.  Note
    that some choices, such as ``lambda expr: len(str(expr))`` may appear to be
    good metrics, but have other problems (in this case, the measure function
    may slow down simplify too much for very large expressions).  If you don't
    know what a good metric would be, the default, ``count_ops``, is a good
    one.

    For example:

    >>> from sympy import symbols, log
    >>> a, b = symbols('a b', positive=True)
    >>> g = log(a) + log(b) + log(a)*log(1/b)
    >>> h = simplify(g)
    >>> h
    log(a*b**(-log(a) + 1))
    >>> count_ops(g)
    8
    >>> count_ops(h)
    5

    So you can see that ``h`` is simpler than ``g`` using the count_ops metric.
    However, we may not like how ``simplify`` (in this case, using
    ``logcombine``) has created the ``b**(log(1/a) + 1)`` term.  A simple way
    to reduce this would be to give more weight to powers as operations in
    ``count_ops``.  We can do this by using the ``visual=True`` option:

    >>> print(count_ops(g, visual=True))
    2*ADD + DIV + 4*LOG + MUL
    >>> print(count_ops(h, visual=True))
    2*LOG + MUL + POW + SUB

    >>> from sympy import Symbol, S
    >>> def my_measure(expr):
    ...     POW = Symbol('POW')
    ...     # Discourage powers by giving POW a weight of 10
    ...     count = count_ops(expr, visual=True).subs(POW, 10)
    ...     # Every other operation gets a weight of 1 (the default)
    ...     count = count.replace(Symbol, type(S.One))
    ...     return count
    >>> my_measure(g)
    8
    >>> my_measure(h)
    14
    >>> 15./8 > 1.7 # 1.7 is the default ratio
    True
    >>> simplify(g, measure=my_measure)
    -log(a)*log(b) + log(a) + log(b)

    Note that because ``simplify()`` internally tries many different
    simplification strategies and then compares them using the measure
    function, we get a completely different result that is still different
    from the input expression by doing this.

    If rational=True, Floats will be recast as Rationals before simplification.
    If rational=None, Floats will be recast as Rationals but the result will
    be recast as Floats. If rational=False(default) then nothing will be done
    to the Floats.
    """
    expr = sympify(expr)

    try:
        return expr._eval_simplify(ratio=ratio, measure=measure)
    except AttributeError:
        pass

    original_expr = expr = signsimp(expr)

    from sympy.simplify.hyperexpand import hyperexpand
    from sympy.functions.special.bessel import BesselBase
    from sympy import Sum, Product

    if not isinstance(expr, Basic) or not expr.args:  # XXX: temporary hack
        return expr

    if not isinstance(expr, (Add, Mul, Pow, ExpBase)):
        if isinstance(expr, Function) and hasattr(expr, "inverse"):
            if len(expr.args) == 1 and len(expr.args[0].args) == 1 and \
               isinstance(expr.args[0], expr.inverse(argindex=1)):
                return simplify(expr.args[0].args[0], ratio=ratio,
                                measure=measure, rational=rational)
        return expr.func(*[simplify(x, ratio=ratio, measure=measure, rational=rational)
                         for x in expr.args])

    # TODO: Apply different strategies, considering expression pattern:
    # is it a purely rational function? Is there any trigonometric function?...
    # See also https://github.com/sympy/sympy/pull/185.

    def shorter(*choices):
        '''Return the choice that has the fewest ops. In case of a tie,
        the expression listed first is selected.'''
        if not has_variety(choices):
            return choices[0]
        return min(choices, key=measure)

    # rationalize Floats
    floats = False
    if rational is not False and expr.has(Float):
        floats = True
        expr = nsimplify(expr, rational=True)

    expr = bottom_up(expr, lambda w: w.normal())
    expr = Mul(*powsimp(expr).as_content_primitive())
    _e = cancel(expr)
    expr1 = shorter(_e, _mexpand(_e).cancel())  # issue 6829
    expr2 = shorter(together(expr, deep=True), together(expr1, deep=True))

    if ratio is S.Infinity:
        expr = expr2
    else:
        expr = shorter(expr2, expr1, expr)
    if not isinstance(expr, Basic):  # XXX: temporary hack
        return expr

    expr = factor_terms(expr, sign=False)

    # hyperexpand automatically only works on hypergeometric terms
    expr = hyperexpand(expr)

    expr = piecewise_fold(expr)

    if expr.has(BesselBase):
        expr = besselsimp(expr)

    if expr.has(TrigonometricFunction, HyperbolicFunction):
        expr = trigsimp(expr, deep=True)

    if expr.has(log):
        expr = shorter(expand_log(expr, deep=True), logcombine(expr))

    if expr.has(CombinatorialFunction, gamma):
        # expression with gamma functions or non-integer arguments is
        # automatically passed to gammasimp
        expr = combsimp(expr)

    if expr.has(Sum):
        expr = sum_simplify(expr)

    if expr.has(Product):
        expr = product_simplify(expr)

    short = shorter(powsimp(expr, combine='exp', deep=True), powsimp(expr), expr)
    short = shorter(short, cancel(short))
    short = shorter(short, factor_terms(short), expand_power_exp(expand_mul(short)))
    if short.has(TrigonometricFunction, HyperbolicFunction, ExpBase):
        short = exptrigsimp(short)

    # get rid of hollow 2-arg Mul factorization
    hollow_mul = Transform(
        lambda x: Mul(*x.args),
        lambda x:
        x.is_Mul and
        len(x.args) == 2 and
        x.args[0].is_Number and
        x.args[1].is_Add and
        x.is_commutative)
    expr = short.xreplace(hollow_mul)

    numer, denom = expr.as_numer_denom()
    if denom.is_Add:
        n, d = fraction(radsimp(1/denom, symbolic=False, max_terms=1))
        if n is not S.One:
            expr = (numer*n).expand()/d

    if expr.could_extract_minus_sign():
        n, d = fraction(expr)
        if d != 0:
            expr = signsimp(-n/(-d))

    if measure(expr) > ratio*measure(original_expr):
        expr = original_expr

    # restore floats
    if floats and rational is None:
        expr = nfloat(expr, exponent=False)

    return expr
예제 #33
0
def roots(f, *gens, **flags):
    """Computes symbolic roots of a univariate polynomial.

       Given a univariate polynomial f with symbolic coefficients (or
       a list of the polynomial's coefficients), returns a dictionary
       with its roots and their multiplicities.

       Only roots expressible via radicals will be returned.  To get
       a complete set of roots use RootOf class or numerical methods
       instead. By default cubic and quartic formulas are used in
       the algorithm. To disable them because of unreadable output
       set `cubics=False` or `quartics=False` respectively.

       To get roots from a specific domain set the `filter` flag with
       one of the following specifiers: Z, Q, R, I, C. By default all
       roots are returned (this is equivalent to setting `filter='C'`).

       By default a dictionary is returned giving a compact result in
       case of multiple roots.  However to get a tuple containing all
       those roots set the `multiple` flag to True.

       Examples
       ========

           >>> from sympy import Poly, roots
           >>> from sympy.abc import x, y

           >>> roots(x**2 - 1, x)
           {1: 1, -1: 1}

           >>> p = Poly(x**2-1, x)
           >>> roots(p)
           {1: 1, -1: 1}

           >>> p = Poly(x**2-y, x, y)

           >>> roots(Poly(p, x))
           {y**(1/2): 1, -y**(1/2): 1}

           >>> roots(x**2 - y, x)
           {y**(1/2): 1, -y**(1/2): 1}

           >>> roots([1, 0, -1])
           {1: 1, -1: 1}

    """
    multiple = flags.get('multiple', False)

    if isinstance(f, list):
        if gens:
            raise ValueError('redundant generators given')

        x = Dummy('x')

        poly, i = {}, len(f)-1

        for coeff in f:
            poly[i], i = sympify(coeff), i-1

        f = Poly(poly, x, field=True)
    else:
        try:
            f = Poly(f, *gens, **flags)
        except GeneratorsNeeded:
            if multiple:
                return []
            else:
                return {}

        if f.is_multivariate:
            raise PolynomialError('multivariate polynomials are not supported')

        f, x = f.to_field(), f.gen

    def _update_dict(result, root, k):
        if root in result:
            result[root] += k
        else:
            result[root] = k

    def _try_decompose(f):
        """Find roots using functional decomposition. """
        factors = f.decompose()
        result, g = {}, factors[0]

        for h, i in g.sqf_list()[1]:
            for r in _try_heuristics(h):
                _update_dict(result, r, i)

        for factor in factors[1:]:
            last, result = result.copy(), {}

            for last_r, i in last.iteritems():
                g = factor - Poly(last_r, x)

                for h, j in g.sqf_list()[1]:
                    for r in _try_heuristics(h):
                        _update_dict(result, r, i*j)

        return result

    def _try_heuristics(f):
        """Find roots using formulas and some tricks. """
        if f.is_ground:
            return []
        if f.is_monomial:
            return [S(0)]*f.degree()

        if f.length() == 2:
            if f.degree() == 1:
                return map(cancel, roots_linear(f))
            else:
                return roots_binomial(f)

        result = []

        for i in [S(-1), S(1)]:
            if f.eval(i).expand().is_zero:
                f = f.exquo(Poly(x-1, x))
                result.append(i)
                break

        n = f.degree()

        if n == 1:
            result += map(cancel, roots_linear(f))
        elif n == 2:
            result += map(cancel, roots_quadratic(f))
        elif n == 3 and flags.get('cubics', True):
            result += roots_cubic(f)
        elif n == 4 and flags.get('quartics', True):
            result += roots_quartic(f)

        return result

    if f.is_monomial == 1:
        if f.is_ground:
            if multiple:
                return []
            else:
                return {}
        else:
            result = { S(0) : f.degree() }
    else:
        (k,), f = f.terms_gcd()

        if not k:
            zeros = {}
        else:
            zeros = { S(0) : k }

        result = {}

        if f.length() == 2:
            if f.degree() == 1:
                result[cancel(roots_linear(f)[0])] = 1
            else:
                for r in roots_binomial(f):
                    _update_dict(result, r, 1)
        elif f.degree() == 2:
            for r in roots_quadratic(f):
                _update_dict(result, cancel(r), 1)
        else:
            _, factors = Poly(f.as_basic()).factor_list()

            if len(factors) == 1 and factors[0][1] == 1:
                result = _try_decompose(f)
            else:
                for factor, k in factors:
                    for r in _try_heuristics(Poly(factor, x, field=True)):
                        _update_dict(result, r, k)

        result.update(zeros)

    filter = flags.get('filter', None)

    if filter not in [None, 'C']:
        handlers = {
            'Z' : lambda r: r.is_Integer,
            'Q' : lambda r: r.is_Rational,
            'R' : lambda r: r.is_real,
            'I' : lambda r: r.is_imaginary,
        }

        try:
            query = handlers[filter]
        except KeyError:
            raise ValueError("Invalid filter: %s" % filter)

        for zero in dict(result).iterkeys():
            if not query(zero):
                del result[zero]

    predicate = flags.get('predicate', None)

    if predicate is not None:
        for zero in dict(result).iterkeys():
            if not predicate(zero):
                del result[zero]

    if not multiple:
        return result
    else:
        zeros = []

        for zero, k in result.iteritems():
            zeros.extend([zero]*k)

        return zeros
예제 #34
0
파일: prde.py 프로젝트: pducks32/intergrala
            for i, j in roots):
        # If f is the logarithmic derivative of a k(t)-radical, then all the
        # roots of the resultant must be rational numbers.
        return None

    # [(a, i), ...], where i*log(a) is a term in the log-part of the integral
    # of f
    respolys, residues = list(zip(*roots)) or [[], []]
    # Note: this might be empty, but everything below should work find in that
    # case (it should be the same as if it were [[1, 1]])
    residueterms = [(H[j][1].subs(z, i), i) for j in xrange(len(H))
                    for i in residues[j]]

    # TODO: finish writing this and write tests

    p = cancel(fa.as_expr() / fd.as_expr() -
               residue_reduce_derivation(H, DE, z))

    p = p.as_poly(DE.t)
    if p is None:
        # f - Dg will be in k[t] if f is the logarithmic derivative of a k(t)-radical
        return None

    if p.degree(DE.t) >= max(1, DE.d.degree(DE.t)):
        return None

    if case == 'auto':
        case = DE.case

    if case == 'exp':
        wa, wd = derivation(DE.t, DE).cancel(Poly(DE.t, DE.t), include=True)
        with DecrementLevel(DE):
예제 #35
0
파일: heurisch.py 프로젝트: skolwind/sympy
def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3):
    """
    Compute indefinite integral using heuristic Risch algorithm.

    This is a heuristic approach to indefinite integration in finite
    terms using the extended heuristic (parallel) Risch algorithm, based
    on Manuel Bronstein's "Poor Man's Integrator".

    The algorithm supports various classes of functions including
    transcendental elementary or special functions like Airy,
    Bessel, Whittaker and Lambert.

    Note that this algorithm is not a decision procedure. If it isn't
    able to compute the antiderivative for a given function, then this is
    not a proof that such a functions does not exist.  One should use
    recursive Risch algorithm in such case.  It's an open question if
    this algorithm can be made a full decision procedure.

    This is an internal integrator procedure. You should use toplevel
    'integrate' function in most cases,  as this procedure needs some
    preprocessing steps and otherwise may fail.

    Specification
    =============

     heurisch(f, x, rewrite=False, hints=None)

       where
         f : expression
         x : symbol

         rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh'
         hints   -> a list of functions that may appear in anti-derivate

          - hints = None          --> no suggestions at all
          - hints = [ ]           --> try to figure out
          - hints = [f1, ..., fn] --> we know better

    Examples
    ========

    >>> from sympy import tan
    >>> from sympy.integrals.heurisch import heurisch
    >>> from sympy.abc import x, y

    >>> heurisch(y*tan(x), x)
    y*log(tan(x)**2 + 1)/2

    See Manuel Bronstein's "Poor Man's Integrator":

    [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html

    For more information on the implemented algorithm refer to:

    [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration
       Method and its Implementation in Maple, Proceedings of
       ISSAC'89, ACM Press, 212-217.

    [3] J. H. Davenport, On the Parallel Risch Algorithm (I),
       Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157.

    [4] J. H. Davenport, On the Parallel Risch Algorithm (III):
       Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6.

    [5] J. H. Davenport, B. M. Trager, On the Parallel Risch
       Algorithm (II), ACM Transactions on Mathematical
       Software 11 (1985), 356-362.

    See Also
    ========

    sympy.integrals.integrals.Integral.doit
    sympy.integrals.integrals.Integral
    components
    """
    f = sympify(f)

    if not f.is_Add:
        indep, f = f.as_independent(x)
    else:
        indep = S.One

    if not f.has(x):
        return indep * f * x

    rewritables = {
        (sin, cos, cot): tan,
        (sinh, cosh, coth): tanh,
    }

    if rewrite:
        for candidates, rule in rewritables.iteritems():
            f = f.rewrite(candidates, rule)
    else:
        for candidates in rewritables.iterkeys():
            if f.has(*candidates):
                break
        else:
            rewrite = True

    terms = components(f, x)

    if hints is not None:
        if not hints:
            a = Wild('a', exclude=[x])
            b = Wild('b', exclude=[x])
            c = Wild('c', exclude=[x])

            for g in set(terms):
                if g.is_Function:
                    if g.func is exp:
                        M = g.args[0].match(a * x**2)

                        if M is not None:
                            terms.add(erf(sqrt(-M[a]) * x))

                        M = g.args[0].match(a * x**2 + b * x + c)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(
                                    sqrt(pi / 4 * (-M[a])) *
                                    exp(M[c] - M[b]**2 / (4 * M[a])) *
                                    erf(-sqrt(-M[a]) * x + M[b] /
                                        (2 * sqrt(-M[a]))))
                            elif M[a].is_negative:
                                terms.add(
                                    sqrt(pi / 4 * (-M[a])) *
                                    exp(M[c] - M[b]**2 / (4 * M[a])) * erf(
                                        sqrt(-M[a]) * x - M[b] /
                                        (2 * sqrt(-M[a]))))

                        M = g.args[0].match(a * log(x)**2)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(-I * erf(I *
                                                   (sqrt(M[a]) * log(x) + 1 /
                                                    (2 * sqrt(M[a])))))
                            if M[a].is_negative:
                                terms.add(
                                    erf(
                                        sqrt(-M[a]) * log(x) - 1 /
                                        (2 * sqrt(-M[a]))))

                elif g.is_Pow:
                    if g.exp.is_Rational and g.exp.q == 2:
                        M = g.base.match(a * x**2 + b)

                        if M is not None and M[b].is_positive:
                            if M[a].is_positive:
                                terms.add(asinh(sqrt(M[a] / M[b]) * x))
                            elif M[a].is_negative:
                                terms.add(asin(sqrt(-M[a] / M[b]) * x))

                        M = g.base.match(a * x**2 - b)

                        if M is not None and M[b].is_positive:
                            if M[a].is_positive:
                                terms.add(acosh(sqrt(M[a] / M[b]) * x))
                            elif M[a].is_negative:
                                terms.add((-M[b] / 2 * sqrt(-M[a]) * atan(
                                    sqrt(-M[a]) * x / sqrt(M[a] * x**2 - M[b]))
                                           ))

        else:
            terms |= set(hints)

    for g in set(terms):
        terms |= components(cancel(g.diff(x)), x)

    # TODO: caching is significant factor for why permutations work at all. Change this.
    V = _symbols('x', len(terms))

    mapping = dict(zip(terms, V))

    rev_mapping = {}

    for k, v in mapping.iteritems():
        rev_mapping[v] = k

    if mappings is None:
        # Pre-sort mapping in order of largest to smallest expressions (last is always x).
        def _sort_key(arg):
            return default_sort_key(arg[0].as_independent(x)[1])

        mapping = sorted(mapping.items(), key=_sort_key, reverse=True)
        mappings = permutations(mapping)

    def _substitute(expr):
        return expr.subs(mapping)

    for mapping in mappings:
        # TODO: optimize this by not generating permutations where mapping[-1] != x.
        if mapping[-1][0] != x:
            continue

        mapping = list(mapping)

        diffs = [_substitute(cancel(g.diff(x))) for g in terms]
        denoms = [g.as_numer_denom()[1] for g in diffs]

        if all(h.is_polynomial(*V)
               for h in denoms) and _substitute(f).is_rational_function(*V):
            denom = reduce(lambda p, q: lcm(p, q, *V), denoms)
            break
    else:
        if not rewrite:
            result = heurisch(f, x, rewrite=True, hints=hints)

            if result is not None:
                return indep * result

        return None

    numers = [cancel(denom * g) for g in diffs]

    def _derivation(h):
        return Add(*[d * h.diff(v) for d, v in zip(numers, V)])

    def _deflation(p):
        for y in V:
            if not p.has(y):
                continue

            if _derivation(p) is not S.Zero:
                c, q = p.as_poly(y).primitive()
                return _deflation(c) * gcd(q, q.diff(y)).as_expr()
        else:
            return p

    def _splitter(p):
        for y in V:
            if not p.has(y):
                continue

            if _derivation(y) is not S.Zero:
                c, q = p.as_poly(y).primitive()

                q = q.as_expr()

                h = gcd(q, _derivation(q), y)
                s = quo(h, gcd(q, q.diff(y), y), y)

                c_split = _splitter(c)

                if s.as_poly(y).degree() == 0:
                    return (c_split[0], q * c_split[1])

                q_split = _splitter(cancel(q / s))

                return (c_split[0] * q_split[0] * s, c_split[1] * q_split[1])
        else:
            return (S.One, p)

    special = {}

    for term in terms:
        if term.is_Function:
            if term.func is tan:
                special[1 + _substitute(term)**2] = False
            elif term.func is tanh:
                special[1 + _substitute(term)] = False
                special[1 - _substitute(term)] = False
            elif term.func is C.LambertW:
                special[_substitute(term)] = True

    F = _substitute(f)

    P, Q = F.as_numer_denom()

    u_split = _splitter(denom)
    v_split = _splitter(Q)

    polys = list(v_split) + [u_split[0]] + special.keys()

    s = u_split[0] * Mul(*[k for k, v in special.iteritems() if v])
    polified = [p.as_poly(*V) for p in [s, P, Q]]

    if None in polified:
        return None

    a, b, c = [p.total_degree() for p in polified]

    poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr()

    def _exponent(g):
        if g.is_Pow:
            if g.exp.is_Rational and g.exp.q != 1:
                if g.exp.p > 0:
                    return g.exp.p + g.exp.q - 1
                else:
                    return abs(g.exp.p + g.exp.q)
            else:
                return 1
        elif not g.is_Atom and g.args:
            return max([_exponent(h) for h in g.args])
        else:
            return 1

    A, B = _exponent(f), a + max(b, c)

    if A > 1 and B > 1:
        monoms = monomials(V, A + B - 1)
    else:
        monoms = monomials(V, A + B)

    poly_coeffs = _symbols('A', len(monoms))

    poly_part = Add(
        *[poly_coeffs[i] * monomial for i, monomial in enumerate(monoms)])

    reducibles = set()

    for poly in polys:
        if poly.has(*V):
            try:
                factorization = factor(poly, greedy=True)
            except PolynomialError:
                factorization = poly
            factorization = poly

            if factorization.is_Mul:
                reducibles |= set(factorization.args)
            else:
                reducibles.add(factorization)

    def _integrate(field=None):
        irreducibles = set()

        for poly in reducibles:
            for z in poly.atoms(Symbol):
                if z in V:
                    break
            else:
                continue

            irreducibles |= set(root_factors(poly, z, filter=field))

        log_coeffs, log_part = [], []
        B = _symbols('B', len(irreducibles))

        for i, poly in enumerate(irreducibles):
            if poly.has(*V):
                log_coeffs.append(B[i])
                log_part.append(log_coeffs[-1] * log(poly))

        coeffs = poly_coeffs + log_coeffs

        candidate = poly_part / poly_denom + Add(*log_part)

        h = F - _derivation(candidate) / denom

        numer = h.as_numer_denom()[0].expand(force=True)

        equations = defaultdict(lambda: S.Zero)

        for term in Add.make_args(numer):
            coeff, dependent = term.as_independent(*V)
            equations[dependent] += coeff

        solution = solve(equations.values(), *coeffs)

        return (solution, candidate, coeffs) if solution else None

    if not (F.atoms(Symbol) - set(V)):
        result = _integrate('Q')

        if result is None:
            result = _integrate()
    else:
        result = _integrate()

    if result is not None:
        (solution, candidate, coeffs) = result

        antideriv = candidate.subs(solution)

        for coeff in coeffs:
            if coeff not in solution:
                antideriv = antideriv.subs(coeff, S.Zero)

        antideriv = antideriv.subs(rev_mapping)
        antideriv = cancel(antideriv).expand(force=True)

        if antideriv.is_Add:
            antideriv = antideriv.as_independent(x)[1]

        return indep * antideriv
    else:
        if retries >= 0:
            result = heurisch(f,
                              x,
                              mappings=mappings,
                              rewrite=rewrite,
                              hints=hints,
                              retries=retries - 1)

            if result is not None:
                return indep * result

        return None
예제 #36
0
파일: prde.py 프로젝트: pducks32/intergrala
def is_deriv_k(fa, fd, DE):
    """
    Checks if Df/f is the derivative of an element of k(t).

    a in k(t) is the derivative of an element of k(t) if there exists b in k(t)
    such that a = Db.  Either returns (ans, u), such that Df/f == Du, or None,
    which means that Df/f is not the derivative of an element of k(t).  ans is
    a list of tuples such that Add(*[i*j for i, j in ans]) == u.  This is useful
    for seeing exactly which elements of k(t) produce u.

    This function uses the structure theorem approach, which says that for any
    f in K, Df/f is the derivative of a element of K if and only if there are ri
    in QQ such that::

            ---               ---       Dt
            \    r  * Dt   +  \    r  *   i      Df
            /     i     i     /     i   ---   =  --.
            ---               ---        t        f
         i in L            i in E         i
               K/C(x)            K/C(x)


    Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is
    transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i
    in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic
    monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i
    is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some
    a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of
    hyperexponential monomials of K over C(x)).  If K is an elementary extension
    over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the
    transcendence degree of K over C(x).  Furthermore, because Const_D(K) ==
    Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and
    deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x)
    and L_K/C(x) are disjoint.

    The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed
    recursively using this same function.  Therefore, it is required to pass
    them as indices to D (or T).  E_args are the arguments of the
    hyperexponentials indexed by E_K (i.e., if i is in E_K, then T[i] ==
    exp(E_args[i])).  This is needed to compute the final answer u such that
    Df/f == Du.

    log(f) will be the same as u up to a additive constant.  This is because
    they will both behave the same as monomials. For example, both log(x) and
    log(2*x) == log(x) + log(2) satisfy Dt == 1/x, because log(2) is constant.
    Therefore, the term const is returned.  const is such that
    log(const) + f == u.  This is calculated by dividing the arguments of one
    logarithm from the other.  Therefore, it is necessary to pass the arguments
    of the logarithmic terms in L_args.

    To handle the case where we are given Df/f, not f, use is_deriv_k_in_field().
    """
    # Compute Df/f
    dfa, dfd = fd * (fd * derivation(fa, DE) -
                     fa * derivation(fd, DE)), fd**2 * fa
    dfa, dfd = dfa.cancel(dfd, include=True)

    # Our assumption here is that each monomial is recursively transcendental
    if len(DE.L_K) + len(DE.E_K) != len(DE.D) - 1:
        if [i for i in DE.cases if i == 'tan'] or \
                set([i for i in DE.cases if i == 'primitive']) - set(DE.L_K):
            raise NotImplementedError(
                "Real version of the structure "
                "theorems with hypertangent support is not yet implemented.")

        # TODO: What should really be done in this case?
        raise NotImplementedError("Nonelementary extensions not supported "
                                  "in the structure theorems.")

    E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.E_K]
    L_part = [DE.D[i].as_expr() for i in DE.L_K]

    lhs = Matrix([E_part + L_part])
    rhs = Matrix([dfa.as_expr() / dfd.as_expr()])

    A, u = constant_system(lhs, rhs, DE)

    if not all(derivation(i, DE, basic=True).is_zero for i in u) or not A:
        # If the elements of u are not all constant
        # Note: See comment in constant_system

        # Also note: derivation(basic=True) calls cancel()
        return None
    else:
        if not all(i.is_Rational for i in u):
            raise NotImplementedError("Cannot work with non-rational "
                                      "coefficients in this case.")
        else:
            terms = DE.E_args + [DE.T[i] for i in DE.L_K]
            ans = list(zip(terms, u))
            result = Add(*[Mul(i, j) for i, j in ans])
            argterms = [DE.T[i] for i in DE.E_K] + DE.L_args
            l = []
            for i, j in zip(argterms, u):
                # We need to get around things like sqrt(x**2) != x
                # and also sqrt(x**2 + 2*x + 1) != x + 1
                icoeff, iterms = sqf_list(i)
                l.append(
                    Mul(*([Pow(icoeff, j)] +
                          [Pow(b, e * j) for b, e in iterms])))
            const = cancel(fa.as_expr() / fd.as_expr() / Mul(*l))

            return (ans, result, const)
예제 #37
0
 def cancel(self, *gens, **args):
     """See the cancel function in sympy.polys"""
     from sympy.polys import cancel
     return cancel(self, *gens, **args)
def simplify(expr, ratio=1.7, measure=count_ops, fu=False):
    """
    Simplifies the given expression.

    Simplification is not a well defined term and the exact strategies
    this function tries can change in the future versions of SymPy. If
    your algorithm relies on "simplification" (whatever it is), try to
    determine what you need exactly  -  is it powsimp()?, radsimp()?,
    together()?, logcombine()?, or something else? And use this particular
    function directly, because those are well defined and thus your algorithm
    will be robust.

    Nonetheless, especially for interactive use, or when you don't know
    anything about the structure of the expression, simplify() tries to apply
    intelligent heuristics to make the input expression "simpler".  For
    example:

    >>> from sympy import simplify, cos, sin
    >>> from sympy.abc import x, y
    >>> a = (x + x**2)/(x*sin(y)**2 + x*cos(y)**2)
    >>> a
    (x**2 + x)/(x*sin(y)**2 + x*cos(y)**2)
    >>> simplify(a)
    x + 1

    Note that we could have obtained the same result by using specific
    simplification functions:

    >>> from sympy import trigsimp, cancel
    >>> trigsimp(a)
    (x**2 + x)/x
    >>> cancel(_)
    x + 1

    In some cases, applying :func:`simplify` may actually result in some more
    complicated expression. The default ``ratio=1.7`` prevents more extreme
    cases: if (result length)/(input length) > ratio, then input is returned
    unmodified.  The ``measure`` parameter lets you specify the function used
    to determine how complex an expression is.  The function should take a
    single argument as an expression and return a number such that if
    expression ``a`` is more complex than expression ``b``, then
    ``measure(a) > measure(b)``.  The default measure function is
    :func:`count_ops`, which returns the total number of operations in the
    expression.

    For example, if ``ratio=1``, ``simplify`` output can't be longer
    than input.

    ::

        >>> from sympy import sqrt, simplify, count_ops, oo
        >>> root = 1/(sqrt(2)+3)

    Since ``simplify(root)`` would result in a slightly longer expression,
    root is returned unchanged instead::

       >>> simplify(root, ratio=1) == root
       True

    If ``ratio=oo``, simplify will be applied anyway::

        >>> count_ops(simplify(root, ratio=oo)) > count_ops(root)
        True

    Note that the shortest expression is not necessary the simplest, so
    setting ``ratio`` to 1 may not be a good idea.
    Heuristically, the default value ``ratio=1.7`` seems like a reasonable
    choice.

    You can easily define your own measure function based on what you feel
    should represent the "size" or "complexity" of the input expression.  Note
    that some choices, such as ``lambda expr: len(str(expr))`` may appear to be
    good metrics, but have other problems (in this case, the measure function
    may slow down simplify too much for very large expressions).  If you don't
    know what a good metric would be, the default, ``count_ops``, is a good
    one.

    For example:

    >>> from sympy import symbols, log
    >>> a, b = symbols('a b', positive=True)
    >>> g = log(a) + log(b) + log(a)*log(1/b)
    >>> h = simplify(g)
    >>> h
    log(a*b**(-log(a) + 1))
    >>> count_ops(g)
    8
    >>> count_ops(h)
    5

    So you can see that ``h`` is simpler than ``g`` using the count_ops metric.
    However, we may not like how ``simplify`` (in this case, using
    ``logcombine``) has created the ``b**(log(1/a) + 1)`` term.  A simple way
    to reduce this would be to give more weight to powers as operations in
    ``count_ops``.  We can do this by using the ``visual=True`` option:

    >>> print(count_ops(g, visual=True))
    2*ADD + DIV + 4*LOG + MUL
    >>> print(count_ops(h, visual=True))
    2*LOG + MUL + POW + SUB

    >>> from sympy import Symbol, S
    >>> def my_measure(expr):
    ...     POW = Symbol('POW')
    ...     # Discourage powers by giving POW a weight of 10
    ...     count = count_ops(expr, visual=True).subs(POW, 10)
    ...     # Every other operation gets a weight of 1 (the default)
    ...     count = count.replace(Symbol, type(S.One))
    ...     return count
    >>> my_measure(g)
    8
    >>> my_measure(h)
    14
    >>> 15./8 > 1.7 # 1.7 is the default ratio
    True
    >>> simplify(g, measure=my_measure)
    -log(a)*log(b) + log(a) + log(b)

    Note that because ``simplify()`` internally tries many different
    simplification strategies and then compares them using the measure
    function, we get a completely different result that is still different
    from the input expression by doing this.
    """
    expr = sympify(expr)

    try:
        return expr._eval_simplify(ratio=ratio, measure=measure)
    except AttributeError:
        pass

    original_expr = expr = signsimp(expr)

    from sympy.simplify.hyperexpand import hyperexpand
    from sympy.functions.special.bessel import BesselBase
    from sympy import Sum, Product

    if not isinstance(expr, Basic) or not expr.args:  # XXX: temporary hack
        return expr

    if not isinstance(expr, (Add, Mul, Pow, ExpBase)):
        if isinstance(expr, Function) and hasattr(expr, "inverse"):
            if len(expr.args) == 1 and len(expr.args[0].args) == 1 and \
               isinstance(expr.args[0], expr.inverse(argindex=1)):
                return simplify(expr.args[0].args[0], ratio=ratio,
                                measure=measure, fu=fu)
        return expr.func(*[simplify(x, ratio=ratio, measure=measure, fu=fu)
                         for x in expr.args])

    # TODO: Apply different strategies, considering expression pattern:
    # is it a purely rational function? Is there any trigonometric function?...
    # See also https://github.com/sympy/sympy/pull/185.

    def shorter(*choices):
        '''Return the choice that has the fewest ops. In case of a tie,
        the expression listed first is selected.'''
        if not has_variety(choices):
            return choices[0]
        return min(choices, key=measure)

    expr = bottom_up(expr, lambda w: w.normal())
    expr = Mul(*powsimp(expr).as_content_primitive())
    _e = cancel(expr)
    expr1 = shorter(_e, _mexpand(_e).cancel())  # issue 6829
    expr2 = shorter(together(expr, deep=True), together(expr1, deep=True))

    if ratio is S.Infinity:
        expr = expr2
    else:
        expr = shorter(expr2, expr1, expr)
    if not isinstance(expr, Basic):  # XXX: temporary hack
        return expr

    expr = factor_terms(expr, sign=False)

    # hyperexpand automatically only works on hypergeometric terms
    expr = hyperexpand(expr)

    expr = piecewise_fold(expr)

    if expr.has(BesselBase):
        expr = besselsimp(expr)

    if expr.has(TrigonometricFunction) and not fu or expr.has(
            HyperbolicFunction):
        expr = trigsimp(expr, deep=True)

    if expr.has(log):
        expr = shorter(expand_log(expr, deep=True), logcombine(expr))

    if expr.has(CombinatorialFunction, gamma):
        expr = combsimp(expr)

    if expr.has(Sum):
        expr = sum_simplify(expr)

    if expr.has(Product):
        expr = product_simplify(expr)

    short = shorter(powsimp(expr, combine='exp', deep=True), powsimp(expr), expr)
    short = shorter(short, factor_terms(short), expand_power_exp(expand_mul(short)))
    if short.has(TrigonometricFunction, HyperbolicFunction, ExpBase):
        short = exptrigsimp(short, simplify=False)

    # get rid of hollow 2-arg Mul factorization
    hollow_mul = Transform(
        lambda x: Mul(*x.args),
        lambda x:
        x.is_Mul and
        len(x.args) == 2 and
        x.args[0].is_Number and
        x.args[1].is_Add and
        x.is_commutative)
    expr = short.xreplace(hollow_mul)

    numer, denom = expr.as_numer_denom()
    if denom.is_Add:
        n, d = fraction(radsimp(1/denom, symbolic=False, max_terms=1))
        if n is not S.One:
            expr = (numer*n).expand()/d

    if expr.could_extract_minus_sign():
        n, d = fraction(expr)
        if d != 0:
            expr = signsimp(-n/(-d))

    if measure(expr) > ratio*measure(original_expr):
        expr = original_expr

    return expr
예제 #39
0
def constant_system(A, u, DE):
    """
    Generate a system for the constant solutions.

    Given a differential field (K, D) with constant field C = Const(K), a Matrix
    A, and a vector (Matrix) u with coefficients in K, returns the tuple
    (B, v, s), where B is a Matrix with coefficients in C and v is a vector
    (Matrix) such that either v has coefficients in C, in which case s is True
    and the solutions in C of Ax == u are exactly all the solutions of Bx == v,
    or v has a non-constant coefficient, in which case s is False Ax == u has no
    constant solution.

    This algorithm is used both in solving parametric problems and in
    determining if an element a of K is a derivative of an element of K or the
    logarithmic derivative of a K-radical using the structure theorem approach.

    Because Poly does not play well with Matrix yet, this algorithm assumes that
    all matrix entries are Basic expressions.
    """
    Au = A.row_join(u)
    Au = Au.rref(simplify=cancel)[0]
    # Warning: This will NOT return correct results if cancel() cannot reduce
    # an identically zero expression to 0.  The danger is that we might
    # incorrectly prove that an integral is nonelementary (such as
    # risch_integrate(exp((sin(x)**2 + cos(x)**2 - 1)*x**2), x).
    # But this is a limitation in computer algebra in general, and implicit
    # in the correctness of the Risch Algorithm is the computability of the
    # constant field (actually, this same correctness problem exists in any
    # algorithm that uses rref()).
    #
    # We therefore limit ourselves to constant fields that are computable
    # via the cancel() function, in order to prevent a speed bottleneck from
    # calling some more complex simplification function (rational function
    # coefficients will fall into this class).  Furthermore, (I believe) this
    # problem will only crop up if the integral explicitly contains an
    # expression in the constant field that is identically zero, but cannot
    # be reduced to such by cancel().  Therefore, a careful user can avoid this
    # problem entirely by being careful with the sorts of expressions that
    # appear in his integrand in the variables other than the integration
    # variable (the structure theorems should be able to completely decide these
    # problems in the integration variable).

    Au = Au.applyfunc(cancel)
    A, u = Au[:, :-1], Au[:, -1]

    for j in range(A.cols):
        for i in range(A.rows):
            if A[i, j].has(*DE.T):
                # This assumes that const(F(t0, ..., tn) == const(K) == F
                Ri = A[i, :]
                # Rm+1; m = A.rows
                Rm1 = Ri.applyfunc(lambda x: derivation(x, DE, basic=True)/
                    derivation(A[i, j], DE, basic=True))
                Rm1 = Rm1.applyfunc(cancel)
                um1 = cancel(derivation(u[i], DE, basic=True)/
                    derivation(A[i, j], DE, basic=True))

                for s in range(A.rows):
                    # A[s, :] = A[s, :] - A[s, i]*A[:, m+1]
                    Asj = A[s, j]
                    A.row_op(s, lambda r, jj: cancel(r - Asj*Rm1[jj]))
                    # u[s] = u[s] - A[s, j]*u[m+1
                    u.row_op(s, lambda r, jj: cancel(r - Asj*um1))

                A = A.col_join(Rm1)
                u = u.col_join(Matrix([um1]))

    return (A, u)
예제 #40
0
def is_deriv_k(fa, fd, DE):
    """
    Checks if Df/f is the derivative of an element of k(t).

    a in k(t) is the derivative of an element of k(t) if there exists b in k(t)
    such that a = Db.  Either returns (ans, u), such that Df/f == Du, or None,
    which means that Df/f is not the derivative of an element of k(t).  ans is
    a list of tuples such that Add(*[i*j for i, j in ans]) == u.  This is useful
    for seeing exactly which elements of k(t) produce u.

    This function uses the structure theorem approach, which says that for any
    f in K, Df/f is the derivative of a element of K if and only if there are ri
    in QQ such that::

            ---               ---       Dt
            \    r  * Dt   +  \    r  *   i      Df
            /     i     i     /     i   ---   =  --.
            ---               ---        t        f
         i in L            i in E         i
               K/C(x)            K/C(x)


    Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is
    transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i
    in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic
    monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i
    is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some
    a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of
    hyperexponential monomials of K over C(x)).  If K is an elementary extension
    over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the
    transcendence degree of K over C(x).  Furthermore, because Const_D(K) ==
    Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and
    deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x)
    and L_K/C(x) are disjoint.

    The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed
    recursively using this same function.  Therefore, it is required to pass
    them as indices to D (or T).  E_args are the arguments of the
    hyperexponentials indexed by E_K (i.e., if i is in E_K, then T[i] ==
    exp(E_args[i])).  This is needed to compute the final answer u such that
    Df/f == Du.

    log(f) will be the same as u up to a additive constant.  This is because
    they will both behave the same as monomials. For example, both log(x) and
    log(2*x) == log(x) + log(2) satisfy Dt == 1/x, because log(2) is constant.
    Therefore, the term const is returned.  const is such that
    log(const) + f == u.  This is calculated by dividing the arguments of one
    logarithm from the other.  Therefore, it is necessary to pass the arguments
    of the logarithmic terms in L_args.

    To handle the case where we are given Df/f, not f, use is_deriv_k_in_field().
    """
    # Compute Df/f
    dfa, dfd = fd*(fd*derivation(fa, DE) - fa*derivation(fd, DE)), fd**2*fa
    dfa, dfd = dfa.cancel(dfd, include=True)

    # Our assumption here is that each monomial is recursively transcendental
    if len(DE.L_K) + len(DE.E_K) != len(DE.D) - 1:
        if filter(lambda i: i == 'tan', DE.cases) or \
                set(filter(lambda i: i == 'primitive', DE.cases)) - set(DE.L_K):
            raise NotImplementedError("Real version of the structure "
                "theorems with hypertangent support is not yet implemented.")

        # TODO: What should really be done in this case?
        raise NotImplementedError("Nonelementary extensions not supported "
            "in the structure theorems.")

    E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.E_K]
    L_part = [DE.D[i].as_expr() for i in DE.L_K]

    lhs = Matrix([E_part + L_part])
    rhs = Matrix([dfa.as_expr()/dfd.as_expr()])

    A, u = constant_system(lhs, rhs, DE)

    if not all(derivation(i, DE, basic=True).is_zero for i in u) or not A:
        # If the elements of u are not all constant
        # Note: See comment in constant_system

        # Also note: derivation(basic=True) calls cancel()
        return None
    else:
        if not all(i.is_Rational for i in u):
            raise NotImplementedError("Cannot work with non-rational "
                "coefficients in this case.")
        else:
            terms = DE.E_args + [DE.T[i] for i in DE.L_K]
            ans = zip(terms, u)
            result = Add(*[Mul(i, j) for i, j in ans])
            argterms = [DE.T[i] for i in DE.E_K] + DE.L_args
            l = []
            for i, j in zip(argterms, u):
                # We need to get around things like sqrt(x**2) != x
                # and also sqrt(x**2 + 2*x + 1) != x + 1
                icoeff, iterms = sqf_list(i)
                l.append(Mul(*([Pow(icoeff, j)] + [Pow(b, e*j) for b, e in iterms])))
            const = cancel(fa.as_expr()/fd.as_expr()/Mul(*l))

            return (ans, result, const)
예제 #41
0
def is_log_deriv_k_t_radical(fa, fd, DE, Df=True):
    """
    Checks if Df is the logarithmic derivative of a k(t)-radical.

    b in k(t) can be written as the logarithmic derivative of a k(t) radical if
    there exist n in ZZ and u in k(t) with n, u != 0 such that n*b == Du/u.
    Either returns (ans, u, n, const) or None, which means that Df cannot be
    written as the logarithmic derivative of a k(t)-radical.  ans is a list of
    tuples such that Mul(*[i**j for i, j in ans]) == u.  This is useful for
    seeing exactly what elements of k(t) produce u.

    This function uses the structure theorem approach, which says that for any
    f in K, Df is the logarithmic derivative of a K-radical if and only if there
    are ri in QQ such that::

            ---               ---       Dt
            \    r  * Dt   +  \    r  *   i
            /     i     i     /     i   ---   =  Df.
            ---               ---        t
         i in L            i in E         i
               K/C(x)            K/C(x)


    Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is
    transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i
    in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic
    monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i
    is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some
    a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of
    hyperexponential monomials of K over C(x)).  If K is an elementary extension
    over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the
    transcendence degree of K over C(x).  Furthermore, because Const_D(K) ==
    Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and
    deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x)
    and L_K/C(x) are disjoint.

    The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed
    recursively using this same function.  Therefore, it is required to pass
    them as indices to D (or T).  L_args are the arguments of the logarithms
    indexed by L_K (i.e., if i is in L_K, then T[i] == log(L_args[i])).  This is
    needed to compute the final answer u such that n*f == Du/u.

    exp(f) will be the same as u up to a multiplicative constant.  This is
    because they will both behave the same as monomials.  For example, both
    exp(x) and exp(x + 1) == E*exp(x) satisfy Dt == t. Therefore, the term const
    is returned.  const is such that exp(const)*f == u.  This is calculated by
    subtracting the arguments of one exponential from the other.  Therefore, it
    is necessary to pass the arguments of the exponential terms in E_args.

    To handle the case where we are given Df, not f, use
    is_log_deriv_k_t_radical_in_field().
    """
    H = []
    if Df:
        dfa, dfd = (fd*derivation(fa, DE) - fa*derivation(fd, DE)).cancel(fd**2,
            include=True)
    else:
        dfa, dfd = fa, fd

    # Our assumption here is that each monomial is recursively transcendental
    if len(DE.L_K) + len(DE.E_K) != len(DE.D) - 1:
        if filter(lambda i: i == 'tan', DE.cases) or \
                set(filter(lambda i: i == 'primitive', DE.cases)) - set(DE.L_K):
            raise NotImplementedError("Real version of the structure "
                "theorems with hypertangent support is not yet implemented.")

        # TODO: What should really be done in this case?
        raise NotImplementedError("Nonelementary extensions not supported "
            "in the structure theorems.")

    E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.E_K]
    L_part = [DE.D[i].as_expr() for i in DE.L_K]

    lhs = Matrix([E_part + L_part])
    rhs = Matrix([dfa.as_expr()/dfd.as_expr()])

    A, u = constant_system(lhs, rhs, DE)
    if not all(derivation(i, DE, basic=True).is_zero for i in u) or not A:
        # If the elements of u are not all constant
        # Note: See comment in constant_system

        # Also note: derivation(basic=True) calls cancel()
        return None
    else:
        if not all(i.is_Rational for i in u):
            # TODO: But maybe we can tell if they're not rational, like
            # log(2)/log(3). Also, there should be an option to continue
            # anyway, even if the result might potentially be wrong.
            raise NotImplementedError("Cannot work with non-rational "
                "coefficients in this case.")
        else:
            n = reduce(ilcm, [i.as_numer_denom()[1] for i in u])
            u *= n
            terms = [DE.T[i] for i in DE.E_K] + DE.L_args
            ans = zip(terms, u)
            result = Mul(*[Pow(i, j) for i, j in ans])

            # exp(f) will be the same as result up to a multiplicative
            # constant.  We now find the log of that constant.
            argterms = DE.E_args + [DE.T[i] for i in DE.L_K]
            const = cancel(fa.as_expr()/fd.as_expr() -
                Add(*[Mul(i, j/n) for i, j in zip(argterms, u)]))

            return (ans, result, n, const)
예제 #42
0
파일: solvers.py 프로젝트: qmattpap/sympy
def checksol(f, symbol, sol=None, **flags):
    """Checks whether sol is a solution of equation f == 0.

    Input can be either a single symbol and corresponding value
    or a dictionary of symbols and values.

    Examples:
    ---------

       >>> from sympy import symbols
       >>> from sympy.solvers import checksol
       >>> x, y = symbols('x,y')
       >>> checksol(x**4-1, x, 1)
       True
       >>> checksol(x**4-1, x, 0)
       False
       >>> checksol(x**2 + y**2 - 5**2, {x:3, y: 4})
       True

       None is returned if checksol() could not conclude.

       flags:
           'numerical=True (default)'
               do a fast numerical check if f has only one symbol.
           'minimal=True (default is False)'
               a very fast, minimal testing.
           'warning=True (default is False)'
               print a warning if checksol() could not conclude.
           'simplified=True (default)'
               solution should be simplified before substituting into function
               and function should be simplified after making substitution.
           'force=True (default is False)'
               make positive all symbols without assumptions regarding sign.
    """

    if sol is not None:
        sol = {symbol: sol}
    elif isinstance(symbol, dict):
        sol = symbol
    else:
        msg = 'Expecting sym, val or {sym: val}, None but got %s, %s'
        raise ValueError(msg % (symbol, sol))

    if hasattr(f, '__iter__') and hasattr(f, '__len__'):
        if not f:
            raise ValueError('no functions to check')
        rv = set()
        for fi in f:
            check = checksol(fi, sol, **flags)
            if check is False:
                return False
            rv.add(check)
        if None in rv: # rv might contain True and/or None
            return None
        assert len(rv) == 1 # True
        return True

    if isinstance(f, Poly):
        f = f.as_expr()
    elif isinstance(f, Equality):
        f = f.lhs - f.rhs

    if not f:
        return True

    if not f.has(*sol.keys()):
        return False

    attempt = -1
    numerical = flags.get('numerical', True)
    while 1:
        attempt += 1
        if attempt == 0:
            val = f.subs(sol)
        elif attempt == 1:
            if not val.atoms(Symbol) and numerical:
                # val is a constant, so a fast numerical test may suffice
                if val not in [S.Infinity, S.NegativeInfinity]:
                    # issue 2088 shows that +/-oo chops to 0
                    val = val.evalf(36).n(30, chop=True)
        elif attempt == 2:
            if flags.get('minimal', False):
                return
            # the flag 'simplified=False' is used in solve to avoid
            # simplifying the solution. So if it is set to False there
            # the simplification will not be attempted here, either. But
            # if the simplification is done here then the flag should be
            # set to False so it isn't done again there.
            # FIXME: this can't work, since `flags` is not passed to
            # `checksol()` as a dict, but as keywords.
            # So, any modification to `flags` here will be lost when returning
            # from `checksol()`.
            if flags.get('simplified', True):
                for k in sol:
                    sol[k] = simplify(sympify(sol[k]))
                flags['simplified'] = False
                val = simplify(f.subs(sol))
            if flags.get('force', False):
                val = posify(val)[0]
        elif attempt == 3:
            val = powsimp(val)
        elif attempt == 4:
            val = cancel(val)
        elif attempt == 5:
            val = val.expand()
        elif attempt == 6:
            val = together(val)
        elif attempt == 7:
            val = powsimp(val)
        else:
            break
        if val.is_zero:
            return True
        elif attempt > 0 and numerical and val.is_nonzero:
            return False

    if flags.get('warning', False):
        print("\n\tWarning: could not verify solution %s." % sol)
예제 #43
0
def is_log_deriv_k_t_radical_in_field(fa, fd, DE, case='auto', z=None):
    """
    Checks if f can be written as the logarithmic derivative of a k(t)-radical.

    f in k(t) can be written as the logarithmic derivative of a k(t) radical if
    there exist n in ZZ and u in k(t) with n, u != 0 such that n*f == Du/u.
    Either returns (n, u) or None, which means that f cannot be written as the
    logarithmic derivative of a k(t)-radical.

    case is one of {'primitive', 'exp', 'tan', 'auto'} for the primitive,
    hyperexponential, and hypertangent cases, respectively.  If case it 'auto',
    it will attempt to determine the type of the derivation automatically.
    """
    fa, fd = fa.cancel(fd, include=True)

    # f must be simple
    n, s = splitfactor(fd, DE)
    if not s.is_one:
        pass
        #return None

    z = z or Dummy('z')
    H, b = residue_reduce(fa, fd, DE, z=z)
    if not b:
        # I will have to verify, but I believe that the answer should be
        # None in this case. This should never happen for the
        # functions given when solving the parametric logarithmic
        # derivative problem when integration elementary functions (see
        # Bronstein's book, page 255), so most likely this indicates a bug.
        return None

    roots = [(i, i.real_roots()) for i, _ in H]
    if not all(len(j) == i.degree() and all(k.is_Rational for k in j) for
               i, j in roots):
        # If f is the logarithmic derivative of a k(t)-radical, then all the
        # roots of the resultant must be rational numbers.
        return None

    # [(a, i), ...], where i*log(a) is a term in the log-part of the integral
    # of f
    respolys, residues = zip(*roots) or [[], []]
    # Note: this might be empty, but everything below should work find in that
    # case (it should be the same as if it were [[1, 1]])
    residueterms = [(H[j][1].subs(z, i), i) for j in xrange(len(H)) for
        i in residues[j]]

    # TODO: finish writing this and write tests

    p = cancel(fa.as_expr()/fd.as_expr() - residue_reduce_derivation(H, DE, z))

    p = p.as_poly(DE.t)
    if p is None:
        # f - Dg will be in k[t] if f is the logarithmic derivative of a k(t)-radical
        return None

    if p.degree(DE.t) >= max(1, DE.d.degree(DE.t)):
        return None

    if case == 'auto':
        case = DE.case

    if case == 'exp':
        wa, wd = derivation(DE.t, DE).cancel(Poly(DE.t, DE.t), include=True)
        with DecrementLevel(DE):
            pa, pd = frac_in(p, DE.t, cancel=True)
            wa, wd = frac_in((wa, wd), DE.t)
            A = parametric_log_deriv(pa, pd, wa, wd, DE)
        if A is None:
            return None
        n, e, u = A
        u *= DE.t**e
#        raise NotImplementedError("The hyperexponential case is "
#            "not yet completely implemented for is_log_deriv_k_t_radical_in_field().")

    elif case == 'primitive':
        with DecrementLevel(DE):
            pa, pd = frac_in(p, DE.t)
            A = is_log_deriv_k_t_radical_in_field(pa, pd, DE, case='auto')
        if A is None:
            return None
        n, u = A

    elif case == 'base':
        # TODO: we can use more efficient residue reduction from ratint()
        if not fd.is_sqf or fa.degree() >= fd.degree():
            # f is the logarithmic derivative in the base case if and only if
            # f = fa/fd, fd is square-free, deg(fa) < deg(fd), and
            # gcd(fa, fd) == 1.  The last condition is handled by cancel() above.
            return None
        # Note: if residueterms = [], returns (1, 1)
        # f had better be 0 in that case.
        n = reduce(ilcm, [i.as_numer_denom()[1] for _, i in residueterms], S(1))
        u = Mul(*[Pow(i, j*n) for i, j in residueterms])
        return (n, u)

    elif case == 'tan':
        raise NotImplementedError("The hypertangent case is "
        "not yet implemented for is_log_deriv_k_t_radical_in_field()")

    elif case in ['other_linear', 'other_nonlinear']:
        # XXX: If these are supported by the structure theorems, change to NotImplementedError.
        raise ValueError("The %s case is not supported in this function." % case)

    else:
        raise ValueError("case must be one of {'primitive', 'exp', 'tan', "
        "'base', 'auto'}, not %s" % case)

    common_denom = reduce(ilcm, [i.as_numer_denom()[1] for i in [j for _, j in
        residueterms]] + [n], S(1))
    residueterms = [(i, j*common_denom) for i, j in residueterms]
    m = common_denom//n
    assert common_denom == n*m  # Verify exact division
    u = cancel(u**m*Mul(*[Pow(i, j) for i, j in residueterms]))

    return (common_denom, u)
예제 #44
0
파일: heurisch.py 프로젝트: AALEKH/sympy
def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3,
             degree_offset=0, unnecessary_permutations=None):
    """
    Compute indefinite integral using heuristic Risch algorithm.

    This is a heuristic approach to indefinite integration in finite
    terms using the extended heuristic (parallel) Risch algorithm, based
    on Manuel Bronstein's "Poor Man's Integrator".

    The algorithm supports various classes of functions including
    transcendental elementary or special functions like Airy,
    Bessel, Whittaker and Lambert.

    Note that this algorithm is not a decision procedure. If it isn't
    able to compute the antiderivative for a given function, then this is
    not a proof that such a functions does not exist.  One should use
    recursive Risch algorithm in such case.  It's an open question if
    this algorithm can be made a full decision procedure.

    This is an internal integrator procedure. You should use toplevel
    'integrate' function in most cases,  as this procedure needs some
    preprocessing steps and otherwise may fail.

    Specification
    =============

     heurisch(f, x, rewrite=False, hints=None)

       where
         f : expression
         x : symbol

         rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh'
         hints   -> a list of functions that may appear in anti-derivate

          - hints = None          --> no suggestions at all
          - hints = [ ]           --> try to figure out
          - hints = [f1, ..., fn] --> we know better

    Examples
    ========

    >>> from sympy import tan
    >>> from sympy.integrals.heurisch import heurisch
    >>> from sympy.abc import x, y

    >>> heurisch(y*tan(x), x)
    y*log(tan(x)**2 + 1)/2

    See Manuel Bronstein's "Poor Man's Integrator":

    [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html

    For more information on the implemented algorithm refer to:

    [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration
       Method and its Implementation in Maple, Proceedings of
       ISSAC'89, ACM Press, 212-217.

    [3] J. H. Davenport, On the Parallel Risch Algorithm (I),
       Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157.

    [4] J. H. Davenport, On the Parallel Risch Algorithm (III):
       Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6.

    [5] J. H. Davenport, B. M. Trager, On the Parallel Risch
       Algorithm (II), ACM Transactions on Mathematical
       Software 11 (1985), 356-362.

    See Also
    ========

    sympy.integrals.integrals.Integral.doit
    sympy.integrals.integrals.Integral
    components
    """
    f = sympify(f)
    if x not in f.free_symbols:
        return f*x

    if not f.is_Add:
        indep, f = f.as_independent(x)
    else:
        indep = S.One

    rewritables = {
        (sin, cos, cot): tan,
        (sinh, cosh, coth): tanh,
    }

    if rewrite:
        for candidates, rule in rewritables.items():
            f = f.rewrite(candidates, rule)
    else:
        for candidates in rewritables.keys():
            if f.has(*candidates):
                break
        else:
            rewrite = True

    terms = components(f, x)

    if hints is not None:
        if not hints:
            a = Wild('a', exclude=[x])
            b = Wild('b', exclude=[x])
            c = Wild('c', exclude=[x])

            for g in set(terms):
                if g.is_Function:
                    if g.func is li:
                        M = g.args[0].match(a*x**b)

                        if M is not None:
                            terms.add( x*(li(M[a]*x**M[b]) - (M[a]*x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
                            #terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
                            #terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
                            #terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) )

                    elif g.func is exp:
                        M = g.args[0].match(a*x**2)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(erfi(sqrt(M[a])*x))
                            else: # M[a].is_negative or unknown
                                terms.add(erf(sqrt(-M[a])*x))

                        M = g.args[0].match(a*x**2 + b*x + c)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))*
                                          erfi(sqrt(M[a])*x + M[b]/(2*sqrt(M[a]))))
                            elif M[a].is_negative:
                                terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))*
                                          erf(sqrt(-M[a])*x - M[b]/(2*sqrt(-M[a]))))

                        M = g.args[0].match(a*log(x)**2)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(erfi(sqrt(M[a])*log(x) + 1/(2*sqrt(M[a]))))
                            if M[a].is_negative:
                                terms.add(erf(sqrt(-M[a])*log(x) - 1/(2*sqrt(-M[a]))))

                elif g.is_Pow:
                    if g.exp.is_Rational and g.exp.q == 2:
                        M = g.base.match(a*x**2 + b)

                        if M is not None and M[b].is_positive:
                            if M[a].is_positive:
                                terms.add(asinh(sqrt(M[a]/M[b])*x))
                            elif M[a].is_negative:
                                terms.add(asin(sqrt(-M[a]/M[b])*x))

                        M = g.base.match(a*x**2 - b)

                        if M is not None and M[b].is_positive:
                            if M[a].is_positive:
                                terms.add(acosh(sqrt(M[a]/M[b])*x))
                            elif M[a].is_negative:
                                terms.add((-M[b]/2*sqrt(-M[a])*
                                           atan(sqrt(-M[a])*x/sqrt(M[a]*x**2 - M[b]))))

        else:
            terms |= set(hints)

    for g in set(terms):
        terms |= components(cancel(g.diff(x)), x)

    # TODO: caching is significant factor for why permutations work at all. Change this.
    V = _symbols('x', len(terms))

    mapping = dict(list(zip(terms, V)))

    rev_mapping = {}

    if unnecessary_permutations is None:
        unnecessary_permutations = []
    for k, v in mapping.items():
        rev_mapping[v] = k

    if mappings is None:
        # Pre-sort mapping in order of largest to smallest expressions (last is always x).
        def _sort_key(arg):
            return default_sort_key(arg[0].as_independent(x)[1])
        #optimizing the number of permutations of mappping
        unnecessary_permutations = [(x, mapping[x])]
        del mapping[x]
        mapping = sorted(list(mapping.items()), key=_sort_key, reverse=True)
        mappings = permutations(mapping)

    def _substitute(expr):
        return expr.subs(mapping)

    for mapping in mappings:
        mapping = list(mapping)
        mapping = mapping + unnecessary_permutations
        diffs = [ _substitute(cancel(g.diff(x))) for g in terms ]
        denoms = [ g.as_numer_denom()[1] for g in diffs ]
        if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V):
            denom = reduce(lambda p, q: lcm(p, q, *V), denoms)
            break
    else:
        if not rewrite:
            result = heurisch(f, x, rewrite=True, hints=hints, unnecessary_permutations=unnecessary_permutations)

            if result is not None:
                return indep*result
        return None

    numers = [ cancel(denom*g) for g in diffs ]
    def _derivation(h):
        return Add(*[ d * h.diff(v) for d, v in zip(numers, V) ])

    def _deflation(p):
        for y in V:
            if not p.has(y):
                continue

            if _derivation(p) is not S.Zero:
                c, q = p.as_poly(y).primitive()
                return _deflation(c)*gcd(q, q.diff(y)).as_expr()
        else:
            return p

    def _splitter(p):
        for y in V:
            if not p.has(y):
                continue

            if _derivation(y) is not S.Zero:
                c, q = p.as_poly(y).primitive()

                q = q.as_expr()

                h = gcd(q, _derivation(q), y)
                s = quo(h, gcd(q, q.diff(y), y), y)

                c_split = _splitter(c)

                if s.as_poly(y).degree() == 0:
                    return (c_split[0], q * c_split[1])

                q_split = _splitter(cancel(q / s))

                return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1])
        else:
            return (S.One, p)

    special = {}

    for term in terms:
        if term.is_Function:
            if term.func is tan:
                special[1 + _substitute(term)**2] = False
            elif term.func is tanh:
                special[1 + _substitute(term)] = False
                special[1 - _substitute(term)] = False
            elif term.func is C.LambertW:
                special[_substitute(term)] = True

    F = _substitute(f)

    P, Q = F.as_numer_denom()

    u_split = _splitter(denom)
    v_split = _splitter(Q)

    polys = list(v_split) + [ u_split[0] ] + list(special.keys())

    s = u_split[0] * Mul(*[ k for k, v in special.items() if v ])
    polified = [ p.as_poly(*V) for p in [s, P, Q] ]

    if None in polified:
        return None

    a, b, c = [ p.total_degree() for p in polified ]

    poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr()

    def _exponent(g):
        if g.is_Pow:
            if g.exp.is_Rational and g.exp.q != 1:
                if g.exp.p > 0:
                    return g.exp.p + g.exp.q - 1
                else:
                    return abs(g.exp.p + g.exp.q)
            else:
                return 1
        elif not g.is_Atom and g.args:
            return max([ _exponent(h) for h in g.args ])
        else:
            return 1

    A, B = _exponent(f), a + max(b, c)

    if A > 1 and B > 1:
        monoms = itermonomials(V, A + B - 1 + degree_offset)
    else:
        monoms = itermonomials(V, A + B + degree_offset)

    poly_coeffs = _symbols('A', len(monoms))

    poly_part = Add(*[ poly_coeffs[i]*monomial
        for i, monomial in enumerate(monoms) ])

    reducibles = set()

    for poly in polys:
        if poly.has(*V):
            try:
                factorization = factor(poly, greedy=True)
            except PolynomialError:
                factorization = poly
            factorization = poly

            if factorization.is_Mul:
                reducibles |= set(factorization.args)
            else:
                reducibles.add(factorization)

    def _integrate(field=None):
        irreducibles = set()

        for poly in reducibles:
            for z in poly.atoms(Symbol):
                if z in V:
                    break
            else:
                continue

            irreducibles |= set(root_factors(poly, z, filter=field))

        log_coeffs, log_part = [], []
        B = _symbols('B', len(irreducibles))

        for i, poly in enumerate(irreducibles):
            if poly.has(*V):
                log_coeffs.append(B[i])
                log_part.append(log_coeffs[-1] * log(poly))

        coeffs = poly_coeffs + log_coeffs

        # TODO: Currently it's better to use symbolic expressions here instead
        # of rational functions, because it's simpler and FracElement doesn't
        # give big speed improvement yet. This is because cancelation is slow
        # due to slow polynomial GCD algorithms. If this gets improved then
        # revise this code.
        candidate = poly_part/poly_denom + Add(*log_part)
        h = F - _derivation(candidate) / denom
        raw_numer = h.as_numer_denom()[0]

        # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
        # that we have to determine. We can't use simply atoms() because log(3),
        # sqrt(y) and similar expressions can appear, leading to non-trivial
        # domains.
        syms = set(coeffs) | set(V)
        non_syms = set([])

        def find_non_syms(expr):
            if expr.is_Integer or expr.is_Rational:
                pass # ignore trivial numbers
            elif expr in syms:
                pass # ignore variables
            elif not expr.has(*syms):
                non_syms.add(expr)
            elif expr.is_Add or expr.is_Mul or expr.is_Pow:
                list(map(find_non_syms, expr.args))
            else:
                # TODO: Non-polynomial expression. This should have been
                # filtered out at an earlier stage.
                raise PolynomialError

        try:
            find_non_syms(raw_numer)
        except PolynomialError:
            return None
        else:
            ground, _ = construct_domain(non_syms, field=True)

        coeff_ring = PolyRing(coeffs, ground)
        ring = PolyRing(V, coeff_ring)

        numer = ring.from_expr(raw_numer)

        solution = solve_lin_sys(numer.coeffs(), coeff_ring)

        if solution is None:
            return None
        else:
            solution = [ (k.as_expr(), v.as_expr()) for k, v in solution.items() ]
            return candidate.subs(solution).subs(list(zip(coeffs, [S.Zero]*len(coeffs))))

    if not (F.atoms(Symbol) - set(V)):
        solution = _integrate('Q')

        if solution is None:
            solution = _integrate()
    else:
        solution = _integrate()

    if solution is not None:
        antideriv = solution.subs(rev_mapping)
        antideriv = cancel(antideriv).expand(force=True)

        if antideriv.is_Add:
            antideriv = antideriv.as_independent(x)[1]

        return indep*antideriv
    else:
        if retries >= 0:
            result = heurisch(f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1, unnecessary_permutations=unnecessary_permutations)

            if result is not None:
                return indep*result

        return None
예제 #45
0
def heurisch(f,
             x,
             rewrite=False,
             hints=None,
             mappings=None,
             retries=3,
             degree_offset=0,
             unnecessary_permutations=None):
    """
    Compute indefinite integral using heuristic Risch algorithm.

    This is a heuristic approach to indefinite integration in finite
    terms using the extended heuristic (parallel) Risch algorithm, based
    on Manuel Bronstein's "Poor Man's Integrator".

    The algorithm supports various classes of functions including
    transcendental elementary or special functions like Airy,
    Bessel, Whittaker and Lambert.

    Note that this algorithm is not a decision procedure. If it isn't
    able to compute the antiderivative for a given function, then this is
    not a proof that such a functions does not exist.  One should use
    recursive Risch algorithm in such case.  It's an open question if
    this algorithm can be made a full decision procedure.

    This is an internal integrator procedure. You should use toplevel
    'integrate' function in most cases,  as this procedure needs some
    preprocessing steps and otherwise may fail.

    Specification
    =============

     heurisch(f, x, rewrite=False, hints=None)

       where
         f : expression
         x : symbol

         rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh'
         hints   -> a list of functions that may appear in anti-derivate

          - hints = None          --> no suggestions at all
          - hints = [ ]           --> try to figure out
          - hints = [f1, ..., fn] --> we know better

    Examples
    ========

    >>> from sympy import tan
    >>> from sympy.integrals.heurisch import heurisch
    >>> from sympy.abc import x, y

    >>> heurisch(y*tan(x), x)
    y*log(tan(x)**2 + 1)/2

    See Manuel Bronstein's "Poor Man's Integrator":

    [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html

    For more information on the implemented algorithm refer to:

    [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration
       Method and its Implementation in Maple, Proceedings of
       ISSAC'89, ACM Press, 212-217.

    [3] J. H. Davenport, On the Parallel Risch Algorithm (I),
       Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157.

    [4] J. H. Davenport, On the Parallel Risch Algorithm (III):
       Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6.

    [5] J. H. Davenport, B. M. Trager, On the Parallel Risch
       Algorithm (II), ACM Transactions on Mathematical
       Software 11 (1985), 356-362.

    See Also
    ========

    sympy.integrals.integrals.Integral.doit
    sympy.integrals.integrals.Integral
    components
    """
    f = sympify(f)
    if x not in f.free_symbols:
        return f * x

    if not f.is_Add:
        indep, f = f.as_independent(x)
    else:
        indep = S.One

    rewritables = {
        (sin, cos, cot): tan,
        (sinh, cosh, coth): tanh,
    }

    if rewrite:
        for candidates, rule in rewritables.items():
            f = f.rewrite(candidates, rule)
    else:
        for candidates in rewritables.keys():
            if f.has(*candidates):
                break
        else:
            rewrite = True

    terms = components(f, x)

    if hints is not None:
        if not hints:
            a = Wild('a', exclude=[x])
            b = Wild('b', exclude=[x])
            c = Wild('c', exclude=[x])

            for g in set(terms):
                if g.is_Function:
                    if g.func is li:
                        M = g.args[0].match(a * x**b)

                        if M is not None:
                            terms.add(
                                x *
                                (li(M[a] * x**M[b]) -
                                 (M[a] * x**M[b])**(-1 / M[b]) * Ei(
                                     (M[b] + 1) * log(M[a] * x**M[b]) / M[b])))
                            #terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
                            #terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
                            #terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) )

                    elif g.func is exp:
                        M = g.args[0].match(a * x**2)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(erfi(sqrt(M[a]) * x))
                            else:  # M[a].is_negative or unknown
                                terms.add(erf(sqrt(-M[a]) * x))

                        M = g.args[0].match(a * x**2 + b * x + c)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(
                                    sqrt(pi / 4 * (-M[a])) *
                                    exp(M[c] - M[b]**2 / (4 * M[a])) * erfi(
                                        sqrt(M[a]) * x + M[b] /
                                        (2 * sqrt(M[a]))))
                            elif M[a].is_negative:
                                terms.add(
                                    sqrt(pi / 4 * (-M[a])) *
                                    exp(M[c] - M[b]**2 / (4 * M[a])) * erf(
                                        sqrt(-M[a]) * x - M[b] /
                                        (2 * sqrt(-M[a]))))

                        M = g.args[0].match(a * log(x)**2)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(
                                    erfi(
                                        sqrt(M[a]) * log(x) + 1 /
                                        (2 * sqrt(M[a]))))
                            if M[a].is_negative:
                                terms.add(
                                    erf(
                                        sqrt(-M[a]) * log(x) - 1 /
                                        (2 * sqrt(-M[a]))))

                elif g.is_Pow:
                    if g.exp.is_Rational and g.exp.q == 2:
                        M = g.base.match(a * x**2 + b)

                        if M is not None and M[b].is_positive:
                            if M[a].is_positive:
                                terms.add(asinh(sqrt(M[a] / M[b]) * x))
                            elif M[a].is_negative:
                                terms.add(asin(sqrt(-M[a] / M[b]) * x))

                        M = g.base.match(a * x**2 - b)

                        if M is not None and M[b].is_positive:
                            if M[a].is_positive:
                                terms.add(acosh(sqrt(M[a] / M[b]) * x))
                            elif M[a].is_negative:
                                terms.add((-M[b] / 2 * sqrt(-M[a]) * atan(
                                    sqrt(-M[a]) * x / sqrt(M[a] * x**2 - M[b]))
                                           ))

        else:
            terms |= set(hints)

    for g in set(terms):
        terms |= components(cancel(g.diff(x)), x)

    # TODO: caching is significant factor for why permutations work at all. Change this.
    V = _symbols('x', len(terms))

    mapping = dict(list(zip(terms, V)))

    rev_mapping = {}

    if unnecessary_permutations is None:
        unnecessary_permutations = []
    for k, v in mapping.items():
        rev_mapping[v] = k

    if mappings is None:
        # Pre-sort mapping in order of largest to smallest expressions (last is always x).
        def _sort_key(arg):
            return default_sort_key(arg[0].as_independent(x)[1])

        #optimizing the number of permutations of mappping
        unnecessary_permutations = [(x, mapping[x])]
        del mapping[x]
        mapping = sorted(list(mapping.items()), key=_sort_key, reverse=True)
        mappings = permutations(mapping)

    def _substitute(expr):
        return expr.subs(mapping)

    for mapping in mappings:
        mapping = list(mapping)
        mapping = mapping + unnecessary_permutations
        diffs = [_substitute(cancel(g.diff(x))) for g in terms]
        denoms = [g.as_numer_denom()[1] for g in diffs]
        if all(h.is_polynomial(*V)
               for h in denoms) and _substitute(f).is_rational_function(*V):
            denom = reduce(lambda p, q: lcm(p, q, *V), denoms)
            break
    else:
        if not rewrite:
            result = heurisch(
                f,
                x,
                rewrite=True,
                hints=hints,
                unnecessary_permutations=unnecessary_permutations)

            if result is not None:
                return indep * result
        return None

    numers = [cancel(denom * g) for g in diffs]

    def _derivation(h):
        return Add(*[d * h.diff(v) for d, v in zip(numers, V)])

    def _deflation(p):
        for y in V:
            if not p.has(y):
                continue

            if _derivation(p) is not S.Zero:
                c, q = p.as_poly(y).primitive()
                return _deflation(c) * gcd(q, q.diff(y)).as_expr()
        else:
            return p

    def _splitter(p):
        for y in V:
            if not p.has(y):
                continue

            if _derivation(y) is not S.Zero:
                c, q = p.as_poly(y).primitive()

                q = q.as_expr()

                h = gcd(q, _derivation(q), y)
                s = quo(h, gcd(q, q.diff(y), y), y)

                c_split = _splitter(c)

                if s.as_poly(y).degree() == 0:
                    return (c_split[0], q * c_split[1])

                q_split = _splitter(cancel(q / s))

                return (c_split[0] * q_split[0] * s, c_split[1] * q_split[1])
        else:
            return (S.One, p)

    special = {}

    for term in terms:
        if term.is_Function:
            if term.func is tan:
                special[1 + _substitute(term)**2] = False
            elif term.func is tanh:
                special[1 + _substitute(term)] = False
                special[1 - _substitute(term)] = False
            elif term.func is C.LambertW:
                special[_substitute(term)] = True

    F = _substitute(f)

    P, Q = F.as_numer_denom()

    u_split = _splitter(denom)
    v_split = _splitter(Q)

    polys = list(v_split) + [u_split[0]] + list(special.keys())

    s = u_split[0] * Mul(*[k for k, v in special.items() if v])
    polified = [p.as_poly(*V) for p in [s, P, Q]]

    if None in polified:
        return None

    a, b, c = [p.total_degree() for p in polified]

    poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr()

    def _exponent(g):
        if g.is_Pow:
            if g.exp.is_Rational and g.exp.q != 1:
                if g.exp.p > 0:
                    return g.exp.p + g.exp.q - 1
                else:
                    return abs(g.exp.p + g.exp.q)
            else:
                return 1
        elif not g.is_Atom and g.args:
            return max([_exponent(h) for h in g.args])
        else:
            return 1

    A, B = _exponent(f), a + max(b, c)

    if A > 1 and B > 1:
        monoms = itermonomials(V, A + B - 1 + degree_offset)
    else:
        monoms = itermonomials(V, A + B + degree_offset)

    poly_coeffs = _symbols('A', len(monoms))

    poly_part = Add(
        *[poly_coeffs[i] * monomial for i, monomial in enumerate(monoms)])

    reducibles = set()

    for poly in polys:
        if poly.has(*V):
            try:
                factorization = factor(poly, greedy=True)
            except PolynomialError:
                factorization = poly
            factorization = poly

            if factorization.is_Mul:
                reducibles |= set(factorization.args)
            else:
                reducibles.add(factorization)

    def _integrate(field=None):
        irreducibles = set()

        for poly in reducibles:
            for z in poly.free_symbols:
                if z in V:
                    break
            else:
                continue

            irreducibles |= set(root_factors(poly, z, filter=field))

        log_coeffs, log_part = [], []
        B = _symbols('B', len(irreducibles))

        for i, poly in enumerate(irreducibles):
            if poly.has(*V):
                log_coeffs.append(B[i])
                log_part.append(log_coeffs[-1] * log(poly))

        coeffs = poly_coeffs + log_coeffs

        # TODO: Currently it's better to use symbolic expressions here instead
        # of rational functions, because it's simpler and FracElement doesn't
        # give big speed improvement yet. This is because cancelation is slow
        # due to slow polynomial GCD algorithms. If this gets improved then
        # revise this code.
        candidate = poly_part / poly_denom + Add(*log_part)
        h = F - _derivation(candidate) / denom
        raw_numer = h.as_numer_denom()[0]

        # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
        # that we have to determine. We can't use simply atoms() because log(3),
        # sqrt(y) and similar expressions can appear, leading to non-trivial
        # domains.
        syms = set(coeffs) | set(V)
        non_syms = set([])

        def find_non_syms(expr):
            if expr.is_Integer or expr.is_Rational:
                pass  # ignore trivial numbers
            elif expr in syms:
                pass  # ignore variables
            elif not expr.has(*syms):
                non_syms.add(expr)
            elif expr.is_Add or expr.is_Mul or expr.is_Pow:
                list(map(find_non_syms, expr.args))
            else:
                # TODO: Non-polynomial expression. This should have been
                # filtered out at an earlier stage.
                raise PolynomialError

        try:
            find_non_syms(raw_numer)
        except PolynomialError:
            return None
        else:
            ground, _ = construct_domain(non_syms, field=True)

        coeff_ring = PolyRing(coeffs, ground)
        ring = PolyRing(V, coeff_ring)

        numer = ring.from_expr(raw_numer)

        solution = solve_lin_sys(numer.coeffs(), coeff_ring)

        if solution is None:
            return None
        else:
            # If the ring is RR k.as_expr() will be 1.0*A
            solution = [(k.as_expr().as_coeff_Mul()[1], v.as_expr())
                        for k, v in solution.items()]
            return candidate.subs(solution).subs(
                list(zip(coeffs, [S.Zero] * len(coeffs))))

    if not (F.free_symbols - set(V)):
        solution = _integrate('Q')

        if solution is None:
            solution = _integrate()
    else:
        solution = _integrate()

    if solution is not None:
        antideriv = solution.subs(rev_mapping)
        antideriv = cancel(antideriv).expand(force=True)

        if antideriv.is_Add:
            antideriv = antideriv.as_independent(x)[1]

        return indep * antideriv
    else:
        if retries >= 0:
            result = heurisch(
                f,
                x,
                mappings=mappings,
                rewrite=rewrite,
                hints=hints,
                retries=retries - 1,
                unnecessary_permutations=unnecessary_permutations)

            if result is not None:
                return indep * result

        return None
예제 #46
0
파일: solvers.py 프로젝트: Ingwar/sympy
def _solve(f, *symbols, **flags):
    """ Return a checked solution for f in terms of one or more of the symbols."""

    check  = flags.get('check', True)
    if not iterable(f):

        if len(symbols) != 1:
            soln = None
            free = f.free_symbols
            ex = free - set(symbols)
            if len(ex) == 1:
                ex = ex.pop()
                try:
                    # may come back as dict or list (if non-linear)
                    soln = solve_undetermined_coeffs(f, symbols, ex)
                except NotImplementedError:
                    pass
            if not soln is None:
                return soln
            # find first successful solution
            failed = []
            for s in symbols:
                n, d = solve_linear(f, symbols=[s])
                if n.is_Symbol:
                    return [{n: cancel(d)}]
                failed.append(s)
            for s in failed:
                try:
                    soln = _solve(f, s, **flags)
                except NotImplementedError:
                    continue
                if soln:
                    return [{s: sol} for sol in soln]
                else:
                    return soln
            else:
                msg = "No algorithms are implemented to solve equation %s"
                raise NotImplementedError(msg % f)

        symbol = symbols[0]

        # build up solutions if f is a Mul
        if f.is_Mul:
            result = set()
            dens = denoms(f, symbols)
            for m in f.args:
                soln = _solve(m, symbol, **flags)
                result.update(set(soln))
            if check:
               result = [s for s in result if all(not checksol(den, {symbol: s}, **flags) for den in dens)]

        elif f.is_Piecewise:
            result = set()
            for expr, cond in f.args:
                candidates = _solve(expr, *symbols)
                if isinstance(cond, bool) or cond.is_Number:
                    if not cond:
                        continue

                    # Only include solutions that do not match the condition
                    # of any of the other pieces.
                    for candidate in candidates:
                        matches_other_piece = False
                        for other_expr, other_cond in f.args:
                            if isinstance(other_cond, bool) \
                               or other_cond.is_Number:
                                continue
                            if bool(other_cond.subs(symbol, candidate)):
                                matches_other_piece = True
                                break
                        if not matches_other_piece:
                            result.add(candidate)
                else:
                    for candidate in candidates:
                        if bool(cond.subs(symbol, candidate)):
                            result.add(candidate)
            dens = set() # all checking has already been done
        else:
            # first see if it really depends on symbol and whether there
            # is a linear solution
            f_num, sol = solve_linear(f, symbols=symbols)
            if not symbol in f_num.free_symbols:
                return []
            elif f_num.is_Symbol:
                return [cancel(sol)]

            result = False # no solution was obtained
            msg = '' # there is no failure message
            dens = denoms(f, symbols) # store these for checking later

            # Poly is generally robust enough to convert anything to
            # a polynomial and tell us the different generators that it
            # contains, so we will inspect the generators identified by
            # polys to figure out what to do.
            poly = Poly(f_num)
            if poly is None:
                raise ValueError('could not convert %s to Poly' % f_num)
            gens = [g for g in poly.gens if g.has(symbol)]

            if len(gens) > 1:
                # If there is more than one generator, it could be that the
                # generators have the same base but different powers, e.g.
                #   >>> Poly(exp(x)+1/exp(x))
                #   Poly(exp(-x) + exp(x), exp(-x), exp(x), domain='ZZ')
                #   >>> Poly(sqrt(x)+sqrt(sqrt(x)))
                #   Poly(sqrt(x) + x**(1/4), sqrt(x), x**(1/4), domain='ZZ')
                # If the exponents are Rational then a change of variables
                # will make this a polynomial equation in a single base.

                def as_base_q(x):
                    """Return (b**e, q) for x = b**(p*e/q) where p/q is the leading
                    Rational of the exponent of x, e.g. exp(-2*x/3) -> (exp(x), 3)
                    """
                    b, e = x.as_base_exp()
                    if e.is_Rational:
                        return b, e.q
                    if not e.is_Mul:
                        return x, 1
                    c, ee = e.as_coeff_Mul()
                    if c.is_Rational and not c is S.One: # c could be a Float
                        return b**ee, c.q
                    return x, 1

                bases, qs = zip(*[as_base_q(g) for g in gens])
                bases = set(bases)
                if len(bases) == 1 and any(q != 1 for q in qs):
                    # e.g. for x**(1/2) + x**(1/4) a change of variables
                    # can be made using p**4 to give p**2 + p
                    base = bases.pop()
                    m = reduce(ilcm, qs)
                    p = Dummy('p', positive=True)
                    cov = p**m
                    fnew = f_num.subs(base, cov)
                    poly = Poly(fnew, p) # we now have a single generator, p

                    # for cubics and quartics, if the flag wasn't set, DON'T do it
                    # by default since the results are quite long. Perhaps one could
                    # base this decision on a certain critical length of the roots.
                    if poly.degree() > 2:
                        flags['simplify'] = flags.get('simplify', False)

                    soln = roots(poly, cubics=True, quartics=True).keys()

                    # We now know what the values of p are equal to. Now find out
                    # how they are related to the original x, e.g. if p**2 = cos(x) then
                    # x = acos(p**2)
                    #
                    inversion = _solve(cov - base, symbol, **flags)
                    result = [i.subs(p, s) for i in inversion for s in soln]
                    if check:
                       result = [r for r in result if checksol(f_num, {symbol: r}, **flags) is not False]
            elif len(gens) == 1:

                # There is only one generator that we are interested in, but there may
                # have been more than one generator identified by polys (e.g. for symbols
                # other than the one we are interested in) so recast the poly in terms
                # of our generator of interest.
                if len(poly.gens) > 1:
                    poly = Poly(poly, gens[0])

                # if we haven't tried tsolve yet, do so now
                if not flags.pop('tsolve', False):
                    # for cubics and quartics, if the flag wasn't set, DON'T do it
                    # by default since the results are quite long. Perhaps one could
                    # base this decision on a certain critical length of the roots.
                    if poly.degree() > 2:
                        flags['simplify'] = flags.get('simplify', False)
                    soln = roots(poly, cubics=True, quartics=True).keys()
                    gen = poly.gen
                    if gen != symbol:
                        u = Dummy()
                        flags['tsolve'] = True
                        inversion = _solve(gen - u, symbol, **flags)
                        soln = list(set([i.subs(u, s) for i in inversion for s in soln]))
                    result = soln
            else:
                msg = 'multiple generators %s' % gens

        # fallback if above fails
        if result is False:
            result = _tsolve(f_num, symbol, **flags) or False

        if result is False:
            raise NotImplementedError(msg +
            "\nNo algorithms are implemented to solve equation %s" % f)

        if flags.get('simplify', True):
            result = map(simplify, result)

        # reject any result that makes any denom. affirmatively 0;
        # if in doubt, keep it
        if check:
           result = [s for s in result if
                     all(not checksol(den, {symbol: s}, **flags)
                     for den in dens)]
        return result

    else:

        if not f:
            return []

        else:

            polys = []

            for g in f:

                poly = g.as_poly(*symbols, **{'extension': True})

                if poly is not None:
                    polys.append(poly)
                else:
                    raise NotImplementedError()

            if all(p.is_linear for p in polys):
                n, m = len(f), len(symbols)
                matrix = zeros(n, m + 1)

                for i, poly in enumerate(polys):
                    for monom, coeff in poly.terms():
                        try:
                            j = list(monom).index(1)
                            matrix[i, j] = coeff
                        except ValueError:
                            matrix[i, m] = -coeff

                # a dictionary of symbols: values or None
                result = solve_linear_system(matrix, *symbols, **flags)
                return result
            else:
                # a list of tuples, T, where T[i] [j] corresponds to the ith solution for symbols[j]
                result = solve_poly_system(polys)
                return result
예제 #47
0
def trigsimp_groebner(expr,
                      hints=[],
                      quick=False,
                      order="grlex",
                      polynomial=False):
    """
    Simplify trigonometric expressions using a groebner basis algorithm.

    This routine takes a fraction involving trigonometric or hyperbolic
    expressions, and tries to simplify it. The primary metric is the
    total degree. Some attempts are made to choose the simplest possible
    expression of the minimal degree, but this is non-rigorous, and also
    very slow (see the ``quick=True`` option).

    If ``polynomial`` is set to True, instead of simplifying numerator and
    denominator together, this function just brings numerator and denominator
    into a canonical form. This is much faster, but has potentially worse
    results. However, if the input is a polynomial, then the result is
    guaranteed to be an equivalent polynomial of minimal degree.

    The most important option is hints. Its entries can be any of the
    following:

    - a natural number
    - a function
    - an iterable of the form (func, var1, var2, ...)
    - anything else, interpreted as a generator

    A number is used to indicate that the search space should be increased.
    A function is used to indicate that said function is likely to occur in a
    simplified expression.
    An iterable is used indicate that func(var1 + var2 + ...) is likely to
    occur in a simplified .
    An additional generator also indicates that it is likely to occur.
    (See examples below).

    This routine carries out various computationally intensive algorithms.
    The option ``quick=True`` can be used to suppress one particularly slow
    step (at the expense of potentially more complicated results, but never at
    the expense of increased total degree).

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> from sympy import sin, tan, cos, sinh, cosh, tanh
    >>> from sympy.simplify.trigsimp import trigsimp_groebner

    Suppose you want to simplify ``sin(x)*cos(x)``. Naively, nothing happens:

    >>> ex = sin(x)*cos(x)
    >>> trigsimp_groebner(ex)
    sin(x)*cos(x)

    This is because ``trigsimp_groebner`` only looks for a simplification
    involving just ``sin(x)`` and ``cos(x)``. You can tell it to also try
    ``2*x`` by passing ``hints=[2]``:

    >>> trigsimp_groebner(ex, hints=[2])
    sin(2*x)/2
    >>> trigsimp_groebner(sin(x)**2 - cos(x)**2, hints=[2])
    -cos(2*x)

    Increasing the search space this way can quickly become expensive. A much
    faster way is to give a specific expression that is likely to occur:

    >>> trigsimp_groebner(ex, hints=[sin(2*x)])
    sin(2*x)/2

    Hyperbolic expressions are similarly supported:

    >>> trigsimp_groebner(sinh(2*x)/sinh(x))
    2*cosh(x)

    Note how no hints had to be passed, since the expression already involved
    ``2*x``.

    The tangent function is also supported. You can either pass ``tan`` in the
    hints, to indicate that tan should be tried whenever cosine or sine are,
    or you can pass a specific generator:

    >>> trigsimp_groebner(sin(x)/cos(x), hints=[tan])
    tan(x)
    >>> trigsimp_groebner(sinh(x)/cosh(x), hints=[tanh(x)])
    tanh(x)

    Finally, you can use the iterable form to suggest that angle sum formulae
    should be tried:

    >>> ex = (tan(x) + tan(y))/(1 - tan(x)*tan(y))
    >>> trigsimp_groebner(ex, hints=[(tan, x, y)])
    tan(x + y)
    """

    # TODO
    #  - preprocess by replacing everything by funcs we can handle
    # - optionally use cot instead of tan
    # - more intelligent hinting.
    #     For example, if the ideal is small, and we have sin(x), sin(y),
    #     add sin(x + y) automatically... ?
    # - algebraic numbers ...
    # - expressions of lowest degree are not distinguished properly
    #   e.g. 1 - sin(x)**2
    # - we could try to order the generators intelligently, so as to influence
    #   which monomials appear in the quotient basis

    # THEORY
    # ------
    # Ratsimpmodprime above can be used to "simplify" a rational function
    # modulo a prime ideal. "Simplify" mainly means finding an equivalent
    # expression of lower total degree.
    #
    # We intend to use this to simplify trigonometric functions. To do that,
    # we need to decide (a) which ring to use, and (b) modulo which ideal to
    # simplify. In practice, (a) means settling on a list of "generators"
    # a, b, c, ..., such that the fraction we want to simplify is a rational
    # function in a, b, c, ..., with coefficients in ZZ (integers).
    # (2) means that we have to decide what relations to impose on the
    # generators. There are two practical problems:
    #   (1) The ideal has to be *prime* (a technical term).
    #   (2) The relations have to be polynomials in the generators.
    #
    # We typically have two kinds of generators:
    # - trigonometric expressions, like sin(x), cos(5*x), etc
    # - "everything else", like gamma(x), pi, etc.
    #
    # Since this function is trigsimp, we will concentrate on what to do with
    # trigonometric expressions. We can also simplify hyperbolic expressions,
    # but the extensions should be clear.
    #
    # One crucial point is that all *other* generators really should behave
    # like indeterminates. In particular if (say) "I" is one of them, then
    # in fact I**2 + 1 = 0 and we may and will compute non-sensical
    # expressions. However, we can work with a dummy and add the relation
    # I**2 + 1 = 0 to our ideal, then substitute back in the end.
    #
    # Now regarding trigonometric generators. We split them into groups,
    # according to the argument of the trigonometric functions. We want to
    # organise this in such a way that most trigonometric identities apply in
    # the same group. For example, given sin(x), cos(2*x) and cos(y), we would
    # group as [sin(x), cos(2*x)] and [cos(y)].
    #
    # Our prime ideal will be built in three steps:
    # (1) For each group, compute a "geometrically prime" ideal of relations.
    #     Geometrically prime means that it generates a prime ideal in
    #     CC[gens], not just ZZ[gens].
    # (2) Take the union of all the generators of the ideals for all groups.
    #     By the geometric primality condition, this is still prime.
    # (3) Add further inter-group relations which preserve primality.
    #
    # Step (1) works as follows. We will isolate common factors in the
    # argument, so that all our generators are of the form sin(n*x), cos(n*x)
    # or tan(n*x), with n an integer. Suppose first there are no tan terms.
    # The ideal [sin(x)**2 + cos(x)**2 - 1] is geometrically prime, since
    # X**2 + Y**2 - 1 is irreducible over CC.
    # Now, if we have a generator sin(n*x), than we can, using trig identities,
    # express sin(n*x) as a polynomial in sin(x) and cos(x). We can add this
    # relation to the ideal, preserving geometric primality, since the quotient
    # ring is unchanged.
    # Thus we have treated all sin and cos terms.
    # For tan(n*x), we add a relation tan(n*x)*cos(n*x) - sin(n*x) = 0.
    # (This requires of course that we already have relations for cos(n*x) and
    # sin(n*x).) It is not obvious, but it seems that this preserves geometric
    # primality.
    # XXX A real proof would be nice. HELP!
    #     Sketch that <S**2 + C**2 - 1, C*T - S> is a prime ideal of
    #     CC[S, C, T]:
    #     - it suffices to show that the projective closure in CP**3 is
    #       irreducible
    #     - using the half-angle substitutions, we can express sin(x), tan(x),
    #       cos(x) as rational functions in tan(x/2)
    #     - from this, we get a rational map from CP**1 to our curve
    #     - this is a morphism, hence the curve is prime
    #
    # Step (2) is trivial.
    #
    # Step (3) works by adding selected relations of the form
    # sin(x + y) - sin(x)*cos(y) - sin(y)*cos(x), etc. Geometric primality is
    # preserved by the same argument as before.

    def parse_hints(hints):
        """Split hints into (n, funcs, iterables, gens)."""
        n = 1
        funcs, iterables, gens = [], [], []
        for e in hints:
            if isinstance(e, (SYMPY_INTS, Integer)):
                n = e
            elif isinstance(e, FunctionClass):
                funcs.append(e)
            elif iterable(e):
                iterables.append((e[0], e[1:]))
                # XXX sin(x+2y)?
                # Note: we go through polys so e.g.
                # sin(-x) -> -sin(x) -> sin(x)
                gens.extend(
                    parallel_poly_from_expr([e[0](x) for x in e[1:]] +
                                            [e[0](Add(*e[1:]))])[1].gens)
            else:
                gens.append(e)
        return n, funcs, iterables, gens

    def build_ideal(x, terms):
        """
        Build generators for our ideal. Terms is an iterable with elements of
        the form (fn, coeff), indicating that we have a generator fn(coeff*x).

        If any of the terms is trigonometric, sin(x) and cos(x) are guaranteed
        to appear in terms. Similarly for hyperbolic functions. For tan(n*x),
        sin(n*x) and cos(n*x) are guaranteed.
        """
        I = []
        y = Dummy('y')
        for fn, coeff in terms:
            for c, s, t, rel in ([cos, sin, tan,
                                  cos(x)**2 + sin(x)**2 - 1], [
                                      cosh, sinh, tanh,
                                      cosh(x)**2 - sinh(x)**2 - 1
                                  ]):
                if coeff == 1 and fn in [c, s]:
                    I.append(rel)
                elif fn == t:
                    I.append(t(coeff * x) * c(coeff * x) - s(coeff * x))
                elif fn in [c, s]:
                    cn = fn(coeff * y).expand(trig=True).subs(y, x)
                    I.append(fn(coeff * x) - cn)
        return list(set(I))

    def analyse_gens(gens, hints):
        """
        Analyse the generators ``gens``, using the hints ``hints``.

        The meaning of ``hints`` is described in the main docstring.
        Return a new list of generators, and also the ideal we should
        work with.
        """
        # First parse the hints
        n, funcs, iterables, extragens = parse_hints(hints)
        debug('n=%s' % n, 'funcs:', funcs, 'iterables:', iterables,
              'extragens:', extragens)

        # We just add the extragens to gens and analyse them as before
        gens = list(gens)
        gens.extend(extragens)

        # remove duplicates
        funcs = list(set(funcs))
        iterables = list(set(iterables))
        gens = list(set(gens))

        # all the functions we can do anything with
        allfuncs = {sin, cos, tan, sinh, cosh, tanh}
        # sin(3*x) -> ((3, x), sin)
        trigterms = [(g.args[0].as_coeff_mul(), g.func) for g in gens
                     if g.func in allfuncs]
        # Our list of new generators - start with anything that we cannot
        # work with (i.e. is not a trigonometric term)
        freegens = [g for g in gens if g.func not in allfuncs]
        newgens = []
        trigdict = {}
        for (coeff, var), fn in trigterms:
            trigdict.setdefault(var, []).append((coeff, fn))
        res = []  # the ideal

        for key, val in trigdict.items():
            # We have now assembeled a dictionary. Its keys are common
            # arguments in trigonometric expressions, and values are lists of
            # pairs (fn, coeff). x0, (fn, coeff) in trigdict means that we
            # need to deal with fn(coeff*x0). We take the rational gcd of the
            # coeffs, call it ``gcd``. We then use x = x0/gcd as "base symbol",
            # all other arguments are integral multiples thereof.
            # We will build an ideal which works with sin(x), cos(x).
            # If hint tan is provided, also work with tan(x). Moreover, if
            # n > 1, also work with sin(k*x) for k <= n, and similarly for cos
            # (and tan if the hint is provided). Finally, any generators which
            # the ideal does not work with but we need to accommodate (either
            # because it was in expr or because it was provided as a hint)
            # we also build into the ideal.
            # This selection process is expressed in the list ``terms``.
            # build_ideal then generates the actual relations in our ideal,
            # from this list.
            fns = [x[1] for x in val]
            val = [x[0] for x in val]
            gcd = reduce(igcd, val)
            terms = [(fn, v / gcd) for (fn, v) in zip(fns, val)]
            fs = set(funcs + fns)
            for c, s, t in ([cos, sin, tan], [cosh, sinh, tanh]):
                if any(x in fs for x in (c, s, t)):
                    fs.add(c)
                    fs.add(s)
            for fn in fs:
                for k in range(1, n + 1):
                    terms.append((fn, k))
            extra = []
            for fn, v in terms:
                if fn == tan:
                    extra.append((sin, v))
                    extra.append((cos, v))
                if fn in [sin, cos] and tan in fs:
                    extra.append((tan, v))
                if fn == tanh:
                    extra.append((sinh, v))
                    extra.append((cosh, v))
                if fn in [sinh, cosh] and tanh in fs:
                    extra.append((tanh, v))
            terms.extend(extra)
            x = gcd * Mul(*key)
            r = build_ideal(x, terms)
            res.extend(r)
            newgens.extend(set(fn(v * x) for fn, v in terms))

        # Add generators for compound expressions from iterables
        for fn, args in iterables:
            if fn == tan:
                # Tan expressions are recovered from sin and cos.
                iterables.extend([(sin, args), (cos, args)])
            elif fn == tanh:
                # Tanh expressions are recovered from sihn and cosh.
                iterables.extend([(sinh, args), (cosh, args)])
            else:
                dummys = symbols('d:%i' % len(args), cls=Dummy)
                expr = fn(Add(*dummys)).expand(trig=True).subs(
                    list(zip(dummys, args)))
                res.append(fn(Add(*args)) - expr)

        if myI in gens:
            res.append(myI**2 + 1)
            freegens.remove(myI)
            newgens.append(myI)

        return res, freegens, newgens

    myI = Dummy('I')
    expr = expr.subs(S.ImaginaryUnit, myI)
    subs = [(myI, S.ImaginaryUnit)]

    num, denom = cancel(expr).as_numer_denom()
    try:
        (pnum, pdenom), opt = parallel_poly_from_expr([num, denom])
    except PolificationFailed:
        return expr
    debug('initial gens:', opt.gens)
    ideal, freegens, gens = analyse_gens(opt.gens, hints)
    debug('ideal:', ideal)
    debug('new gens:', gens, " -- len", len(gens))
    debug('free gens:', freegens, " -- len", len(gens))
    # NOTE we force the domain to be ZZ to stop polys from injecting generators
    #      (which is usually a sign of a bug in the way we build the ideal)
    if not gens:
        return expr
    G = groebner(ideal, order=order, gens=gens, domain=ZZ)
    debug('groebner basis:', list(G), " -- len", len(G))

    # If our fraction is a polynomial in the free generators, simplify all
    # coefficients separately:

    from sympy.simplify.ratsimp import ratsimpmodprime

    if freegens and pdenom.has_only_gens(*set(gens).intersection(pdenom.gens)):
        num = Poly(num, gens=gens + freegens).eject(*gens)
        res = []
        for monom, coeff in num.terms():
            ourgens = set(parallel_poly_from_expr([coeff, denom])[1].gens)
            # We compute the transitive closure of all generators that can
            # be reached from our generators through relations in the ideal.
            changed = True
            while changed:
                changed = False
                for p in ideal:
                    p = Poly(p)
                    if not ourgens.issuperset(p.gens) and \
                       not p.has_only_gens(*set(p.gens).difference(ourgens)):
                        changed = True
                        ourgens.update(p.exclude().gens)
            # NOTE preserve order!
            realgens = [x for x in gens if x in ourgens]
            # The generators of the ideal have now been (implicitly) split
            # into two groups: those involving ourgens and those that don't.
            # Since we took the transitive closure above, these two groups
            # live in subgrings generated by a *disjoint* set of variables.
            # Any sensible groebner basis algorithm will preserve this disjoint
            # structure (i.e. the elements of the groebner basis can be split
            # similarly), and and the two subsets of the groebner basis then
            # form groebner bases by themselves. (For the smaller generating
            # sets, of course.)
            ourG = [
                g.as_expr() for g in G.polys
                if g.has_only_gens(*ourgens.intersection(g.gens))
            ]
            res.append(Mul(*[a**b for a, b in zip(freegens, monom)]) * \
                       ratsimpmodprime(coeff/denom, ourG, order=order,
                                       gens=realgens, quick=quick, domain=ZZ,
                                       polynomial=polynomial).subs(subs))
        return Add(*res)
        # NOTE The following is simpler and has less assumptions on the
        #      groebner basis algorithm. If the above turns out to be broken,
        #      use this.
        return Add(*[Mul(*[a**b for a, b in zip(freegens, monom)]) * \
                     ratsimpmodprime(coeff/denom, list(G), order=order,
                                     gens=gens, quick=quick, domain=ZZ)
                     for monom, coeff in num.terms()])
    else:
        return ratsimpmodprime(expr,
                               list(G),
                               order=order,
                               gens=freegens + gens,
                               quick=quick,
                               domain=ZZ,
                               polynomial=polynomial).subs(subs)
예제 #48
0
파일: trigsimp.py 프로젝트: asmeurer/sympy
def trigsimp_groebner(expr, hints=[], quick=False, order="grlex",
                      polynomial=False):
    """
    Simplify trigonometric expressions using a groebner basis algorithm.

    This routine takes a fraction involving trigonometric or hyperbolic
    expressions, and tries to simplify it. The primary metric is the
    total degree. Some attempts are made to choose the simplest possible
    expression of the minimal degree, but this is non-rigorous, and also
    very slow (see the ``quick=True`` option).

    If ``polynomial`` is set to True, instead of simplifying numerator and
    denominator together, this function just brings numerator and denominator
    into a canonical form. This is much faster, but has potentially worse
    results. However, if the input is a polynomial, then the result is
    guaranteed to be an equivalent polynomial of minimal degree.

    The most important option is hints. Its entries can be any of the
    following:

    - a natural number
    - a function
    - an iterable of the form (func, var1, var2, ...)
    - anything else, interpreted as a generator

    A number is used to indicate that the search space should be increased.
    A function is used to indicate that said function is likely to occur in a
    simplified expression.
    An iterable is used indicate that func(var1 + var2 + ...) is likely to
    occur in a simplified .
    An additional generator also indicates that it is likely to occur.
    (See examples below).

    This routine carries out various computationally intensive algorithms.
    The option ``quick=True`` can be used to suppress one particularly slow
    step (at the expense of potentially more complicated results, but never at
    the expense of increased total degree).

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> from sympy import sin, tan, cos, sinh, cosh, tanh
    >>> from sympy.simplify.trigsimp import trigsimp_groebner

    Suppose you want to simplify ``sin(x)*cos(x)``. Naively, nothing happens:

    >>> ex = sin(x)*cos(x)
    >>> trigsimp_groebner(ex)
    sin(x)*cos(x)

    This is because ``trigsimp_groebner`` only looks for a simplification
    involving just ``sin(x)`` and ``cos(x)``. You can tell it to also try
    ``2*x`` by passing ``hints=[2]``:

    >>> trigsimp_groebner(ex, hints=[2])
    sin(2*x)/2
    >>> trigsimp_groebner(sin(x)**2 - cos(x)**2, hints=[2])
    -cos(2*x)

    Increasing the search space this way can quickly become expensive. A much
    faster way is to give a specific expression that is likely to occur:

    >>> trigsimp_groebner(ex, hints=[sin(2*x)])
    sin(2*x)/2

    Hyperbolic expressions are similarly supported:

    >>> trigsimp_groebner(sinh(2*x)/sinh(x))
    2*cosh(x)

    Note how no hints had to be passed, since the expression already involved
    ``2*x``.

    The tangent function is also supported. You can either pass ``tan`` in the
    hints, to indicate that tan should be tried whenever cosine or sine are,
    or you can pass a specific generator:

    >>> trigsimp_groebner(sin(x)/cos(x), hints=[tan])
    tan(x)
    >>> trigsimp_groebner(sinh(x)/cosh(x), hints=[tanh(x)])
    tanh(x)

    Finally, you can use the iterable form to suggest that angle sum formulae
    should be tried:

    >>> ex = (tan(x) + tan(y))/(1 - tan(x)*tan(y))
    >>> trigsimp_groebner(ex, hints=[(tan, x, y)])
    tan(x + y)
    """
    # TODO
    #  - preprocess by replacing everything by funcs we can handle
    # - optionally use cot instead of tan
    # - more intelligent hinting.
    #     For example, if the ideal is small, and we have sin(x), sin(y),
    #     add sin(x + y) automatically... ?
    # - algebraic numbers ...
    # - expressions of lowest degree are not distinguished properly
    #   e.g. 1 - sin(x)**2
    # - we could try to order the generators intelligently, so as to influence
    #   which monomials appear in the quotient basis

    # THEORY
    # ------
    # Ratsimpmodprime above can be used to "simplify" a rational function
    # modulo a prime ideal. "Simplify" mainly means finding an equivalent
    # expression of lower total degree.
    #
    # We intend to use this to simplify trigonometric functions. To do that,
    # we need to decide (a) which ring to use, and (b) modulo which ideal to
    # simplify. In practice, (a) means settling on a list of "generators"
    # a, b, c, ..., such that the fraction we want to simplify is a rational
    # function in a, b, c, ..., with coefficients in ZZ (integers).
    # (2) means that we have to decide what relations to impose on the
    # generators. There are two practical problems:
    #   (1) The ideal has to be *prime* (a technical term).
    #   (2) The relations have to be polynomials in the generators.
    #
    # We typically have two kinds of generators:
    # - trigonometric expressions, like sin(x), cos(5*x), etc
    # - "everything else", like gamma(x), pi, etc.
    #
    # Since this function is trigsimp, we will concentrate on what to do with
    # trigonometric expressions. We can also simplify hyperbolic expressions,
    # but the extensions should be clear.
    #
    # One crucial point is that all *other* generators really should behave
    # like indeterminates. In particular if (say) "I" is one of them, then
    # in fact I**2 + 1 = 0 and we may and will compute non-sensical
    # expressions. However, we can work with a dummy and add the relation
    # I**2 + 1 = 0 to our ideal, then substitute back in the end.
    #
    # Now regarding trigonometric generators. We split them into groups,
    # according to the argument of the trigonometric functions. We want to
    # organise this in such a way that most trigonometric identities apply in
    # the same group. For example, given sin(x), cos(2*x) and cos(y), we would
    # group as [sin(x), cos(2*x)] and [cos(y)].
    #
    # Our prime ideal will be built in three steps:
    # (1) For each group, compute a "geometrically prime" ideal of relations.
    #     Geometrically prime means that it generates a prime ideal in
    #     CC[gens], not just ZZ[gens].
    # (2) Take the union of all the generators of the ideals for all groups.
    #     By the geometric primality condition, this is still prime.
    # (3) Add further inter-group relations which preserve primality.
    #
    # Step (1) works as follows. We will isolate common factors in the
    # argument, so that all our generators are of the form sin(n*x), cos(n*x)
    # or tan(n*x), with n an integer. Suppose first there are no tan terms.
    # The ideal [sin(x)**2 + cos(x)**2 - 1] is geometrically prime, since
    # X**2 + Y**2 - 1 is irreducible over CC.
    # Now, if we have a generator sin(n*x), than we can, using trig identities,
    # express sin(n*x) as a polynomial in sin(x) and cos(x). We can add this
    # relation to the ideal, preserving geometric primality, since the quotient
    # ring is unchanged.
    # Thus we have treated all sin and cos terms.
    # For tan(n*x), we add a relation tan(n*x)*cos(n*x) - sin(n*x) = 0.
    # (This requires of course that we already have relations for cos(n*x) and
    # sin(n*x).) It is not obvious, but it seems that this preserves geometric
    # primality.
    # XXX A real proof would be nice. HELP!
    #     Sketch that <S**2 + C**2 - 1, C*T - S> is a prime ideal of
    #     CC[S, C, T]:
    #     - it suffices to show that the projective closure in CP**3 is
    #       irreducible
    #     - using the half-angle substitutions, we can express sin(x), tan(x),
    #       cos(x) as rational functions in tan(x/2)
    #     - from this, we get a rational map from CP**1 to our curve
    #     - this is a morphism, hence the curve is prime
    #
    # Step (2) is trivial.
    #
    # Step (3) works by adding selected relations of the form
    # sin(x + y) - sin(x)*cos(y) - sin(y)*cos(x), etc. Geometric primality is
    # preserved by the same argument as before.

    def parse_hints(hints):
        """Split hints into (n, funcs, iterables, gens)."""
        n = 1
        funcs, iterables, gens = [], [], []
        for e in hints:
            if isinstance(e, (SYMPY_INTS, Integer)):
                n = e
            elif isinstance(e, FunctionClass):
                funcs.append(e)
            elif iterable(e):
                iterables.append((e[0], e[1:]))
                # XXX sin(x+2y)?
                # Note: we go through polys so e.g.
                # sin(-x) -> -sin(x) -> sin(x)
                gens.extend(parallel_poly_from_expr(
                    [e[0](x) for x in e[1:]] + [e[0](Add(*e[1:]))])[1].gens)
            else:
                gens.append(e)
        return n, funcs, iterables, gens

    def build_ideal(x, terms):
        """
        Build generators for our ideal. Terms is an iterable with elements of
        the form (fn, coeff), indicating that we have a generator fn(coeff*x).

        If any of the terms is trigonometric, sin(x) and cos(x) are guaranteed
        to appear in terms. Similarly for hyperbolic functions. For tan(n*x),
        sin(n*x) and cos(n*x) are guaranteed.
        """
        I = []
        y = Dummy('y')
        for fn, coeff in terms:
            for c, s, t, rel in (
                    [cos, sin, tan, cos(x)**2 + sin(x)**2 - 1],
                    [cosh, sinh, tanh, cosh(x)**2 - sinh(x)**2 - 1]):
                if coeff == 1 and fn in [c, s]:
                    I.append(rel)
                elif fn == t:
                    I.append(t(coeff*x)*c(coeff*x) - s(coeff*x))
                elif fn in [c, s]:
                    cn = fn(coeff*y).expand(trig=True).subs(y, x)
                    I.append(fn(coeff*x) - cn)
        return list(set(I))

    def analyse_gens(gens, hints):
        """
        Analyse the generators ``gens``, using the hints ``hints``.

        The meaning of ``hints`` is described in the main docstring.
        Return a new list of generators, and also the ideal we should
        work with.
        """
        # First parse the hints
        n, funcs, iterables, extragens = parse_hints(hints)
        debug('n=%s' % n, 'funcs:', funcs, 'iterables:',
              iterables, 'extragens:', extragens)

        # We just add the extragens to gens and analyse them as before
        gens = list(gens)
        gens.extend(extragens)

        # remove duplicates
        funcs = list(set(funcs))
        iterables = list(set(iterables))
        gens = list(set(gens))

        # all the functions we can do anything with
        allfuncs = {sin, cos, tan, sinh, cosh, tanh}
        # sin(3*x) -> ((3, x), sin)
        trigterms = [(g.args[0].as_coeff_mul(), g.func) for g in gens
                     if g.func in allfuncs]
        # Our list of new generators - start with anything that we cannot
        # work with (i.e. is not a trigonometric term)
        freegens = [g for g in gens if g.func not in allfuncs]
        newgens = []
        trigdict = {}
        for (coeff, var), fn in trigterms:
            trigdict.setdefault(var, []).append((coeff, fn))
        res = [] # the ideal

        for key, val in trigdict.items():
            # We have now assembeled a dictionary. Its keys are common
            # arguments in trigonometric expressions, and values are lists of
            # pairs (fn, coeff). x0, (fn, coeff) in trigdict means that we
            # need to deal with fn(coeff*x0). We take the rational gcd of the
            # coeffs, call it ``gcd``. We then use x = x0/gcd as "base symbol",
            # all other arguments are integral multiples thereof.
            # We will build an ideal which works with sin(x), cos(x).
            # If hint tan is provided, also work with tan(x). Moreover, if
            # n > 1, also work with sin(k*x) for k <= n, and similarly for cos
            # (and tan if the hint is provided). Finally, any generators which
            # the ideal does not work with but we need to accommodate (either
            # because it was in expr or because it was provided as a hint)
            # we also build into the ideal.
            # This selection process is expressed in the list ``terms``.
            # build_ideal then generates the actual relations in our ideal,
            # from this list.
            fns = [x[1] for x in val]
            val = [x[0] for x in val]
            gcd = reduce(igcd, val)
            terms = [(fn, v/gcd) for (fn, v) in zip(fns, val)]
            fs = set(funcs + fns)
            for c, s, t in ([cos, sin, tan], [cosh, sinh, tanh]):
                if any(x in fs for x in (c, s, t)):
                    fs.add(c)
                    fs.add(s)
            for fn in fs:
                for k in range(1, n + 1):
                    terms.append((fn, k))
            extra = []
            for fn, v in terms:
                if fn == tan:
                    extra.append((sin, v))
                    extra.append((cos, v))
                if fn in [sin, cos] and tan in fs:
                    extra.append((tan, v))
                if fn == tanh:
                    extra.append((sinh, v))
                    extra.append((cosh, v))
                if fn in [sinh, cosh] and tanh in fs:
                    extra.append((tanh, v))
            terms.extend(extra)
            x = gcd*Mul(*key)
            r = build_ideal(x, terms)
            res.extend(r)
            newgens.extend(set(fn(v*x) for fn, v in terms))

        # Add generators for compound expressions from iterables
        for fn, args in iterables:
            if fn == tan:
                # Tan expressions are recovered from sin and cos.
                iterables.extend([(sin, args), (cos, args)])
            elif fn == tanh:
                # Tanh expressions are recovered from sihn and cosh.
                iterables.extend([(sinh, args), (cosh, args)])
            else:
                dummys = symbols('d:%i' % len(args), cls=Dummy)
                expr = fn( Add(*dummys)).expand(trig=True).subs(list(zip(dummys, args)))
                res.append(fn(Add(*args)) - expr)

        if myI in gens:
            res.append(myI**2 + 1)
            freegens.remove(myI)
            newgens.append(myI)

        return res, freegens, newgens

    myI = Dummy('I')
    expr = expr.subs(S.ImaginaryUnit, myI)
    subs = [(myI, S.ImaginaryUnit)]

    num, denom = cancel(expr).as_numer_denom()
    try:
        (pnum, pdenom), opt = parallel_poly_from_expr([num, denom])
    except PolificationFailed:
        return expr
    debug('initial gens:', opt.gens)
    ideal, freegens, gens = analyse_gens(opt.gens, hints)
    debug('ideal:', ideal)
    debug('new gens:', gens, " -- len", len(gens))
    debug('free gens:', freegens, " -- len", len(gens))
    # NOTE we force the domain to be ZZ to stop polys from injecting generators
    #      (which is usually a sign of a bug in the way we build the ideal)
    if not gens:
        return expr
    G = groebner(ideal, order=order, gens=gens, domain=ZZ)
    debug('groebner basis:', list(G), " -- len", len(G))

    # If our fraction is a polynomial in the free generators, simplify all
    # coefficients separately:

    from sympy.simplify.ratsimp import ratsimpmodprime

    if freegens and pdenom.has_only_gens(*set(gens).intersection(pdenom.gens)):
        num = Poly(num, gens=gens+freegens).eject(*gens)
        res = []
        for monom, coeff in num.terms():
            ourgens = set(parallel_poly_from_expr([coeff, denom])[1].gens)
            # We compute the transitive closure of all generators that can
            # be reached from our generators through relations in the ideal.
            changed = True
            while changed:
                changed = False
                for p in ideal:
                    p = Poly(p)
                    if not ourgens.issuperset(p.gens) and \
                       not p.has_only_gens(*set(p.gens).difference(ourgens)):
                        changed = True
                        ourgens.update(p.exclude().gens)
            # NOTE preserve order!
            realgens = [x for x in gens if x in ourgens]
            # The generators of the ideal have now been (implicitly) split
            # into two groups: those involving ourgens and those that don't.
            # Since we took the transitive closure above, these two groups
            # live in subgrings generated by a *disjoint* set of variables.
            # Any sensible groebner basis algorithm will preserve this disjoint
            # structure (i.e. the elements of the groebner basis can be split
            # similarly), and and the two subsets of the groebner basis then
            # form groebner bases by themselves. (For the smaller generating
            # sets, of course.)
            ourG = [g.as_expr() for g in G.polys if
                    g.has_only_gens(*ourgens.intersection(g.gens))]
            res.append(Mul(*[a**b for a, b in zip(freegens, monom)]) * \
                       ratsimpmodprime(coeff/denom, ourG, order=order,
                                       gens=realgens, quick=quick, domain=ZZ,
                                       polynomial=polynomial).subs(subs))
        return Add(*res)
        # NOTE The following is simpler and has less assumptions on the
        #      groebner basis algorithm. If the above turns out to be broken,
        #      use this.
        return Add(*[Mul(*[a**b for a, b in zip(freegens, monom)]) * \
                     ratsimpmodprime(coeff/denom, list(G), order=order,
                                     gens=gens, quick=quick, domain=ZZ)
                     for monom, coeff in num.terms()])
    else:
        return ratsimpmodprime(
            expr, list(G), order=order, gens=freegens+gens,
            quick=quick, domain=ZZ, polynomial=polynomial).subs(subs)
예제 #49
0
파일: solvers.py 프로젝트: Jerryy/sympy
def checksol(f, symbol, sol=None, **flags):
    """Checks whether sol is a solution of equation f == 0.

    Input can be either a single symbol and corresponding value
    or a dictionary of symbols and values.

    Examples:
    ---------

       >>> from sympy import symbols
       >>> from sympy.solvers import checksol
       >>> x, y = symbols('x,y')
       >>> checksol(x**4-1, x, 1)
       True
       >>> checksol(x**4-1, x, 0)
       False
       >>> checksol(x**2 + y**2 - 5**2, {x:3, y: 4})
       True

       None is returned if checksol() could not conclude.

       flags:
           'numerical=True (default)'
               do a fast numerical check if f has only one symbol.
           'minimal=True (default is False)'
               a very fast, minimal testing.
           'warning=True (default is False)'
               print a warning if checksol() could not conclude.
           'simplified=True (default)'
               solution should be simplified before substituting into function
               and function should be simplified after making substitution.
           'force=True (default is False)'
               make positive all symbols without assumptions regarding sign.
    """

    if sol is not None:
        sol = {symbol: sol}
    elif isinstance(symbol, dict):
        sol = symbol
    else:
        msg = 'Expecting sym, val or {sym: val}, None but got %s, %s'
        raise ValueError(msg % (symbol, sol))

    if hasattr(f, '__iter__') and hasattr(f, '__len__'):
        if not f:
            raise ValueError('no functions to check')
        rv = set()
        for fi in f:
            check = checksol(fi, sol, **flags)
            if check is False:
                return False
            rv.add(check)
        if None in rv:  # rv might contain True and/or None
            return None
        assert len(rv) == 1  # True
        return True

    if isinstance(f, Poly):
        f = f.as_expr()
    elif isinstance(f, Equality):
        f = f.lhs - f.rhs

    if not f:
        return True

    if not f.has(*sol.keys()):
        return False

    attempt = -1
    numerical = flags.get('numerical', True)
    while 1:
        attempt += 1
        if attempt == 0:
            val = f.subs(sol)
        elif attempt == 1:
            if not val.atoms(Symbol) and numerical:
                # val is a constant, so a fast numerical test may suffice
                if val not in [S.Infinity, S.NegativeInfinity]:
                    # issue 2088 shows that +/-oo chops to 0
                    val = val.evalf(36).n(30, chop=True)
        elif attempt == 2:
            if flags.get('minimal', False):
                return
            # the flag 'simplified=False' is used in solve to avoid
            # simplifying the solution. So if it is set to False there
            # the simplification will not be attempted here, either. But
            # if the simplification is done here then the flag should be
            # set to False so it isn't done again there.
            if flags.get('simplified', True):
                for k in sol:
                    sol[k] = simplify(sympify(sol[k]))
                flags['simplified'] = False
                val = simplify(f.subs(sol))
            if flags.get('force', False):
                val = posify(val)[0]
        elif attempt == 3:
            val = powsimp(val)
        elif attempt == 4:
            val = cancel(val)
        elif attempt == 5:
            val = val.expand()
        elif attempt == 6:
            val = together(val)
        elif attempt == 7:
            val = powsimp(val)
        else:
            break
        if val.is_zero:
            return True
        elif attempt > 0 and numerical and val.is_nonzero:
            return False

    if flags.get('warning', False):
        print("Warning: could not verify solution %s." % sol)
예제 #50
0
def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3,
             degree_offset=0, unnecessary_permutations=None,
             _try_heurisch=None):
    """
    Compute indefinite integral using heuristic Risch algorithm.

    Explanation
    ===========

    This is a heuristic approach to indefinite integration in finite
    terms using the extended heuristic (parallel) Risch algorithm, based
    on Manuel Bronstein's "Poor Man's Integrator".

    The algorithm supports various classes of functions including
    transcendental elementary or special functions like Airy,
    Bessel, Whittaker and Lambert.

    Note that this algorithm is not a decision procedure. If it isn't
    able to compute the antiderivative for a given function, then this is
    not a proof that such a functions does not exist.  One should use
    recursive Risch algorithm in such case.  It's an open question if
    this algorithm can be made a full decision procedure.

    This is an internal integrator procedure. You should use top level
    'integrate' function in most cases, as this procedure needs some
    preprocessing steps and otherwise may fail.

    Specification
    =============

     heurisch(f, x, rewrite=False, hints=None)

       where
         f : expression
         x : symbol

         rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh'
         hints   -> a list of functions that may appear in anti-derivate

          - hints = None          --> no suggestions at all
          - hints = [ ]           --> try to figure out
          - hints = [f1, ..., fn] --> we know better

    Examples
    ========

    >>> from sympy import tan
    >>> from sympy.integrals.heurisch import heurisch
    >>> from sympy.abc import x, y

    >>> heurisch(y*tan(x), x)
    y*log(tan(x)**2 + 1)/2

    See Manuel Bronstein's "Poor Man's Integrator":

    References
    ==========

    .. [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html

    For more information on the implemented algorithm refer to:

    .. [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration
       Method and its Implementation in Maple, Proceedings of
       ISSAC'89, ACM Press, 212-217.

    .. [3] J. H. Davenport, On the Parallel Risch Algorithm (I),
       Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157.

    .. [4] J. H. Davenport, On the Parallel Risch Algorithm (III):
       Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6.

    .. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch
       Algorithm (II), ACM Transactions on Mathematical
       Software 11 (1985), 356-362.

    See Also
    ========

    sympy.integrals.integrals.Integral.doit
    sympy.integrals.integrals.Integral
    sympy.integrals.heurisch.components
    """
    f = sympify(f)

    # There are some functions that Heurisch cannot currently handle,
    # so do not even try.
    # Set _try_heurisch=True to skip this check
    if _try_heurisch is not True:
        if f.has(Abs, re, im, sign, Heaviside, DiracDelta, floor, ceiling, arg):
            return

    if not f.has_free(x):
        return f*x

    if not f.is_Add:
        indep, f = f.as_independent(x)
    else:
        indep = S.One

    rewritables = {
        (sin, cos, cot): tan,
        (sinh, cosh, coth): tanh,
    }

    if rewrite:
        for candidates, rule in rewritables.items():
            f = f.rewrite(candidates, rule)
    else:
        for candidates in rewritables.keys():
            if f.has(*candidates):
                break
        else:
            rewrite = True

    terms = components(f, x)

    if hints is not None:
        if not hints:
            a = Wild('a', exclude=[x])
            b = Wild('b', exclude=[x])
            c = Wild('c', exclude=[x])

            for g in set(terms):  # using copy of terms
                if g.is_Function:
                    if isinstance(g, li):
                        M = g.args[0].match(a*x**b)

                        if M is not None:
                            terms.add( x*(li(M[a]*x**M[b]) - (M[a]*x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
                            #terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
                            #terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
                            #terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) )

                    elif isinstance(g, exp):
                        M = g.args[0].match(a*x**2)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(erfi(sqrt(M[a])*x))
                            else: # M[a].is_negative or unknown
                                terms.add(erf(sqrt(-M[a])*x))

                        M = g.args[0].match(a*x**2 + b*x + c)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))*
                                          erfi(sqrt(M[a])*x + M[b]/(2*sqrt(M[a]))))
                            elif M[a].is_negative:
                                terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))*
                                          erf(sqrt(-M[a])*x - M[b]/(2*sqrt(-M[a]))))

                        M = g.args[0].match(a*log(x)**2)

                        if M is not None:
                            if M[a].is_positive:
                                terms.add(erfi(sqrt(M[a])*log(x) + 1/(2*sqrt(M[a]))))
                            if M[a].is_negative:
                                terms.add(erf(sqrt(-M[a])*log(x) - 1/(2*sqrt(-M[a]))))

                elif g.is_Pow:
                    if g.exp.is_Rational and g.exp.q == 2:
                        M = g.base.match(a*x**2 + b)

                        if M is not None and M[b].is_positive:
                            if M[a].is_positive:
                                terms.add(asinh(sqrt(M[a]/M[b])*x))
                            elif M[a].is_negative:
                                terms.add(asin(sqrt(-M[a]/M[b])*x))

                        M = g.base.match(a*x**2 - b)

                        if M is not None and M[b].is_positive:
                            if M[a].is_positive:
                                terms.add(acosh(sqrt(M[a]/M[b])*x))
                            elif M[a].is_negative:
                                terms.add(-M[b]/2*sqrt(-M[a])*
                                           atan(sqrt(-M[a])*x/sqrt(M[a]*x**2 - M[b])))

        else:
            terms |= set(hints)

    dcache = DiffCache(x)

    for g in set(terms):  # using copy of terms
        terms |= components(dcache.get_diff(g), x)

    # TODO: caching is significant factor for why permutations work at all. Change this.
    V = _symbols('x', len(terms))


    # sort mapping expressions from largest to smallest (last is always x).
    mapping = list(reversed(list(zip(*ordered(                          #
        [(a[0].as_independent(x)[1], a) for a in zip(terms, V)])))[1])) #
    rev_mapping = {v: k for k, v in mapping}                            #
    if mappings is None:                                                #
        # optimizing the number of permutations of mapping              #
        assert mapping[-1][0] == x # if not, find it and correct this comment
        unnecessary_permutations = [mapping.pop(-1)]
        mappings = permutations(mapping)
    else:
        unnecessary_permutations = unnecessary_permutations or []

    def _substitute(expr):
        return expr.subs(mapping)

    for mapping in mappings:
        mapping = list(mapping)
        mapping = mapping + unnecessary_permutations
        diffs = [ _substitute(dcache.get_diff(g)) for g in terms ]
        denoms = [ g.as_numer_denom()[1] for g in diffs ]
        if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V):
            denom = reduce(lambda p, q: lcm(p, q, *V), denoms)
            break
    else:
        if not rewrite:
            result = heurisch(f, x, rewrite=True, hints=hints,
                unnecessary_permutations=unnecessary_permutations)

            if result is not None:
                return indep*result
        return None

    numers = [ cancel(denom*g) for g in diffs ]
    def _derivation(h):
        return Add(*[ d * h.diff(v) for d, v in zip(numers, V) ])

    def _deflation(p):
        for y in V:
            if not p.has(y):
                continue

            if _derivation(p) is not S.Zero:
                c, q = p.as_poly(y).primitive()
                return _deflation(c)*gcd(q, q.diff(y)).as_expr()

        return p

    def _splitter(p):
        for y in V:
            if not p.has(y):
                continue

            if _derivation(y) is not S.Zero:
                c, q = p.as_poly(y).primitive()

                q = q.as_expr()

                h = gcd(q, _derivation(q), y)
                s = quo(h, gcd(q, q.diff(y), y), y)

                c_split = _splitter(c)

                if s.as_poly(y).degree() == 0:
                    return (c_split[0], q * c_split[1])

                q_split = _splitter(cancel(q / s))

                return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1])

        return (S.One, p)

    special = {}

    for term in terms:
        if term.is_Function:
            if isinstance(term, tan):
                special[1 + _substitute(term)**2] = False
            elif isinstance(term, tanh):
                special[1 + _substitute(term)] = False
                special[1 - _substitute(term)] = False
            elif isinstance(term, LambertW):
                special[_substitute(term)] = True

    F = _substitute(f)

    P, Q = F.as_numer_denom()

    u_split = _splitter(denom)
    v_split = _splitter(Q)

    polys = set(list(v_split) + [ u_split[0] ] + list(special.keys()))

    s = u_split[0] * Mul(*[ k for k, v in special.items() if v ])
    polified = [ p.as_poly(*V) for p in [s, P, Q] ]

    if None in polified:
        return None

    #--- definitions for _integrate
    a, b, c = [ p.total_degree() for p in polified ]

    poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr()

    def _exponent(g):
        if g.is_Pow:
            if g.exp.is_Rational and g.exp.q != 1:
                if g.exp.p > 0:
                    return g.exp.p + g.exp.q - 1
                else:
                    return abs(g.exp.p + g.exp.q)
            else:
                return 1
        elif not g.is_Atom and g.args:
            return max([ _exponent(h) for h in g.args ])
        else:
            return 1

    A, B = _exponent(f), a + max(b, c)

    if A > 1 and B > 1:
        monoms = tuple(ordered(itermonomials(V, A + B - 1 + degree_offset)))
    else:
        monoms = tuple(ordered(itermonomials(V, A + B + degree_offset)))

    poly_coeffs = _symbols('A', len(monoms))

    poly_part = Add(*[ poly_coeffs[i]*monomial
        for i, monomial in enumerate(monoms) ])

    reducibles = set()

    for poly in ordered(polys):
        coeff, factors = factor_list(poly, *V)
        reducibles.add(coeff)
        for fact, mul in factors:
            reducibles.add(fact)

    def _integrate(field=None):
        atans = set()
        pairs = set()

        if field == 'Q':
            irreducibles = set(reducibles)
        else:
            setV = set(V)
            irreducibles = set()
            for poly in ordered(reducibles):
                zV = setV & set(iterfreeargs(poly))
                for z in ordered(zV):
                    s = set(root_factors(poly, z, filter=field))
                    irreducibles |= s
                    break

        log_part, atan_part = [], []

        for poly in ordered(irreducibles):
            m = collect(poly, I, evaluate=False)
            y = m.get(I, S.Zero)
            if y:
                x = m.get(S.One, S.Zero)
                if x.has(I) or y.has(I):
                    continue  # nontrivial x + I*y
                pairs.add((x, y))
                irreducibles.remove(poly)

        while pairs:
            x, y = pairs.pop()
            if (x, -y) in pairs:
                pairs.remove((x, -y))
                # Choosing b with no minus sign
                if y.could_extract_minus_sign():
                    y = -y
                irreducibles.add(x*x + y*y)
                atans.add(atan(x/y))
            else:
                irreducibles.add(x + I*y)


        B = _symbols('B', len(irreducibles))
        C = _symbols('C', len(atans))

        # Note: the ordering matters here
        for poly, b in reversed(list(zip(ordered(irreducibles), B))):
            if poly.has(*V):
                poly_coeffs.append(b)
                log_part.append(b * log(poly))

        for poly, c in reversed(list(zip(ordered(atans), C))):
            if poly.has(*V):
                poly_coeffs.append(c)
                atan_part.append(c * poly)

        # TODO: Currently it's better to use symbolic expressions here instead
        # of rational functions, because it's simpler and FracElement doesn't
        # give big speed improvement yet. This is because cancellation is slow
        # due to slow polynomial GCD algorithms. If this gets improved then
        # revise this code.
        candidate = poly_part/poly_denom + Add(*log_part) + Add(*atan_part)
        h = F - _derivation(candidate) / denom
        raw_numer = h.as_numer_denom()[0]

        # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
        # that we have to determine. We can't use simply atoms() because log(3),
        # sqrt(y) and similar expressions can appear, leading to non-trivial
        # domains.
        syms = set(poly_coeffs) | set(V)
        non_syms = set()

        def find_non_syms(expr):
            if expr.is_Integer or expr.is_Rational:
                pass # ignore trivial numbers
            elif expr in syms:
                pass # ignore variables
            elif not expr.has_free(*syms):
                non_syms.add(expr)
            elif expr.is_Add or expr.is_Mul or expr.is_Pow:
                list(map(find_non_syms, expr.args))
            else:
                # TODO: Non-polynomial expression. This should have been
                # filtered out at an earlier stage.
                raise PolynomialError

        try:
            find_non_syms(raw_numer)
        except PolynomialError:
            return None
        else:
            ground, _ = construct_domain(non_syms, field=True)

        coeff_ring = PolyRing(poly_coeffs, ground)
        ring = PolyRing(V, coeff_ring)
        try:
            numer = ring.from_expr(raw_numer)
        except ValueError:
            raise PolynomialError
        solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False)

        if solution is None:
            return None
        else:
            return candidate.xreplace(solution).xreplace(
                dict(zip(poly_coeffs, [S.Zero]*len(poly_coeffs))))

    if all(isinstance(_, Symbol) for _ in V):
        more_free = F.free_symbols - set(V)
    else:
        Fd = F.as_dummy()
        more_free = Fd.xreplace(dict(zip(V, (Dummy() for _ in V)))
            ).free_symbols & Fd.free_symbols
    if not more_free:
        # all free generators are identified in V
        solution = _integrate('Q')

        if solution is None:
            solution = _integrate()
    else:
        solution = _integrate()

    if solution is not None:
        antideriv = solution.subs(rev_mapping)
        antideriv = cancel(antideriv).expand()

        if antideriv.is_Add:
            antideriv = antideriv.as_independent(x)[1]

        return indep*antideriv
    else:
        if retries >= 0:
            result = heurisch(f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1, unnecessary_permutations=unnecessary_permutations)

            if result is not None:
                return indep*result

        return None
예제 #51
0
파일: ratsimp.py 프로젝트: asmeurer/sympy
def ratsimpmodprime(expr, G, *gens, **args):
    """
    Simplifies a rational expression ``expr`` modulo the prime ideal
    generated by ``G``.  ``G`` should be a Groebner basis of the
    ideal.

    >>> from sympy.simplify.ratsimp import ratsimpmodprime
    >>> from sympy.abc import x, y
    >>> eq = (x + y**5 + y)/(x - y)
    >>> ratsimpmodprime(eq, [x*y**5 - x - y], x, y, order='lex')
    (x**2 + x*y + x + y)/(x**2 - x*y)

    If ``polynomial`` is False, the algorithm computes a rational
    simplification which minimizes the sum of the total degrees of
    the numerator and the denominator.

    If ``polynomial`` is True, this function just brings numerator and
    denominator into a canonical form. This is much faster, but has
    potentially worse results.

    References
    ==========

    .. [1] M. Monagan, R. Pearce, Rational Simplification Modulo a Polynomial
    Ideal,
    http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.6984
    (specifically, the second algorithm)
    """
    from sympy import solve

    quick = args.pop('quick', True)
    polynomial = args.pop('polynomial', False)
    debug('ratsimpmodprime', expr)

    # usual preparation of polynomials:

    num, denom = cancel(expr).as_numer_denom()

    try:
        polys, opt = parallel_poly_from_expr([num, denom] + G, *gens, **args)
    except PolificationFailed:
        return expr

    domain = opt.domain

    if domain.has_assoc_Field:
        opt.domain = domain.get_field()
    else:
        raise DomainError(
            "can't compute rational simplification over %s" % domain)

    # compute only once
    leading_monomials = [g.LM(opt.order) for g in polys[2:]]
    tested = set()

    def staircase(n):
        """
        Compute all monomials with degree less than ``n`` that are
        not divisible by any element of ``leading_monomials``.
        """
        if n == 0:
            return [1]
        S = []
        for mi in combinations_with_replacement(range(len(opt.gens)), n):
            m = [0]*len(opt.gens)
            for i in mi:
                m[i] += 1
            if all([monomial_div(m, lmg) is None for lmg in
                    leading_monomials]):
                S.append(m)

        return [Monomial(s).as_expr(*opt.gens) for s in S] + staircase(n - 1)

    def _ratsimpmodprime(a, b, allsol, N=0, D=0):
        r"""
        Computes a rational simplification of ``a/b`` which minimizes
        the sum of the total degrees of the numerator and the denominator.

        The algorithm proceeds by looking at ``a * d - b * c`` modulo
        the ideal generated by ``G`` for some ``c`` and ``d`` with degree
        less than ``a`` and ``b`` respectively.
        The coefficients of ``c`` and ``d`` are indeterminates and thus
        the coefficients of the normalform of ``a * d - b * c`` are
        linear polynomials in these indeterminates.
        If these linear polynomials, considered as system of
        equations, have a nontrivial solution, then `\frac{a}{b}
        \equiv \frac{c}{d}` modulo the ideal generated by ``G``. So,
        by construction, the degree of ``c`` and ``d`` is less than
        the degree of ``a`` and ``b``, so a simpler representation
        has been found.
        After a simpler representation has been found, the algorithm
        tries to reduce the degree of the numerator and denominator
        and returns the result afterwards.

        As an extension, if quick=False, we look at all possible degrees such
        that the total degree is less than *or equal to* the best current
        solution. We retain a list of all solutions of minimal degree, and try
        to find the best one at the end.
        """
        c, d = a, b
        steps = 0

        maxdeg = a.total_degree() + b.total_degree()
        if quick:
            bound = maxdeg - 1
        else:
            bound = maxdeg
        while N + D <= bound:
            if (N, D) in tested:
                break
            tested.add((N, D))

            M1 = staircase(N)
            M2 = staircase(D)
            debug('%s / %s: %s, %s' % (N, D, M1, M2))

            Cs = symbols("c:%d" % len(M1), cls=Dummy)
            Ds = symbols("d:%d" % len(M2), cls=Dummy)
            ng = Cs + Ds

            c_hat = Poly(
                sum([Cs[i] * M1[i] for i in range(len(M1))]), opt.gens + ng)
            d_hat = Poly(
                sum([Ds[i] * M2[i] for i in range(len(M2))]), opt.gens + ng)

            r = reduced(a * d_hat - b * c_hat, G, opt.gens + ng,
                        order=opt.order, polys=True)[1]

            S = Poly(r, gens=opt.gens).coeffs()
            sol = solve(S, Cs + Ds, particular=True, quick=True)

            if sol and not all([s == 0 for s in sol.values()]):
                c = c_hat.subs(sol)
                d = d_hat.subs(sol)

                # The "free" variables occurring before as parameters
                # might still be in the substituted c, d, so set them
                # to the value chosen before:
                c = c.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))
                d = d.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))

                c = Poly(c, opt.gens)
                d = Poly(d, opt.gens)
                if d == 0:
                    raise ValueError('Ideal not prime?')

                allsol.append((c_hat, d_hat, S, Cs + Ds))
                if N + D != maxdeg:
                    allsol = [allsol[-1]]

                break

            steps += 1
            N += 1
            D += 1

        if steps > 0:
            c, d, allsol = _ratsimpmodprime(c, d, allsol, N, D - steps)
            c, d, allsol = _ratsimpmodprime(c, d, allsol, N - steps, D)

        return c, d, allsol

    # preprocessing. this improves performance a bit when deg(num)
    # and deg(denom) are large:
    num = reduced(num, G, opt.gens, order=opt.order)[1]
    denom = reduced(denom, G, opt.gens, order=opt.order)[1]

    if polynomial:
        return (num/denom).cancel()

    c, d, allsol = _ratsimpmodprime(
        Poly(num, opt.gens, domain=opt.domain), Poly(denom, opt.gens, domain=opt.domain), [])
    if not quick and allsol:
        debug('Looking for best minimal solution. Got: %s' % len(allsol))
        newsol = []
        for c_hat, d_hat, S, ng in allsol:
            sol = solve(S, ng, particular=True, quick=False)
            newsol.append((c_hat.subs(sol), d_hat.subs(sol)))
        c, d = min(newsol, key=lambda x: len(x[0].terms()) + len(x[1].terms()))

    if not domain.is_Field:
        cn, c = c.clear_denoms(convert=True)
        dn, d = d.clear_denoms(convert=True)
        r = Rational(cn, dn)
    else:
        r = Rational(1)

    return (c*r.q)/(d*r.p)
예제 #52
0
def apart_list_full_decomposition(P, Q, dummygen):
    """
    Bronstein's full partial fraction decomposition algorithm.

    Given a univariate rational function ``f``, performing only GCD
    operations over the algebraic closure of the initial ground domain
    of definition, compute full partial fraction decomposition with
    fractions having linear denominators.

    Note that no factorization of the initial denominator of ``f`` is
    performed. The final decomposition is formed in terms of a sum of
    :class:`RootSum` instances.

    References
    ==========

    .. [1] [Bronstein93]_

    """
    f, x, U = P/Q, P.gen, []

    u = Function('u')(x)
    a = Dummy('a')

    partial = []

    for d, n in Q.sqf_list_include(all=True):
        b = d.as_expr()
        U += [ u.diff(x, n - 1) ]

        h = cancel(f*b**n) / u**n

        H, subs = [h], []

        for j in range(1, n):
            H += [ H[-1].diff(x) / j ]

        for j in range(1, n + 1):
            subs += [ (U[j - 1], b.diff(x, j) / j) ]

        for j in range(0, n):
            P, Q = cancel(H[j]).as_numer_denom()

            for i in range(0, j + 1):
                P = P.subs(*subs[j - i])

            Q = Q.subs(*subs[0])

            P = Poly(P, x)
            Q = Poly(Q, x)

            G = P.gcd(d)
            D = d.quo(G)

            B, g = Q.half_gcdex(D)
            b = (P * B.quo(g)).rem(D)

            Dw = D.subs(x, next(dummygen))
            numer = Lambda(a, b.as_expr().subs(x, a))
            denom = Lambda(a, (x - a))
            exponent = n-j

            partial.append((Dw, numer, denom, exponent))

    return partial
예제 #53
0
파일: solvers.py 프로젝트: Jerryy/sympy
def _solve(f, *symbols, **flags):
    """ Return a checked solution for f in terms of one or more of the symbols."""

    if not iterable(f):

        if len(symbols) != 1:
            soln = None
            free = f.free_symbols
            ex = free - set(symbols)
            if len(ex) == 1:
                ex = ex.pop()
                try:
                    # may come back as dict or list (if non-linear)
                    soln = solve_undetermined_coeffs(f, symbols, ex)
                except NotImplementedError:
                    pass
            if not soln is None:
                return soln
            # find first successful solution
            failed = []
            for s in symbols:
                n, d = solve_linear(f, x=[s])
                if n.is_Symbol:
                    soln = {n: cancel(d)}
                    return soln
                failed.append(s)
            for s in failed:
                try:
                    soln = _solve(f, s, **flags)
                    return soln
                except NotImplementedError:
                    pass
            else:
                msg = "No algorithms are implemented to solve equation %s"
                raise NotImplementedError(msg % f)

        symbol = symbols[0]

        # first see if it really depends on symbol and whether there
        # is a linear solution
        f_num, sol = solve_linear(f, x=symbols)
        if not symbol in f_num.free_symbols:
            return []
        elif f_num.is_Symbol:
            return [cancel(sol)]

        strategy = guess_solve_strategy(f, symbol)
        result = False  # no solution was obtained

        if strategy == GS_POLY:
            poly = f.as_poly(symbol)
            if poly is None:
                msg = "Cannot solve equation %s for %s" % (f, symbol)
            else:
                # for cubics and quartics, if the flag wasn't set, DON'T do it
                # by default since the results are quite long. Perhaps one could
                # base this decision on a certain critical length of the roots.
                if poly.degree() > 2:
                    flags['simplified'] = flags.get('simplified', False)
                result = roots(poly, cubics=True, quartics=True).keys()

        elif strategy == GS_RATIONAL:
            P, _ = f.as_numer_denom()
            dens = denoms(f, x=symbols)
            try:
                soln = _solve(P, symbol, **flags)
            except NotImplementedError:
                msg = "Cannot solve equation %s for %s" % (P, symbol)
                result = []
            else:
                if dens:
                    # reject any result that makes any denom. affirmatively 0;
                    # if in doubt, keep it
                    result = [
                        s for s in soln
                        if all(not checksol(den, {symbol: s}) for den in dens)
                    ]
                else:
                    result = soln

        elif strategy == GS_POLY_CV_1:
            args = list(f.args)
            if isinstance(f, Pow):
                result = _solve(args[0], symbol, **flags)
            elif isinstance(f, Add):
                # we must search for a suitable change of variables
                # collect exponents
                exponents_denom = list()
                for arg in args:
                    if isinstance(arg, Pow):
                        exponents_denom.append(arg.exp.q)
                    elif isinstance(arg, Mul):
                        for mul_arg in arg.args:
                            if isinstance(mul_arg, Pow):
                                exponents_denom.append(mul_arg.exp.q)
                assert len(exponents_denom) > 0
                if len(exponents_denom) == 1:
                    m = exponents_denom[0]
                else:
                    # get the LCM of the denominators
                    m = reduce(ilcm, exponents_denom)
                # x -> y**m.
                # we assume positive for simplification purposes
                t = Dummy('t', positive=True)
                f_ = f.subs(symbol, t**m)
                if guess_solve_strategy(f_, t) != GS_POLY:
                    msg = "Could not convert to a polynomial equation: %s" % f_
                    result = []
                else:
                    soln = [s**m for s in _solve(f_, t)]
                    # we might have introduced solutions from another branch
                    # when changing variables; check and keep solutions
                    # unless they definitely aren't a solution
                    result = [
                        s for s in soln
                        if checksol(f, {symbol: s}) is not False
                    ]

            elif isinstance(f, Mul):
                result = []
                for m in f.args:
                    result.extend(_solve(m, symbol, **flags) or [])

        elif strategy == GS_POLY_CV_2:
            m = 0
            args = list(f.args)
            if isinstance(f, Add):
                for arg in args:
                    if isinstance(arg, Pow):
                        m = min(m, arg.exp)
                    elif isinstance(arg, Mul):
                        for mul_arg in arg.args:
                            if isinstance(mul_arg, Pow):
                                m = min(m, mul_arg.exp)
            elif isinstance(f, Mul):
                for mul_arg in args:
                    if isinstance(mul_arg, Pow):
                        m = min(m, mul_arg.exp)

            if m and m != 1:
                f_ = simplify(f * symbol**(-m))
                try:
                    sols = _solve(f_, symbol)
                except NotImplementedError:
                    msg = 'Could not solve %s for %s' % (f_, symbol)
                else:
                    # we might have introduced unwanted solutions
                    # when multiplying by x**-m; check and keep solutions
                    # unless they definitely aren't a solution
                    if sols:
                        result = [
                            s for s in sols
                            if checksol(f, {symbol: s}) is not False
                        ]
            else:
                msg = 'CV_2 calculated %d but it should have been other than 0 or 1' % m

        elif strategy == GS_PIECEWISE:
            result = set()
            for expr, cond in f.args:
                candidates = _solve(expr, *symbols)
                if isinstance(cond, bool) or cond.is_Number:
                    if not cond:
                        continue

                    # Only include solutions that do not match the condition
                    # of any of the other pieces.
                    for candidate in candidates:
                        matches_other_piece = False
                        for other_expr, other_cond in f.args:
                            if isinstance(other_cond, bool) \
                               or other_cond.is_Number:
                                continue
                            if bool(other_cond.subs(symbol, candidate)):
                                matches_other_piece = True
                                break
                        if not matches_other_piece:
                            result.add(candidate)
                else:
                    for candidate in candidates:
                        if bool(cond.subs(symbol, candidate)):
                            result.add(candidate)

            result = list(result)

        elif strategy == -1:
            raise ValueError('Could not parse expression %s' % f)

        # this is the fallback for not getting any other solution
        if result is False or strategy == GS_TRANSCENDENTAL:
            soln = tsolve(f_num, symbol)
            dens = denoms(f, x=symbols)
            if not dens:
                result = soln
            else:
                # reject any result that makes any denom. affirmatively 0;
                # if in doubt, keep it
                result = [
                    s for s in soln
                    if all(not checksol(den, {symbol: s}) for den in dens)
                ]

        if result is False:
            raise NotImplementedError(
                msg +
                "\nNo algorithms are implemented to solve equation %s" % f)

        if flags.get('simplified', True) and strategy != GS_RATIONAL:
            result = map(simplify, result)

        return result
    else:
        if not f:
            return []
        else:

            polys = []

            for g in f:

                poly = g.as_poly(*symbols, **{'extension': True})

                if poly is not None:
                    polys.append(poly)
                else:
                    raise NotImplementedError()

            if all(p.is_linear for p in polys):
                n, m = len(f), len(symbols)
                matrix = zeros((n, m + 1))

                for i, poly in enumerate(polys):
                    for monom, coeff in poly.terms():
                        try:
                            j = list(monom).index(1)
                            matrix[i, j] = coeff
                        except ValueError:
                            matrix[i, m] = -coeff

                # a dictionary of symbols: values or None
                result = solve_linear_system(matrix, *symbols, **flags)
                return result
            else:
                # a list of tuples, T, where T[i] [j] corresponds to the ith solution for symbols[j]
                result = solve_poly_system(polys)
                return result