예제 #1
0
def test_characteristic_function():
    X = Uniform('x', 0, 1)

    cf = characteristic_function(X)
    assert cf(1) == -I*(-1 + exp(I))

    Y = Normal('y', 1, 1)
    cf = characteristic_function(Y)
    assert cf(0) == 1
    assert simplify(cf(1)) == exp(I - S(1)/2)

    Z = Exponential('z', 5)
    cf = characteristic_function(Z)
    assert cf(0) == 1
    assert simplify(cf(1)) == S(25)/26 + 5*I/26
예제 #2
0
def test_discreteuniform():
    # Symbolic
    a, b, c, t = symbols('a b c t')
    X = DiscreteUniform('X', [a, b, c])

    assert E(X) == (a + b + c)/3
    assert simplify(variance(X)
                    - ((a**2 + b**2 + c**2)/3 - (a/3 + b/3 + c/3)**2)) == 0
    assert P(Eq(X, a)) == P(Eq(X, b)) == P(Eq(X, c)) == S('1/3')

    Y = DiscreteUniform('Y', range(-5, 5))

    # Numeric
    assert E(Y) == S('-1/2')
    assert variance(Y) == S('33/4')

    for x in range(-5, 5):
        assert P(Eq(Y, x)) == S('1/10')
        assert P(Y <= x) == S(x + 6)/10
        assert P(Y >= x) == S(5 - x)/10

    assert dict(density(Die('D', 6)).items()) == \
           dict(density(DiscreteUniform('U', range(1, 7))).items())

    assert characteristic_function(X)(t) == exp(I*a*t)/3 + exp(I*b*t)/3 + exp(I*c*t)/3
    assert moment_generating_function(X)(t) == exp(a*t)/3 + exp(b*t)/3 + exp(c*t)/3
예제 #3
0
def test_Poisson():
    l = 3
    x = Poisson('x', l)
    assert E(x) == l
    assert variance(x) == l
    assert density(x) == PoissonDistribution(l)
    assert isinstance(E(x, evaluate=False), Sum)
    assert isinstance(E(2*x, evaluate=False), Sum)
    assert characteristic_function(x)(0).doit() == 1
예제 #4
0
def test_rademacher():
    X = Rademacher('X')
    t = Symbol('t')

    assert E(X) == 0
    assert variance(X) == 1
    assert density(X)[-1] == S.Half
    assert density(X)[1] == S.Half
    assert characteristic_function(X)(t) == exp(I * t) / 2 + exp(-I * t) / 2
    assert moment_generating_function(X)(t) == exp(t) / 2 + exp(-t) / 2
예제 #5
0
def test_wignersemicircle():
    R = Symbol("R", positive=True)

    X = WignerSemicircle('x', R)
    assert density(X)(x) == 2 * sqrt(-x**2 + R**2) / (pi * R**2)
    assert E(X) == 0

    #Tests ChiNoncentralDistribution
    assert characteristic_function(X)(x) == \
           Piecewise((2*besselj(1, R*x)/(R*x), Ne(x, 0)), (1, True))
예제 #6
0
def test_rademacher():
    X = Rademacher('X')
    t = Symbol('t')

    assert E(X) == 0
    assert variance(X) == 1
    assert density(X)[-1] == S.Half
    assert density(X)[1] == S.Half
    assert characteristic_function(X)(t) == exp(I*t)/2 + exp(-I*t)/2
    assert moment_generating_function(X)(t) == exp(t) / 2 + exp(-t) / 2
예제 #7
0
def test_characteristic_function():
    X = Uniform('x', 0, 1)

    cf = characteristic_function(X)
    assert cf(1) == -I * (-1 + exp(I))

    Y = Normal('y', 1, 1)
    cf = characteristic_function(Y)
    assert cf(0) == 1
    assert cf(1) == exp(I - S(1) / 2)

    Z = Exponential('z', 5)
    cf = characteristic_function(Z)
    assert cf(0) == 1
    assert cf(1).expand() == S(25) / 26 + 5 * I / 26

    X = GaussianInverse('x', 1, 1)
    cf = characteristic_function(X)
    assert cf(0) == 1
    assert cf(1) == exp(1 - sqrt(1 - 2 * I))
예제 #8
0
def test_laplace():
    mu = Symbol("mu")
    b = Symbol("b", positive=True)

    X = Laplace('x', mu, b)

    #Tests characteristic_function
    assert characteristic_function(X)(x) == (exp(I*mu*x)/(b**2*x**2 + 1))

    assert density(X)(x) == exp(-Abs(x - mu)/b)/(2*b)
    assert cdf(X)(x) == Piecewise((exp((-mu + x)/b)/2, mu > x),
                            (-exp((mu - x)/b)/2 + 1, True))
예제 #9
0
def test_raised_cosine():
    mu = Symbol("mu", real=True)
    s = Symbol("s", positive=True)

    X = RaisedCosine("x", mu, s)

    #Tests characteristics_function
    assert characteristic_function(X)(x) == \
           Piecewise((exp(-I*pi*mu/s)/2, Eq(x, -pi/s)), (exp(I*pi*mu/s)/2, Eq(x, pi/s)), (pi**2*exp(I*mu*x)*sin(s*x)/(s*x*(-s**2*x**2 + pi**2)), True))

    assert density(X)(x) == (Piecewise(((cos(pi*(x - mu)/s) + 1)/(2*s),
                          And(x <= mu + s, mu - s <= x)), (0, True)))
예제 #10
0
def test_dice():
    # TODO: Make iid method!
    X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6)
    a, b, t = symbols('a b t')

    assert E(X) == 3 + S.Half
    assert variance(X) == S(35) / 12
    assert E(X + Y) == 7
    assert E(X + X) == 7
    assert E(a * X + b) == a * E(X) + b
    assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2)
    assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2)
    assert cmoment(X, 0) == 1
    assert cmoment(4 * X, 3) == 64 * cmoment(X, 3)
    assert covariance(X, Y) == S.Zero
    assert covariance(X, X + Y) == variance(X)
    assert density(Eq(cos(X * S.Pi), 1))[True] == S.Half
    assert correlation(X, Y) == 0
    assert correlation(X, Y) == correlation(Y, X)
    assert smoment(X + Y, 3) == skewness(X + Y)
    assert smoment(X, 0) == 1
    assert P(X > 3) == S.Half
    assert P(2 * X > 6) == S.Half
    assert P(X > Y) == S(5) / 12
    assert P(Eq(X, Y)) == P(Eq(X, 1))

    assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3)
    assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3)
    assert E(X + Y, Eq(X, Y)) == E(2 * X)
    assert moment(X, 0) == 1
    assert moment(5 * X, 2) == 25 * moment(X, 2)

    assert P(X > 3, X > 3) == S.One
    assert P(X > Y, Eq(Y, 6)) == S.Zero
    assert P(Eq(X + Y, 12)) == S.One / 36
    assert P(Eq(X + Y, 12), Eq(X, 6)) == S.One / 6

    assert density(X + Y) == density(Y + Z) != density(X + X)
    d = density(2 * X + Y**Z)
    assert d[S(22)] == S.One / 108 and d[S(4100)] == S.One / 216 and S(
        3130) not in d

    assert pspace(X).domain.as_boolean() == Or(
        *[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]])

    assert where(X > 3).set == FiniteSet(4, 5, 6)

    assert characteristic_function(X)(t) == exp(6 * I * t) / 6 + exp(
        5 * I * t) / 6 + exp(4 * I * t) / 6 + exp(3 * I * t) / 6 + exp(
            2 * I * t) / 6 + exp(I * t) / 6
    assert moment_generating_function(X)(
        t) == exp(6 * t) / 6 + exp(5 * t) / 6 + exp(4 * t) / 6 + exp(
            3 * t) / 6 + exp(2 * t) / 6 + exp(t) / 6
예제 #11
0
def test_characteristic_function():
    X = Uniform('x', 0, 1)

    cf = characteristic_function(X)
    assert cf(1) == -I * (-1 + exp(I))

    Y = Normal('y', 1, 1)
    cf = characteristic_function(Y)
    assert cf(0) == 1
    assert cf(1) == exp(I - S.Half)

    Z = Exponential('z', 5)
    cf = characteristic_function(Z)
    assert cf(0) == 1
    assert cf(1).expand() == Rational(25, 26) + I * Rational(5, 26)

    X = GaussianInverse('x', 1, 1)
    cf = characteristic_function(X)
    assert cf(0) == 1
    assert cf(1) == exp(1 - sqrt(1 - 2 * I))

    X = ExGaussian('x', 0, 1, 1)
    cf = characteristic_function(X)
    assert cf(0) == 1
    assert cf(1) == (1 + I) * exp(Rational(-1, 2)) / 2

    L = Levy('x', 0, 1)
    cf = characteristic_function(L)
    assert cf(0) == 1
    assert cf(1) == exp(-sqrt(2) * sqrt(-I))
예제 #12
0
def test_rayleigh():
    sigma = Symbol("sigma", positive=True)

    X = Rayleigh('x', sigma)

    #Tests characteristic_function
    assert characteristic_function(X)(x) == (-sqrt(2)*sqrt(pi)*sigma*x*(erfi(sqrt(2)*sigma*x/2) - I)*exp(-sigma**2*x**2/2)/2 + 1)

    assert density(X)(x) ==  x*exp(-x**2/(2*sigma**2))/sigma**2
    assert E(X) == sqrt(2)*sqrt(pi)*sigma/2
    assert variance(X) == -pi*sigma**2/2 + 2*sigma**2
    assert cdf(X)(x) == 1 - exp(-x**2/(2*sigma**2))
    assert diff(cdf(X)(x), x) == density(X)(x)
예제 #13
0
def test_dice():
    # TODO: Make iid method!
    X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6)
    a, b, t, p = symbols('a b t p')

    assert E(X) == 3 + S.Half
    assert variance(X) == S(35)/12
    assert E(X + Y) == 7
    assert E(X + X) == 7
    assert E(a*X + b) == a*E(X) + b
    assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2)
    assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2)
    assert cmoment(X, 0) == 1
    assert cmoment(4*X, 3) == 64*cmoment(X, 3)
    assert covariance(X, Y) == S.Zero
    assert covariance(X, X + Y) == variance(X)
    assert density(Eq(cos(X*S.Pi), 1))[True] == S.Half
    assert correlation(X, Y) == 0
    assert correlation(X, Y) == correlation(Y, X)
    assert smoment(X + Y, 3) == skewness(X + Y)
    assert smoment(X, 0) == 1
    assert P(X > 3) == S.Half
    assert P(2*X > 6) == S.Half
    assert P(X > Y) == S(5)/12
    assert P(Eq(X, Y)) == P(Eq(X, 1))

    assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3)
    assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3)
    assert E(X + Y, Eq(X, Y)) == E(2*X)
    assert moment(X, 0) == 1
    assert moment(5*X, 2) == 25*moment(X, 2)
    assert quantile(X)(p) == Piecewise((nan, (p > S.One) | (p < S(0))),\
        (S.One, p <= S(1)/6), (S(2), p <= S(1)/3), (S(3), p <= S.Half),\
        (S(4), p <= S(2)/3), (S(5), p <= S(5)/6), (S(6), p <= S.One))

    assert P(X > 3, X > 3) == S.One
    assert P(X > Y, Eq(Y, 6)) == S.Zero
    assert P(Eq(X + Y, 12)) == S.One/36
    assert P(Eq(X + Y, 12), Eq(X, 6)) == S.One/6

    assert density(X + Y) == density(Y + Z) != density(X + X)
    d = density(2*X + Y**Z)
    assert d[S(22)] == S.One/108 and d[S(4100)] == S.One/216 and S(3130) not in d

    assert pspace(X).domain.as_boolean() == Or(
        *[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]])

    assert where(X > 3).set == FiniteSet(4, 5, 6)

    assert characteristic_function(X)(t) == exp(6*I*t)/6 + exp(5*I*t)/6 + exp(4*I*t)/6 + exp(3*I*t)/6 + exp(2*I*t)/6 + exp(I*t)/6
    assert moment_generating_function(X)(t) == exp(6*t)/6 + exp(5*t)/6 + exp(4*t)/6 + exp(3*t)/6 + exp(2*t)/6 + exp(t)/6
예제 #14
0
def test_logistic():
    mu = Symbol("mu", real=True)
    s = Symbol("s", positive=True)
    p = Symbol("p", positive=True)

    X = Logistic('x', mu, s)

    #Tests characteristics_function
    assert characteristic_function(X)(x) == \
           (Piecewise((pi*s*x*exp(I*mu*x)/sinh(pi*s*x), Ne(x, 0)), (1, True)))

    assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2)
    assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1)
    assert quantile(X)(p) == mu - s*log(-S.One + 1/p)
예제 #15
0
def test_cauchy():
    x0 = Symbol("x0")
    gamma = Symbol("gamma", positive=True)
    p = Symbol("p", positive=True)

    X = Cauchy('x', x0, gamma)
    # Tests the characteristic function
    assert characteristic_function(X)(x) == exp(-gamma * Abs(x) + I * x * x0)

    assert density(X)(x) == 1 / (pi * gamma * (1 + (x - x0)**2 / gamma**2))
    assert diff(cdf(X)(x), x) == density(X)(x)
    assert quantile(X)(p) == gamma * tan(pi * (p - S.Half)) + x0

    gamma = Symbol("gamma", nonpositive=True)
    raises(ValueError, lambda: Cauchy('x', x0, gamma))
예제 #16
0
def test_beta():
    a, b = symbols('alpha beta', positive=True)
    B = Beta('x', a, b)

    assert pspace(B).domain.set == Interval(0, 1)
    assert characteristic_function(B)(x) == hyper((a,), (a + b,), I*x)
    assert density(B)(x) == x**(a - 1)*(1 - x)**(b - 1)/beta(a, b)

    assert simplify(E(B)) == a / (a + b)
    assert simplify(variance(B)) == a*b / (a**3 + 3*a**2*b + a**2 + 3*a*b**2 + 2*a*b + b**3 + b**2)

    # Full symbolic solution is too much, test with numeric version
    a, b = 1, 2
    B = Beta('x', a, b)
    assert expand_func(E(B)) == a / S(a + b)
    assert expand_func(variance(B)) == (a*b) / S((a + b)**2 * (a + b + 1))
예제 #17
0
def test_binomial_symbolic():
    n = 2  # Because we're using for loops, can't do symbolic n
    p = symbols('p', positive=True)
    X = Binomial('X', n, p)
    t = Symbol('t')

    assert simplify(E(X)) == n * p == simplify(moment(X, 1))
    assert simplify(variance(X)) == n * p * (1 - p) == simplify(cmoment(X, 2))
    assert cancel((skewness(X) - (1 - 2 * p) / sqrt(n * p * (1 - p)))) == 0
    assert characteristic_function(X)(t) == p**2 * exp(
        2 * I * t) + 2 * p * (-p + 1) * exp(I * t) + (-p + 1)**2

    # Test ability to change success/failure winnings
    H, T = symbols('H T')
    Y = Binomial('Y', n, p, succ=H, fail=T)
    assert simplify(E(Y) - (n * (H * p + T * (1 - p)))) == 0
예제 #18
0
def test_bernoulli():
    p, a, b, t = symbols('p a b t')
    X = Bernoulli('B', p, a, b)

    assert E(X) == a * p + b * (-p + 1)
    assert density(X)[a] == p
    assert density(X)[b] == 1 - p
    assert characteristic_function(X)(
        t) == p * exp(I * a * t) + (-p + 1) * exp(I * b * t)

    X = Bernoulli('B', p, 1, 0)

    assert E(X) == p
    assert simplify(variance(X)) == p * (1 - p)
    assert E(a * X + b) == a * E(X) + b
    assert simplify(variance(a * X + b)) == simplify(a**2 * variance(X))
예제 #19
0
def test_binomial_symbolic():
    n = 2  # Because we're using for loops, can't do symbolic n
    p = symbols('p', positive=True)
    X = Binomial('X', n, p)
    t = Symbol('t')

    assert simplify(E(X)) == n*p == simplify(moment(X, 1))
    assert simplify(variance(X)) == n*p*(1 - p) == simplify(cmoment(X, 2))
    assert cancel((skewness(X) - (1 - 2*p)/sqrt(n*p*(1 - p)))) == 0
    assert characteristic_function(X)(t) == p ** 2 * exp(2 * I * t) + 2 * p * (-p + 1) * exp(I * t) + (-p + 1) ** 2
    assert moment_generating_function(X)(t) == p ** 2 * exp(2 * t) + 2 * p * (-p + 1) * exp(t) + (-p + 1) ** 2

    # Test ability to change success/failure winnings
    H, T = symbols('H T')
    Y = Binomial('Y', n, p, succ=H, fail=T)
    assert simplify(E(Y) - (n*(H*p + T*(1 - p)))) == 0
예제 #20
0
def test_bernoulli():
    p, a, b, t = symbols('p a b t')
    X = Bernoulli('B', p, a, b)

    assert E(X) == a*p + b*(-p + 1)
    assert density(X)[a] == p
    assert density(X)[b] == 1 - p
    assert characteristic_function(X)(t) == p * exp(I * a * t) + (-p + 1) * exp(I * b * t)
    assert moment_generating_function(X)(t) == p * exp(a * t) + (-p + 1) * exp(b * t)

    X = Bernoulli('B', p, 1, 0)

    assert E(X) == p
    assert simplify(variance(X)) == p*(1 - p)
    assert E(a*X + b) == a*E(X) + b
    assert simplify(variance(a*X + b)) == simplify(a**2 * variance(X))
예제 #21
0
def test_skellam():
    mu1 = Symbol('mu1')
    mu2 = Symbol('mu2')
    z = Symbol('z')
    X = Skellam('x', mu1, mu2)

    assert density(X)(z) == (mu1/mu2)**(z/2) * \
        exp(-mu1 - mu2)*besseli(z, 2*sqrt(mu1*mu2))
    assert skewness(X).expand() == mu1/(mu1*sqrt(mu1 + mu2) + mu2 *
                sqrt(mu1 + mu2)) - mu2/(mu1*sqrt(mu1 + mu2) + mu2*sqrt(mu1 + mu2))
    assert variance(X).expand() == mu1 + mu2
    assert E(X) == mu1 - mu2
    assert characteristic_function(X)(z) == exp(
        mu1*exp(I*z) - mu1 - mu2 + mu2*exp(-I*z))
    assert moment_generating_function(X)(z) == exp(
        mu1*exp(z) - mu1 - mu2 + mu2*exp(-z))
예제 #22
0
def test_binomial_symbolic():
    n = 2
    p = symbols("p", positive=True)
    X = Binomial("X", n, p)
    t = Symbol("t")

    assert simplify(E(X)) == n * p == simplify(moment(X, 1))
    assert simplify(variance(X)) == n * p * (1 - p) == simplify(cmoment(X, 2))
    assert cancel((skewness(X) - (1 - 2 * p) / sqrt(n * p * (1 - p)))) == 0
    assert cancel((kurtosis(X)) - (3 + (1 - 6 * p * (1 - p)) / (n * p *
                                                                (1 - p)))) == 0
    assert (characteristic_function(X)(t) == p**2 * exp(2 * I * t) + 2 * p *
            (-p + 1) * exp(I * t) + (-p + 1)**2)
    assert (moment_generating_function(X)(t) == p**2 * exp(2 * t) + 2 * p *
            (-p + 1) * exp(t) + (-p + 1)**2)

    # Test ability to change success/failure winnings
    H, T = symbols("H T")
    Y = Binomial("Y", n, p, succ=H, fail=T)
    assert simplify(E(Y) - (n * (H * p + T * (1 - p)))) == 0

    # test symbolic dimensions
    n = symbols("n")
    B = Binomial("B", n, p)
    raises(NotImplementedError, lambda: P(B > 2))
    assert density(B).dict == Density(BinomialDistribution(n, p, 1, 0))
    assert set(density(B).dict.subs(n, 4).doit().keys()) == set(
        [S.Zero, S.One, S(2), S(3), S(4)])
    assert set(density(B).dict.subs(n, 4).doit().values()) == set([
        (1 - p)**4,
        4 * p * (1 - p)**3,
        6 * p**2 * (1 - p)**2,
        4 * p**3 * (1 - p),
        p**4,
    ])
    k = Dummy("k", integer=True)
    assert E(B > 2).dummy_eq(
        Sum(
            Piecewise(
                (
                    k * p**k * (1 - p)**(-k + n) * binomial(n, k),
                    (k >= 0) & (k <= n) & (k > 2),
                ),
                (0, True),
            ),
            (k, 0, n),
        ))
예제 #23
0
def test_uniformsum():
    n = Symbol("n", integer=True)
    _k = Dummy("k")
    x = Symbol("x")

    X = UniformSum('x', n)
    res = Sum((-1)**_k*(-_k + x)**(n - 1)*binomial(n, _k), (_k, 0, floor(x)))/factorial(n - 1)
    assert density(X)(x).dummy_eq(res)

    #Tests set functions
    assert X.pspace.domain.set == Interval(0, n)

    #Tests the characteristic_function
    assert characteristic_function(X)(x) == (-I*(exp(I*x) - 1)/x)**n

    #Tests the moment_generating_function
    assert moment_generating_function(X)(x) == ((exp(x) - 1)/x)**n
예제 #24
0
def test_pareto():
    xm, beta = symbols('xm beta', positive=True)
    alpha = beta + 5
    X = Pareto('x', xm, alpha)

    dens = density(X)

    #Tests cdf function
    assert cdf(X)(x) == \
           Piecewise((-x**(-beta - 5)*xm**(beta + 5) + 1, x >= xm), (0, True))

    #Tests characteristic_function
    assert characteristic_function(X)(x) == \
           ((-I*x*xm)**(beta + 5)*(beta + 5)*uppergamma(-beta - 5, -I*x*xm))

    assert dens(x) == x**(-(alpha + 1)) * xm**(alpha) * (alpha)

    assert simplify(E(X)) == alpha * xm / (alpha - 1)
예제 #25
0
    def test_cf(dist, support_lower_limit, support_upper_limit):
        pdf = density(dist)
        t = Symbol('t')

        # first function is the hardcoded CF of the distribution
        cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath')

        # second function is the Fourier transform of the density function
        f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath')
        cf2 = lambda t: mpmath.quad(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10)

        # compare the two functions at various points
        for test_point in [2, 5, 8, 11]:
            n1 = cf1(test_point)
            n2 = cf2(test_point)

            assert abs(re(n1) - re(n2)) < 1e-12
            assert abs(im(n1) - im(n2)) < 1e-12
예제 #26
0
def test_Moyal():
    mu = Symbol('mu',real=False)
    sigma = Symbol('sigma', real=True, positive=True)
    raises(ValueError, lambda: Moyal('M',mu, sigma))

    mu = Symbol('mu', real=True)
    sigma = Symbol('sigma', real=True, negative=True)
    raises(ValueError, lambda: Moyal('M',mu, sigma))

    sigma = Symbol('sigma', real=True, positive=True)
    M = Moyal('M', mu, sigma)
    assert density(M)(z) == sqrt(2)*exp(-exp((mu - z)/sigma)/2
                        - (-mu + z)/(2*sigma))/(2*sqrt(pi)*sigma)
    assert cdf(M)(z).simplify() == 1 - erf(sqrt(2)*exp((mu - z)/(2*sigma))/2)
    assert characteristic_function(M)(z) == 2**(-I*sigma*z)*exp(I*mu*z) \
                        *gamma(-I*sigma*z + Rational(1, 2))/sqrt(pi)
    assert E(M) == mu + EulerGamma*sigma + sigma*log(2)
    assert moment_generating_function(M)(z) == 2**(-sigma*z)*exp(mu*z) \
                        *gamma(-sigma*z + Rational(1, 2))/sqrt(pi)
예제 #27
0
    def test_cf(dist, support_lower_limit, support_upper_limit):
        pdf = density(dist)
        t = Symbol('t')
        x = Symbol('x')

        # first function is the hardcoded CF of the distribution
        cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath')

        # second function is the Fourier transform of the density function
        f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath')
        cf2 = lambda t: mpmath.quad(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10)

        # compare the two functions at various points
        for test_point in [2, 5, 8, 11]:
            n1 = cf1(test_point)
            n2 = cf2(test_point)

            assert abs(re(n1) - re(n2)) < 1e-12
            assert abs(im(n1) - im(n2)) < 1e-12
예제 #28
0
def test_chi():
    from sympy import I
    k = Symbol("k", integer=True)

    X = Chi('x', k)
    assert density(X)(x) == 2**(-k/2 + 1)*x**(k - 1)*exp(-x**2/2)/gamma(k/2)

    # Tests the characteristic function
    assert characteristic_function(X)(x) == sqrt(2)*I*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,),
                                            (S(3)/2,), -x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), -x**2/2)

    # Tests the moment generating function
    assert moment_generating_function(X)(x) == sqrt(2)*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,),
                                                (S(3)/2,), x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), x**2/2)

    k = Symbol("k", integer=True, positive=False)
    raises(ValueError, lambda: Chi('x', k))

    k = Symbol("k", integer=False, positive=True)
    raises(ValueError, lambda: Chi('x', k))
예제 #29
0
def test_chi_squared():
    k = Symbol("k", integer=True)
    X = ChiSquared('x', k)

    # Tests the characteristic function
    assert characteristic_function(X)(x) == ((-2*I*x + 1)**(-k/2))

    assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2)
    assert cdf(X)(x) == Piecewise((lowergamma(k/2, x/2)/gamma(k/2), x >= 0), (0, True))
    assert E(X) == k
    assert variance(X) == 2*k

    X = ChiSquared('x', 15)
    assert cdf(X)(3) == -14873*sqrt(6)*exp(Rational(-3, 2))/(5005*sqrt(pi)) + erf(sqrt(6)/2)

    k = Symbol("k", integer=True, positive=False)
    raises(ValueError, lambda: ChiSquared('x', k))

    k = Symbol("k", integer=False, positive=True)
    raises(ValueError, lambda: ChiSquared('x', k))
예제 #30
0
def test_bernoulli():
    p, a, b, t = symbols('p a b t')
    X = Bernoulli('B', p, a, b)

    assert E(X) == a*p + b*(-p + 1)
    assert density(X)[a] == p
    assert density(X)[b] == 1 - p
    assert characteristic_function(X)(t) == p * exp(I * a * t) + (-p + 1) * exp(I * b * t)
    assert moment_generating_function(X)(t) == p * exp(a * t) + (-p + 1) * exp(b * t)

    X = Bernoulli('B', p, 1, 0)
    z = Symbol("z")

    assert E(X) == p
    assert simplify(variance(X)) == p*(1 - p)
    assert E(a*X + b) == a*E(X) + b
    assert simplify(variance(a*X + b)) == simplify(a**2 * variance(X))
    assert quantile(X)(z) == Piecewise((nan, (z > 1) | (z < 0)), (0, z <= 1 - p), (1, z <= 1))

    raises(ValueError, lambda: Bernoulli('B', 1.5))
    raises(ValueError, lambda: Bernoulli('B', -0.5))
예제 #31
0
def test_bernoulli():
    p, a, b, t = symbols('p a b t')
    X = Bernoulli('B', p, a, b)

    assert E(X) == a*p + b*(-p + 1)
    assert density(X)[a] == p
    assert density(X)[b] == 1 - p
    assert characteristic_function(X)(t) == p * exp(I * a * t) + (-p + 1) * exp(I * b * t)
    assert moment_generating_function(X)(t) == p * exp(a * t) + (-p + 1) * exp(b * t)

    X = Bernoulli('B', p, 1, 0)
    z = Symbol("z")

    assert E(X) == p
    assert simplify(variance(X)) == p*(1 - p)
    assert E(a*X + b) == a*E(X) + b
    assert simplify(variance(a*X + b)) == simplify(a**2 * variance(X))
    assert quantile(X)(z) == Piecewise((nan, (z > 1) | (z < 0)), (0, z <= 1 - p), (1, z <= 1))

    raises(ValueError, lambda: Bernoulli('B', 1.5))
    raises(ValueError, lambda: Bernoulli('B', -0.5))
예제 #32
0
def test_bernoulli():
    p, a, b, t = symbols('p a b t')
    X = Bernoulli('B', p, a, b)

    assert E(X) == a * p + b * (-p + 1)
    assert density(X)[a] == p
    assert density(X)[b] == 1 - p
    assert characteristic_function(X)(
        t) == p * exp(I * a * t) + (-p + 1) * exp(I * b * t)
    assert moment_generating_function(X)(
        t) == p * exp(a * t) + (-p + 1) * exp(b * t)

    X = Bernoulli('B', p, 1, 0)
    z = Symbol("z")

    assert E(X) == p
    assert simplify(variance(X)) == p * (1 - p)
    assert E(a * X + b) == a * E(X) + b
    assert simplify(variance(a * X + b)) == simplify(a**2 * variance(X))
    assert quantile(X)(z) == Piecewise((nan, (z > 1) | (z < 0)),
                                       (0, z <= 1 - p), (1, z <= 1))
    Y = Bernoulli('Y', Rational(1, 2))
    assert median(Y) == FiniteSet(0, 1)
    Z = Bernoulli('Z', Rational(2, 3))
    assert median(Z) == FiniteSet(1)
    raises(ValueError, lambda: Bernoulli('B', 1.5))
    raises(ValueError, lambda: Bernoulli('B', -0.5))

    #issue 8248
    assert X.pspace.compute_expectation(1) == 1

    p = Rational(1, 5)
    X = Binomial('X', 5, p)
    Y = Binomial('Y', 7, 2 * p)
    Z = Binomial('Z', 9, 3 * p)
    assert coskewness(Y + Z, X + Y, X + Z).simplify() == 0
    assert coskewness(Y + 2*X + Z, X + 2*Y + Z, X + 2*Z + Y).simplify() == \
                        sqrt(1529)*Rational(12, 16819)
    assert coskewness(Y + 2*X + Z, X + 2*Y + Z, X + 2*Z + Y, X < 2).simplify() \
                        == -sqrt(357451121)*Rational(2812, 4646864573)
예제 #33
0
def test_gamma():
    k = Symbol("k", positive=True)
    theta = Symbol("theta", positive=True)

    X = Gamma('x', k, theta)

    # Tests characteristic function
    assert characteristic_function(X)(x) == ((-I * theta * x + 1)**(-k))

    assert density(X)(x) == x**(k - 1) * theta**(-k) * exp(
        -x / theta) / gamma(k)
    assert cdf(X, meijerg=True)(z) == Piecewise(
        (-k * lowergamma(k, 0) / gamma(k + 1) +
         k * lowergamma(k, z / theta) / gamma(k + 1), z >= 0), (0, True))

    # assert simplify(variance(X)) == k*theta**2  # handled numerically below
    assert E(X) == moment(X, 1)

    k, theta = symbols('k theta', positive=True)
    X = Gamma('x', k, theta)
    assert E(X) == k * theta
    assert variance(X) == k * theta**2
    assert skewness(X).expand() == 2 / sqrt(k)
    assert kurtosis(X).expand() == 3 + 6 / k
예제 #34
0
def test_beta_binomial():
    # verify parameters
    raises(ValueError, lambda: BetaBinomial("b", 0.2, 1, 2))
    raises(ValueError, lambda: BetaBinomial("b", 2, -1, 2))
    raises(ValueError, lambda: BetaBinomial("b", 2, 1, -2))
    assert BetaBinomial("b", 2, 1, 1)

    # test numeric values
    nvals = range(1, 5)
    alphavals = [Rational(1, 4), S.Half, Rational(3, 4), 1, 10]
    betavals = [Rational(1, 4), S.Half, Rational(3, 4), 1, 10]

    for n in nvals:
        for a in alphavals:
            for b in betavals:
                X = BetaBinomial("X", n, a, b)
                assert E(X) == moment(X, 1)
                assert variance(X) == cmoment(X, 2)

    # test symbolic
    n, a, b = symbols("a b n")
    assert BetaBinomial("x", n, a, b)
    n = 2  # Because we're using for loops, can't do symbolic n
    a, b = symbols("a b", positive=True)
    X = BetaBinomial("X", n, a, b)
    t = Symbol("t")

    assert E(X).expand() == moment(X, 1).expand()
    assert variance(X).expand() == cmoment(X, 2).expand()
    assert skewness(X) == smoment(X, 3)
    assert characteristic_function(X)(t) == exp(2 * I * t) * beta(
        a + 2, b) / beta(a, b) + 2 * exp(I * t) * beta(a + 1, b + 1) / beta(
            a, b) + beta(a, b + 2) / beta(a, b)
    assert moment_generating_function(X)(
        t) == exp(2 * t) * beta(a + 2, b) / beta(a, b) + 2 * exp(t) * beta(
            a + 1, b + 1) / beta(a, b) + beta(a, b + 2) / beta(a, b)
예제 #35
0
def test_Hermite():
    a1 = Symbol("a1", positive=True)
    a2 = Symbol("a2", negative=True)
    raises(ValueError, lambda: Hermite("H", a1, a2))

    a1 = Symbol("a1", negative=True)
    a2 = Symbol("a2", positive=True)
    raises(ValueError, lambda: Hermite("H", a1, a2))

    a1 = Symbol("a1", positive=True)
    x = Symbol("x")
    H = Hermite("H", a1, a2)
    assert moment_generating_function(H)(x) == exp(a1 * (exp(x) - 1) + a2 *
                                                   (exp(2 * x) - 1))
    assert characteristic_function(H)(x) == exp(a1 * (exp(I * x) - 1) + a2 *
                                                (exp(2 * I * x) - 1))
    assert E(H) == a1 + 2 * a2

    H = Hermite("H", a1=5, a2=4)
    assert density(H)(2) == 33 * exp(-9) / 2
    assert E(H) == 13
    assert variance(H) == 21
    assert kurtosis(H) == Rational(464, 147)
    assert skewness(H) == 37 * sqrt(21) / 441
예제 #36
0
def test_dice():
    # TODO: Make iid method!
    X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6)
    a, b, t, p = symbols('a b t p')

    assert E(X) == 3 + S.Half
    assert variance(X) == S(35) / 12
    assert E(X + Y) == 7
    assert E(X + X) == 7
    assert E(a * X + b) == a * E(X) + b
    assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2)
    assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2)
    assert cmoment(X, 0) == 1
    assert cmoment(4 * X, 3) == 64 * cmoment(X, 3)
    assert covariance(X, Y) == S.Zero
    assert covariance(X, X + Y) == variance(X)
    assert density(Eq(cos(X * S.Pi), 1))[True] == S.Half
    assert correlation(X, Y) == 0
    assert correlation(X, Y) == correlation(Y, X)
    assert smoment(X + Y, 3) == skewness(X + Y)
    assert smoment(X + Y, 4) == kurtosis(X + Y)
    assert smoment(X, 0) == 1
    assert P(X > 3) == S.Half
    assert P(2 * X > 6) == S.Half
    assert P(X > Y) == S(5) / 12
    assert P(Eq(X, Y)) == P(Eq(X, 1))

    assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3)
    assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3)
    assert E(X + Y, Eq(X, Y)) == E(2 * X)
    assert moment(X, 0) == 1
    assert moment(5 * X, 2) == 25 * moment(X, 2)
    assert quantile(X)(p) == Piecewise((nan, (p > S.One) | (p < S(0))),\
        (S.One, p <= S(1)/6), (S(2), p <= S(1)/3), (S(3), p <= S.Half),\
        (S(4), p <= S(2)/3), (S(5), p <= S(5)/6), (S(6), p <= S.One))

    assert P(X > 3, X > 3) == S.One
    assert P(X > Y, Eq(Y, 6)) == S.Zero
    assert P(Eq(X + Y, 12)) == S.One / 36
    assert P(Eq(X + Y, 12), Eq(X, 6)) == S.One / 6

    assert density(X + Y) == density(Y + Z) != density(X + X)
    d = density(2 * X + Y**Z)
    assert d[S(22)] == S.One / 108 and d[S(4100)] == S.One / 216 and S(
        3130) not in d

    assert pspace(X).domain.as_boolean() == Or(
        *[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]])

    assert where(X > 3).set == FiniteSet(4, 5, 6)

    assert characteristic_function(X)(t) == exp(6 * I * t) / 6 + exp(
        5 * I * t) / 6 + exp(4 * I * t) / 6 + exp(3 * I * t) / 6 + exp(
            2 * I * t) / 6 + exp(I * t) / 6
    assert moment_generating_function(X)(
        t) == exp(6 * t) / 6 + exp(5 * t) / 6 + exp(4 * t) / 6 + exp(
            3 * t) / 6 + exp(2 * t) / 6 + exp(t) / 6

    # Bayes test for die
    BayesTest(X > 3, X + Y < 5)
    BayesTest(Eq(X - Y, Z), Z > Y)
    BayesTest(X > 3, X > 2)

    # arg test for die
    raises(ValueError, lambda: Die('X', -1))  # issue 8105: negative sides.
    raises(ValueError, lambda: Die('X', 0))
    raises(ValueError, lambda: Die('X', 1.5))  # issue 8103: non integer sides.

    # symbolic test for die
    n, k = symbols('n, k', positive=True)
    D = Die('D', n)
    dens = density(D).dict
    assert dens == Density(DieDistribution(n))
    assert set(dens.subs(n, 4).doit().keys()) == set([1, 2, 3, 4])
    assert set(dens.subs(n, 4).doit().values()) == set([S(1) / 4])
    k = Dummy('k', integer=True)
    assert E(D).dummy_eq(Sum(Piecewise((k / n, k <= n), (0, True)), (k, 1, n)))
    assert variance(D).subs(n, 6).doit() == S(35) / 12

    ki = Dummy('ki')
    cumuf = cdf(D)(k)
    assert cumuf.dummy_eq(
        Sum(Piecewise((1 / n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, k)))
    assert cumuf.subs({n: 6, k: 2}).doit() == S(1) / 3

    t = Dummy('t')
    cf = characteristic_function(D)(t)
    assert cf.dummy_eq(
        Sum(Piecewise((exp(ki * I * t) / n, (ki >= 1) & (ki <= n)), (0, True)),
            (ki, 1, n)))
    assert cf.subs(
        n,
        3).doit() == exp(3 * I * t) / 3 + exp(2 * I * t) / 3 + exp(I * t) / 3
    mgf = moment_generating_function(D)(t)
    assert mgf.dummy_eq(
        Sum(Piecewise((exp(ki * t) / n, (ki >= 1) & (ki <= n)), (0, True)),
            (ki, 1, n)))
    assert mgf.subs(n,
                    3).doit() == exp(3 * t) / 3 + exp(2 * t) / 3 + exp(t) / 3