def test_prefab_sampling(): N = Normal(0, 1) L = LogNormal(0, 1) E = Exponential(1) P = Pareto(1, 3) W = Weibull(1, 1) U = Uniform(0, 1) B = Beta(2, 5) G = Gamma(1, 3) variables = [N, L, E, P, W, U, B, G] niter = 10 for var in variables: for i in xrange(niter): assert sample(var) in var.pspace.domain.set
def test_exponential(): rate = Symbol('lambda', positive=True, real=True, finite=True) X = Exponential('x', rate) assert E(X) == 1 / rate assert variance(X) == 1 / rate**2 assert skewness(X) == 2 assert skewness(X) == smoment(X, 3) assert smoment(2 * X, 4) == smoment(X, 4) assert moment(X, 3) == 3 * 2 * 1 / rate**3 assert P(X > 0) == S(1) assert P(X > 1) == exp(-rate) assert P(X > 10) == exp(-10 * rate) assert where(X <= 1).set == Interval(0, 1)
def test_characteristic_function(): X = Uniform('x', 0, 1) cf = characteristic_function(X) assert cf(1) == -I * (-1 + exp(I)) Y = Normal('y', 1, 1) cf = characteristic_function(Y) assert cf(0) == 1 assert simplify(cf(1)) == exp(I - S(1) / 2) Z = Exponential('z', 5) cf = characteristic_function(Z) assert cf(0) == 1 assert simplify(cf(1)) == S(25) / 26 + 5 * I / 26
def test_prefab_sampling(): N = Normal('X', 0, 1) L = LogNormal('L', 0, 1) E = Exponential('Ex', 1) P = Pareto('P', 1, 3) W = Weibull('W', 1, 1) U = Uniform('U', 0, 1) B = Beta('B', 2, 5) G = Gamma('G', 1, 3) variables = [N, L, E, P, W, U, B, G] niter = 10 for var in variables: for i in range(niter): assert sample(var) in var.pspace.domain.set
def test_precomputed_cdf(): x = symbols("x", real=True, finite=True) mu = symbols("mu", real=True, finite=True) sigma, xm, alpha = symbols("sigma xm alpha", positive=True, finite=True) n = symbols("n", integer=True, positive=True, finite=True) distribs = [ Normal("X", mu, sigma), Pareto("P", xm, alpha), ChiSquared("C", n), Exponential("E", sigma), # LogNormal("L", mu, sigma), ] for X in distribs: compdiff = cdf(X)(x) - simplify(X.pspace.density.compute_cdf()(x)) compdiff = simplify(compdiff.rewrite(erfc)) assert compdiff == 0
def test_symbolic(): mu1, mu2 = symbols('mu1 mu2', real=True, finite=True) s1, s2 = symbols('sigma1 sigma2', real=True, finite=True, positive=True) rate = Symbol('lambda', real=True, positive=True, finite=True) X = Normal('x', mu1, s1) Y = Normal('y', mu2, s2) Z = Exponential('z', rate) a, b, c = symbols('a b c', real=True, finite=True) assert E(X) == mu1 assert E(X + Y) == mu1 + mu2 assert E(a*X + b) == a*E(X) + b assert variance(X) == s1**2 assert simplify(variance(X + a*Y + b)) == variance(X) + a**2*variance(Y) assert E(Z) == 1/rate assert E(a*Z + b) == a*E(Z) + b assert E(X + a*Z + b) == mu1 + a/rate + b
def test_symbolic(): mu1, mu2 = symbols('mu1 mu2', real=True, bounded=True) s1, s2 = symbols('sigma1 sigma2', real=True, bounded=True, positive=True) rate = Symbol('lambda', real=True, positive=True, bounded=True) X = Normal(mu1, s1) Y = Normal(mu2, s2) Z = Exponential(rate) a, b, c = symbols('a b c', real=True, bounded=True) assert E(X) == mu1 assert E(X+Y) == mu1+mu2 assert E(a*X+b) == a*E(X)+b assert Var(X) == s1**2 assert simplify(Var(X+a*Y+b)) == Var(X) + a**2*Var(Y) assert E(Z) == 1/rate assert E(a*Z+b) == a*E(Z)+b assert E(X+a*Z+b) == mu1 + a/rate + b
def test_mix_expression(): Y, E = Poisson('Y', 1), Exponential('E', 1) k = Dummy('k') expr1 = Integral( Sum( exp(-1) * Integral(exp(-k) * DiracDelta(k - 2), (k, 0, oo)) / factorial(k), (k, 0, oo)), (k, -oo, 0)) expr2 = Integral( Sum( exp(-1) * Integral(exp(-k) * DiracDelta(k - 2), (k, 0, oo)) / factorial(k), (k, 0, oo)), (k, 0, oo)) assert P(Eq(Y + E, 1)) == 0 assert P(Ne(Y + E, 2)) == 1 with ignore_warnings( UserWarning): ### TODO: Restore tests once warnings are removed assert P(E + Y < 2, evaluate=False).rewrite(Integral).dummy_eq(expr1) assert P(E + Y > 2, evaluate=False).rewrite(Integral).dummy_eq(expr2)
def test_exponential(): rate = Symbol('lambda', positive=True) X = Exponential('x', rate) p = Symbol("p", positive=True, real=True, finite=True) assert E(X) == 1 / rate assert variance(X) == 1 / rate**2 assert skewness(X) == 2 assert skewness(X) == smoment(X, 3) assert kurtosis(X) == 9 assert kurtosis(X) == smoment(X, 4) assert smoment(2 * X, 4) == smoment(X, 4) assert moment(X, 3) == 3 * 2 * 1 / rate**3 assert P(X > 0) is S.One assert P(X > 1) == exp(-rate) assert P(X > 10) == exp(-10 * rate) assert quantile(X)(p) == -log(1 - p) / rate assert where(X <= 1).set == Interval(0, 1)
def test_characteristic_function(): X = Uniform('x', 0, 1) cf = characteristic_function(X) assert cf(1) == -I * (-1 + exp(I)) Y = Normal('y', 1, 1) cf = characteristic_function(Y) assert cf(0) == 1 assert cf(1) == exp(I - S(1) / 2) Z = Exponential('z', 5) cf = characteristic_function(Z) assert cf(0) == 1 assert cf(1).expand() == S(25) / 26 + 5 * I / 26 X = GaussianInverse('x', 1, 1) cf = characteristic_function(X) assert cf(0) == 1 assert cf(1) == exp(1 - sqrt(1 - 2 * I))
def test_prefab_sampling(): scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests') N = Normal('X', 0, 1) L = LogNormal('L', 0, 1) E = Exponential('Ex', 1) P = Pareto('P', 1, 3) W = Weibull('W', 1, 1) U = Uniform('U', 0, 1) B = Beta('B', 2, 5) G = Gamma('G', 1, 3) variables = [N, L, E, P, W, U, B, G] niter = 10 size = 5 for var in variables: for _ in range(niter): assert sample(var) in var.pspace.domain.set samps = sample(var, size=size) for samp in samps: assert samp in var.pspace.domain.set
def test_sample_scipy(): distribs_scipy = [ Beta("B", 1, 1), BetaPrime("BP", 1, 1), Cauchy("C", 1, 1), Chi("C", 1), Normal("N", 0, 1), Gamma("G", 2, 7), GammaInverse("GI", 1, 1), GaussianInverse("GUI", 1, 1), Exponential("E", 2), LogNormal("LN", 0, 1), Pareto("P", 1, 1), StudentT("S", 2), ChiSquared("CS", 2), Uniform("U", 0, 1) ] size = 3 numsamples = 5 scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests for _sample_scipy.') else: with ignore_warnings( UserWarning ): ### TODO: Restore tests once warnings are removed g_sample = list( sample(Gamma("G", 2, 7), size=size, numsamples=numsamples)) assert len(g_sample) == numsamples for X in distribs_scipy: samps = next(sample(X, size=size, library='scipy')) samps2 = next(sample(X, size=(2, 2), library='scipy')) for sam in samps: assert sam in X.pspace.domain.set for i in range(2): for j in range(2): assert samps2[i][j] in X.pspace.domain.set
def test_sample_numpy(): distribs_numpy = [ Beta("B", 1, 1), Normal("N", 0, 1), Gamma("G", 2, 7), Exponential("E", 2), LogNormal("LN", 0, 1), Pareto("P", 1, 1), ChiSquared("CS", 2), Uniform("U", 0, 1) ] size = 3 numpy = import_module('numpy') if not numpy: skip('Numpy is not installed. Abort tests for _sample_numpy.') else: for X in distribs_numpy: samps = sample(X, size=size, library='numpy') for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: sample(Chi("C", 1), library='numpy')) raises(NotImplementedError, lambda: Chi("C", 1).pspace.distribution.sample(library='tensorflow'))
def test_sample_pymc3(): distribs_pymc3 = [ Beta("B", 1, 1), Cauchy("C", 1, 1), Normal("N", 0, 1), Gamma("G", 2, 7), GaussianInverse("GI", 1, 1), Exponential("E", 2), LogNormal("LN", 0, 1), Pareto("P", 1, 1), ChiSquared("CS", 2), Uniform("U", 0, 1) ] size = 3 pymc3 = import_module('pymc3') if not pymc3: skip('PyMC3 is not installed. Abort tests for _sample_pymc3.') else: for X in distribs_pymc3: samps = sample(X, size=size, library='pymc3') for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: sample(Chi("C", 1), library='pymc3'))
def test_conditional_eq(): E = Exponential('E', 1) assert P(Eq(E, 1), Eq(E, 1)) == 1 assert P(Eq(E, 1), Eq(E, 2)) == 0 assert P(E > 1, Eq(E, 2)) == 1 assert P(E < 1, Eq(E, 2)) == 0
def test_FiniteSet_prob(): E = Exponential('E', 3) N = Normal('N', 5, 7) assert P(Eq(E, 1)) is S.Zero assert P(Eq(N, 2)) is S.Zero assert P(Eq(N, x)) is S.Zero
def test_moment_generating_function(): t = symbols('t', positive=True) # Symbolic tests a, b, c = symbols('a b c') mgf = moment_generating_function(Beta('x', a, b))(t) assert mgf == hyper((a, ), (a + b, ), t) mgf = moment_generating_function(Chi('x', a))(t) assert mgf == sqrt(2)*t*gamma(a/2 + S.Half)*\ hyper((a/2 + S.Half,), (Rational(3, 2),), t**2/2)/gamma(a/2) +\ hyper((a/2,), (S.Half,), t**2/2) mgf = moment_generating_function(ChiSquared('x', a))(t) assert mgf == (1 - 2 * t)**(-a / 2) mgf = moment_generating_function(Erlang('x', a, b))(t) assert mgf == (1 - t / b)**(-a) mgf = moment_generating_function(ExGaussian("x", a, b, c))(t) assert mgf == exp(a * t + b**2 * t**2 / 2) / (1 - t / c) mgf = moment_generating_function(Exponential('x', a))(t) assert mgf == a / (a - t) mgf = moment_generating_function(Gamma('x', a, b))(t) assert mgf == (-b * t + 1)**(-a) mgf = moment_generating_function(Gumbel('x', a, b))(t) assert mgf == exp(b * t) * gamma(-a * t + 1) mgf = moment_generating_function(Gompertz('x', a, b))(t) assert mgf == b * exp(b) * expint(t / a, b) mgf = moment_generating_function(Laplace('x', a, b))(t) assert mgf == exp(a * t) / (-b**2 * t**2 + 1) mgf = moment_generating_function(Logistic('x', a, b))(t) assert mgf == exp(a * t) * beta(-b * t + 1, b * t + 1) mgf = moment_generating_function(Normal('x', a, b))(t) assert mgf == exp(a * t + b**2 * t**2 / 2) mgf = moment_generating_function(Pareto('x', a, b))(t) assert mgf == b * (-a * t)**b * uppergamma(-b, -a * t) mgf = moment_generating_function(QuadraticU('x', a, b))(t) assert str(mgf) == ( "(3*(t*(-4*b + (a + b)**2) + 4)*exp(b*t) - " "3*(t*(a**2 + 2*a*(b - 2) + b**2) + 4)*exp(a*t))/(t**2*(a - b)**3)") mgf = moment_generating_function(RaisedCosine('x', a, b))(t) assert mgf == pi**2 * exp(a * t) * sinh(b * t) / (b * t * (b**2 * t**2 + pi**2)) mgf = moment_generating_function(Rayleigh('x', a))(t) assert mgf == sqrt(2)*sqrt(pi)*a*t*(erf(sqrt(2)*a*t/2) + 1)\ *exp(a**2*t**2/2)/2 + 1 mgf = moment_generating_function(Triangular('x', a, b, c))(t) assert str(mgf) == ("(-2*(-a + b)*exp(c*t) + 2*(-a + c)*exp(b*t) + " "2*(b - c)*exp(a*t))/(t**2*(-a + b)*(-a + c)*(b - c))") mgf = moment_generating_function(Uniform('x', a, b))(t) assert mgf == (-exp(a * t) + exp(b * t)) / (t * (-a + b)) mgf = moment_generating_function(UniformSum('x', a))(t) assert mgf == ((exp(t) - 1) / t)**a mgf = moment_generating_function(WignerSemicircle('x', a))(t) assert mgf == 2 * besseli(1, a * t) / (a * t) # Numeric tests mgf = moment_generating_function(Beta('x', 1, 1))(t) assert mgf.diff(t).subs(t, 1) == hyper((2, ), (3, ), 1) / 2 mgf = moment_generating_function(Chi('x', 1))(t) assert mgf.diff(t).subs(t, 1) == sqrt(2) * hyper( (1, ), (Rational(3, 2), ), S.Half) / sqrt(pi) + hyper( (Rational(3, 2), ), (Rational(3, 2), ), S.Half) + 2 * sqrt(2) * hyper( (2, ), (Rational(5, 2), ), S.Half) / (3 * sqrt(pi)) mgf = moment_generating_function(ChiSquared('x', 1))(t) assert mgf.diff(t).subs(t, 1) == I mgf = moment_generating_function(Erlang('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(ExGaussian("x", 0, 1, 1))(t) assert mgf.diff(t).subs(t, 2) == -exp(2) mgf = moment_generating_function(Exponential('x', 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(Gamma('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(Gumbel('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == EulerGamma + 1 mgf = moment_generating_function(Gompertz('x', 1, 1))(t) assert mgf.diff(t).subs(t, 1) == -e * meijerg(((), (1, 1)), ((0, 0, 0), ()), 1) mgf = moment_generating_function(Laplace('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(Logistic('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == beta(1, 1) mgf = moment_generating_function(Normal('x', 0, 1))(t) assert mgf.diff(t).subs(t, 1) == exp(S.Half) mgf = moment_generating_function(Pareto('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == expint(1, 0) mgf = moment_generating_function(QuadraticU('x', 1, 2))(t) assert mgf.diff(t).subs(t, 1) == -12 * e - 3 * exp(2) mgf = moment_generating_function(RaisedCosine('x', 1, 1))(t) assert mgf.diff(t).subs(t, 1) == -2*e*pi**2*sinh(1)/\ (1 + pi**2)**2 + e*pi**2*cosh(1)/(1 + pi**2) mgf = moment_generating_function(Rayleigh('x', 1))(t) assert mgf.diff(t).subs(t, 0) == sqrt(2) * sqrt(pi) / 2 mgf = moment_generating_function(Triangular('x', 1, 3, 2))(t) assert mgf.diff(t).subs(t, 1) == -e + exp(3) mgf = moment_generating_function(Uniform('x', 0, 1))(t) assert mgf.diff(t).subs(t, 1) == 1 mgf = moment_generating_function(UniformSum('x', 1))(t) assert mgf.diff(t).subs(t, 1) == 1 mgf = moment_generating_function(WignerSemicircle('x', 1))(t) assert mgf.diff(t).subs(t, 1) == -2*besseli(1, 1) + besseli(2, 1) +\ besseli(0, 1)
def test_issue_10003(): X = Exponential('x', 3) G = Gamma('g', 1, 2) assert P(X < -1) == S.Zero assert P(G < -1) == S.Zero
def test_issue_8129(): X = Exponential('X', 4) assert P(X >= X) == 1 assert P(X > X) == 0 assert P(X > X+1) == 0