def test_sparse(): sparse_array = MutableSparseNDimArray([0, 0, 0, 1], (2, 2)) assert len(sparse_array) == 2 * 2 # dictionary where all data is, only non-zero entries are actually stored: assert len(sparse_array._sparse_array) == 1 assert list(sparse_array) == [0, 0, 0, 1] for i, j in zip(sparse_array, [0, 0, 0, 1]): assert i == j sparse_array[0, 0] = 123 assert len(sparse_array._sparse_array) == 2 assert sparse_array[0, 0] == 123 # when element in sparse array become zero it will disappear from # dictionary sparse_array[0, 0] = 0 assert len(sparse_array._sparse_array) == 1 sparse_array[1, 1] = 0 assert len(sparse_array._sparse_array) == 0 assert sparse_array[0, 0] == 0 # test for large scale sparse array a = MutableSparseNDimArray.zeros(100000, 200000) b = MutableSparseNDimArray.zeros(100000, 200000) assert a == b a[1, 1] = 1 b[1, 1] = 2 assert a != b
def test_ndim_array_initiation(): arr_with_one_element = MutableDenseNDimArray([23]) assert len(arr_with_one_element) == 1 assert arr_with_one_element[0] == 23 assert arr_with_one_element.rank() == 1 raises(ValueError, lambda: arr_with_one_element[1]) arr_with_symbol_element = MutableDenseNDimArray([Symbol('x')]) assert len(arr_with_symbol_element) == 1 assert arr_with_symbol_element[0] == Symbol('x') assert arr_with_symbol_element.rank() == 1 number5 = 5 vector = MutableDenseNDimArray.zeros(number5) assert len(vector) == number5 assert vector.shape == (number5,) assert vector.rank() == 1 raises(ValueError, lambda: arr_with_one_element[5]) vector = MutableSparseNDimArray.zeros(number5) assert len(vector) == number5 assert vector.shape == (number5,) assert vector._sparse_array == {} assert vector.rank() == 1 n_dim_array = MutableDenseNDimArray(range(3**4), (3, 3, 3, 3,)) assert len(n_dim_array) == 3 * 3 * 3 * 3 assert n_dim_array.shape == (3, 3, 3, 3) assert n_dim_array.rank() == 4 raises(ValueError, lambda: n_dim_array[0, 0, 0, 3]) raises(ValueError, lambda: n_dim_array[3, 0, 0, 0]) raises(ValueError, lambda: n_dim_array[3**4]) array_shape = (3, 3, 3, 3) sparse_array = MutableSparseNDimArray.zeros(*array_shape) assert len(sparse_array._sparse_array) == 0 assert len(sparse_array) == 3 * 3 * 3 * 3 assert n_dim_array.shape == array_shape assert n_dim_array.rank() == 4 one_dim_array = MutableDenseNDimArray([2, 3, 1]) assert len(one_dim_array) == 3 assert one_dim_array.shape == (3,) assert one_dim_array.rank() == 1 assert one_dim_array.tolist() == [2, 3, 1] shape = (3, 3) array_with_many_args = MutableSparseNDimArray.zeros(*shape) assert len(array_with_many_args) == 3 * 3 assert array_with_many_args.shape == shape assert array_with_many_args[0, 0] == 0 assert array_with_many_args.rank() == 2
def test_sparse(): sparse_array = MutableSparseNDimArray([0, 0, 0, 1], (2, 2)) assert len(sparse_array) == 2 * 2 # dictionary where all data is, only non-zero entries are actually stored: assert len(sparse_array._sparse_array) == 1 assert sparse_array.tolist() == [[0, 0], [0, 1]] for i, j in zip(sparse_array, [[0, 0], [0, 1]]): assert i == MutableSparseNDimArray(j) sparse_array[0, 0] = 123 assert len(sparse_array._sparse_array) == 2 assert sparse_array[0, 0] == 123 assert sparse_array / 0 == MutableSparseNDimArray( [[S.ComplexInfinity, S.NaN], [S.NaN, S.ComplexInfinity]], (2, 2)) # when element in sparse array become zero it will disappear from # dictionary sparse_array[0, 0] = 0 assert len(sparse_array._sparse_array) == 1 sparse_array[1, 1] = 0 assert len(sparse_array._sparse_array) == 0 assert sparse_array[0, 0] == 0 # test for large scale sparse array # equality test a = MutableSparseNDimArray.zeros(100000, 200000) b = MutableSparseNDimArray.zeros(100000, 200000) assert a == b a[1, 1] = 1 b[1, 1] = 2 assert a != b # __mul__ and __rmul__ assert a * 3 == MutableSparseNDimArray({200001: 3}, (100000, 200000)) assert 3 * a == MutableSparseNDimArray({200001: 3}, (100000, 200000)) assert a * 0 == MutableSparseNDimArray({}, (100000, 200000)) assert 0 * a == MutableSparseNDimArray({}, (100000, 200000)) # __div__ assert a / 3 == MutableSparseNDimArray({200001: Rational(1, 3)}, (100000, 200000)) # __neg__ assert -a == MutableSparseNDimArray({200001: -1}, (100000, 200000))
def test_ndim_array_initiation(): arr_with_one_element = MutableDenseNDimArray([23]) assert len(arr_with_one_element) == 1 assert arr_with_one_element[0] == 23 assert arr_with_one_element.rank() == 1 raises(ValueError, lambda: arr_with_one_element[1]) arr_with_symbol_element = MutableDenseNDimArray([Symbol('x')]) assert len(arr_with_symbol_element) == 1 assert arr_with_symbol_element[0] == Symbol('x') assert arr_with_symbol_element.rank() == 1 number5 = 5 vector = MutableDenseNDimArray.zeros(number5) assert len(vector) == number5 assert vector.shape == (number5, ) assert vector.rank() == 1 raises(ValueError, lambda: arr_with_one_element[5]) vector = MutableSparseNDimArray.zeros(number5) assert len(vector) == number5 assert vector.shape == (number5, ) assert vector._sparse_array == {} assert vector.rank() == 1 n_dim_array = MutableDenseNDimArray(range(3**4), ( 3, 3, 3, 3, )) assert len(n_dim_array) == 3 * 3 * 3 * 3 assert n_dim_array.shape == (3, 3, 3, 3) assert n_dim_array.rank() == 4 raises(ValueError, lambda: n_dim_array[0, 0, 0, 3]) raises(ValueError, lambda: n_dim_array[3, 0, 0, 0]) raises(ValueError, lambda: n_dim_array[3**4]) array_shape = (3, 3, 3, 3) sparse_array = MutableSparseNDimArray.zeros(*array_shape) assert len(sparse_array._sparse_array) == 0 assert len(sparse_array) == 3 * 3 * 3 * 3 assert n_dim_array.shape == array_shape assert n_dim_array.rank() == 4 one_dim_array = MutableDenseNDimArray([2, 3, 1]) assert len(one_dim_array) == 3 assert one_dim_array.shape == (3, ) assert one_dim_array.rank() == 1 assert one_dim_array.tolist() == [2, 3, 1] shape = (3, 3) array_with_many_args = MutableSparseNDimArray.zeros(*shape) assert len(array_with_many_args) == 3 * 3 assert array_with_many_args.shape == shape assert array_with_many_args[0, 0] == 0 assert array_with_many_args.rank() == 2 shape = (long(3), long(3)) array_with_long_shape = MutableSparseNDimArray.zeros(*shape) assert len(array_with_long_shape) == 3 * 3 assert array_with_long_shape.shape == shape assert array_with_long_shape[long(0), long(0)] == 0 assert array_with_long_shape.rank() == 2 vector_with_long_shape = MutableDenseNDimArray(range(5), long(5)) assert len(vector_with_long_shape) == 5 assert vector_with_long_shape.shape == (long(5), ) assert vector_with_long_shape.rank() == 1 raises(ValueError, lambda: vector_with_long_shape[long(5)]) from sympy.abc import x for ArrayType in [MutableDenseNDimArray, MutableSparseNDimArray]: rank_zero_array = ArrayType(x) assert len(rank_zero_array) == 1 assert rank_zero_array.shape == () assert rank_zero_array.rank() == 0 assert rank_zero_array[()] == x raises(ValueError, lambda: rank_zero_array[0])