예제 #1
0
def test_igcd():
    assert igcd(0, 0) == 0
    assert igcd(0, 1) == 1
    assert igcd(1, 0) == 1
    assert igcd(0, 7) == 7
    assert igcd(7, 0) == 7
    assert igcd(7, 1) == 1
    assert igcd(1, 7) == 1
    assert igcd(-1, 0) == 1
    assert igcd(0, -1) == 1
    assert igcd(-1, -1) == 1
    assert igcd(-1, 7) == 1
    assert igcd(7, -1) == 1
    assert igcd(8, 2) == 2
    assert igcd(4, 8) == 4
    assert igcd(8, 16) == 8
    assert igcd(7, -3) == 1
    assert igcd(-7, 3) == 1
    assert igcd(-7, -3) == 1
    assert igcd(*[10, 20, 30]) == 10
    raises(TypeError, lambda: igcd())
    raises(TypeError, lambda: igcd(2))
    raises(ValueError, lambda: igcd(0, None))
    raises(ValueError, lambda: igcd(1, 2.2))
    for args in permutations((45.1, 1, 30)):
        raises(ValueError, lambda: igcd(*args))
    for args in permutations((1, 2, None)):
        raises(ValueError, lambda: igcd(*args))
예제 #2
0
def test_uniq():
    assert list(uniq(p.copy() for p in partitions(4))) == [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}]
    assert list(uniq(x % 2 for x in range(5))) == [0, 1]
    assert list(uniq("a")) == ["a"]
    assert list(uniq("ababc")) == list("abc")
    assert list(uniq([[1], [2, 1], [1]])) == [[1], [2, 1]]
    assert list(uniq(permutations(i for i in [[1], 2, 2]))) == [([1], 2, 2), (2, [1], 2), (2, 2, [1])]
    assert list(uniq([2, 3, 2, 4, [2], [1], [2], [3], [1]])) == [2, 3, 4, [2], [1], [3]]
예제 #3
0
def test_uniq():
    assert list(uniq(p.copy() for p in partitions(4))) == \
        [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}]
    assert list(uniq(x % 2 for x in range(5))) == [0, 1]
    assert list(uniq('a')) == ['a']
    assert list(uniq('ababc')) == list('abc')
    assert list(uniq([[1], [2, 1], [1]])) == [[1], [2, 1], [1]]
    assert list(uniq(permutations(i for i in [[1], 2, 2]))) == \
        [([1], 2, 2), (2, [1], 2), (2, 2, [1]), (2, [1], 2), (2, 2, [1])]
예제 #4
0
def test_uniq():
    assert list(uniq(p.copy() for p in partitions(4))) == \
        [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}]
    assert list(uniq(x % 2 for x in range(5))) == [0, 1]
    assert list(uniq('a')) == ['a']
    assert list(uniq('ababc')) == list('abc')
    assert list(uniq([[1], [2, 1], [1]])) == [[1], [2, 1], [1]]
    assert list(uniq(permutations(i for i in [[1], 2, 2]))) == \
        [([1], 2, 2), (2, [1], 2), (2, 2, [1]), (2, [1], 2), (2, 2, [1])]
예제 #5
0
def test_uniq():
    assert list(uniq(p for p in partitions(4))) == \
        [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}]
    assert list(uniq(x % 2 for x in range(5))) == [0, 1]
    assert list(uniq('a')) == ['a']
    assert list(uniq('ababc')) == list('abc')
    assert list(uniq([[1], [2, 1], [1]])) == [[1], [2, 1]]
    assert list(uniq(permutations(i for i in [[1], 2, 2]))) == \
        [([1], 2, 2), (2, [1], 2), (2, 2, [1])]
    assert list(uniq([2, 3, 2, 4, [2], [1], [2], [3], [1]])) == \
        [2, 3, 4, [2], [1], [3]]
    f = [1]
    raises(RuntimeError, lambda: [f.remove(i) for i in uniq(f)])
    f = [[1]]
    raises(RuntimeError, lambda: [f.remove(i) for i in uniq(f)])
예제 #6
0
def test_uniq():
    assert list(uniq(p.copy() for p in partitions(4))) == [
        {4: 1},
        {1: 1, 3: 1},
        {2: 2},
        {1: 2, 2: 1},
        {1: 4},
    ]
    assert list(uniq(x % 2 for x in range(5))) == [0, 1]
    assert list(uniq("a")) == ["a"]
    assert list(uniq("ababc")) == list("abc")
    assert list(uniq([[1], [2, 1], [1]])) == [[1], [2, 1]]
    assert list(uniq(permutations(i for i in [[1], 2, 2]))) == [
        ([1], 2, 2),
        (2, [1], 2),
        (2, 2, [1]),
    ]
    assert list(uniq([2, 3, 2, 4, [2], [1], [2], [3], [1]])) == [2, 3, 4, [2], [1], [3]]
예제 #7
0
def test_nC_nP_nT():
    from sympy.utilities.iterables import (multiset_permutations,
                                           multiset_combinations,
                                           multiset_partitions, partitions,
                                           subsets, permutations)
    from sympy.functions.combinatorial.numbers import (nP, nC, nT, stirling,
                                                       _multiset_histogram,
                                                       _AOP_product)
    from sympy.combinatorics.permutations import Permutation
    from sympy.core.numbers import oo
    from random import choice

    c = string.ascii_lowercase
    for i in range(100):
        s = ''.join(choice(c) for i in range(7))
        u = len(s) == len(set(s))
        try:
            tot = 0
            for i in range(8):
                check = nP(s, i)
                tot += check
                assert len(list(multiset_permutations(s, i))) == check
                if u:
                    assert nP(len(s), i) == check
            assert nP(s) == tot
        except AssertionError:
            print(s, i, 'failed perm test')
            raise ValueError()

    for i in range(100):
        s = ''.join(choice(c) for i in range(7))
        u = len(s) == len(set(s))
        try:
            tot = 0
            for i in range(8):
                check = nC(s, i)
                tot += check
                assert len(list(multiset_combinations(s, i))) == check
                if u:
                    assert nC(len(s), i) == check
            assert nC(s) == tot
            if u:
                assert nC(len(s)) == tot
        except AssertionError:
            print(s, i, 'failed combo test')
            raise ValueError()

    for i in range(1, 10):
        tot = 0
        for j in range(1, i + 2):
            check = nT(i, j)
            tot += check
            assert sum(1 for p in partitions(i, j, size=True)
                       if p[0] == j) == check
        assert nT(i) == tot

    for i in range(1, 10):
        tot = 0
        for j in range(1, i + 2):
            check = nT(range(i), j)
            tot += check
            assert len(list(multiset_partitions(list(range(i)), j))) == check
        assert nT(range(i)) == tot

    for i in range(100):
        s = ''.join(choice(c) for i in range(7))
        u = len(s) == len(set(s))
        try:
            tot = 0
            for i in range(1, 8):
                check = nT(s, i)
                tot += check
                assert len(list(multiset_partitions(s, i))) == check
                if u:
                    assert nT(range(len(s)), i) == check
            if u:
                assert nT(range(len(s))) == tot
            assert nT(s) == tot
        except AssertionError:
            print(s, i, 'failed partition test')
            raise ValueError()

    # tests for Stirling numbers of the first kind that are not tested in the
    # above
    assert [stirling(9, i, kind=1) for i in range(11)
            ] == [0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0]
    perms = list(permutations(range(4)))
    assert [
        sum(1 for p in perms if Permutation(p).cycles == i) for i in range(5)
    ] == [0, 6, 11, 6, 1] == [stirling(4, i, kind=1) for i in range(5)]
    # http://oeis.org/A008275
    assert [
        stirling(n, k, signed=1) for n in range(10) for k in range(1, n + 1)
    ] == [
        1, -1, 1, 2, -3, 1, -6, 11, -6, 1, 24, -50, 35, -10, 1, -120, 274,
        -225, 85, -15, 1, 720, -1764, 1624, -735, 175, -21, 1, -5040, 13068,
        -13132, 6769, -1960, 322, -28, 1, 40320, -109584, 118124, -67284,
        22449, -4536, 546, -36, 1
    ]
    # https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
    assert [stirling(n, k, kind=1) for n in range(10)
            for k in range(n + 1)] == [
                1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35,
                10, 1, 0, 120, 274, 225, 85, 15, 1, 0, 720, 1764, 1624, 735,
                175, 21, 1, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 0,
                40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1
            ]
    # https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
    assert [stirling(n, k, kind=2) for n in range(10)
            for k in range(n + 1)] == [
                1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10,
                1, 0, 1, 31, 90, 65, 15, 1, 0, 1, 63, 301, 350, 140, 21, 1, 0,
                1, 127, 966, 1701, 1050, 266, 28, 1, 0, 1, 255, 3025, 7770,
                6951, 2646, 462, 36, 1
            ]
    assert stirling(3, 4, kind=1) == stirling(3, 4, kind=1) == 0
    raises(ValueError, lambda: stirling(-2, 2))

    def delta(p):
        if len(p) == 1:
            return oo
        return min(abs(i[0] - i[1]) for i in subsets(p, 2))

    parts = multiset_partitions(range(5), 3)
    d = 2
    assert (sum(1
                for p in parts if all(delta(i) >= d
                                      for i in p)) == stirling(5, 3, d=d) == 7)

    # other coverage tests
    assert nC('abb', 2) == nC('aab', 2) == 2
    assert nP(3, 3, replacement=True) == nP('aabc', 3, replacement=True) == 27
    assert nP(3, 4) == 0
    assert nP('aabc', 5) == 0
    assert nC(4, 2, replacement=True) == nC('abcdd', 2, replacement=True) == \
        len(list(multiset_combinations('aabbccdd', 2))) == 10
    assert nC('abcdd') == sum(nC('abcdd', i) for i in range(6)) == 24
    assert nC(list('abcdd'), 4) == 4
    assert nT('aaaa') == nT(4) == len(list(partitions(4))) == 5
    assert nT('aaab') == len(list(multiset_partitions('aaab'))) == 7
    assert nC('aabb' * 3, 3) == 4  # aaa, bbb, abb, baa
    assert dict(_AOP_product((4, 1, 1, 1))) == {
        0: 1,
        1: 4,
        2: 7,
        3: 8,
        4: 8,
        5: 7,
        6: 4,
        7: 1
    }
    # the following was the first t that showed a problem in a previous form of
    # the function, so it's not as random as it may appear
    t = (3, 9, 4, 6, 6, 5, 5, 2, 10, 4)
    assert sum(_AOP_product(t)[i] for i in range(55)) == 58212000
    raises(ValueError, lambda: _multiset_histogram({1: 'a'}))
예제 #8
0
파일: test_point.py 프로젝트: hugovk/sympy
def test_point():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    x2 = Symbol('x2', real=True)
    y1 = Symbol('y1', real=True)
    y2 = Symbol('y2', real=True)
    half = S.Half
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)
    p5 = Point(0, 1)
    line = Line(Point(1, 0), slope=1)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point(y1 - x1, y2 - x2)
    assert -p2 == Point(-y1, -y2)
    raises(ValueError, lambda: Point(3, I))
    raises(ValueError, lambda: Point(2 * I, I))
    raises(ValueError, lambda: Point(3 + I, I))

    assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2)
    assert Point.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)

    # distance should be symmetric
    assert p1.distance(line) == line.distance(p1)
    assert p4.distance(line) == line.distance(p4)

    assert Point.taxicab_distance(p4, p3) == 2

    assert Point.canberra_distance(p4, p5) == 1

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)

    with warns(UserWarning):
        assert Point.is_collinear(p3, Point(p3, dim=4))
    assert p3.is_collinear()
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) is False
    assert Point.is_collinear(p3, p3, p4, p5) is False

    raises(TypeError, lambda: Point.is_collinear(line))
    raises(TypeError, lambda: p1_1.is_collinear(line))

    assert p3.intersection(Point(0, 0)) == [p3]
    assert p3.intersection(p4) == []

    x_pos = Symbol('x', real=True, positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    for pts in permutations((p2_1, p2_2, p2_3, p2_5)):
        assert Point.is_concyclic(*pts) is False
    assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False
    assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False

    assert p4.scale(2, 3) == Point(2, 3)
    assert p3.scale(2, 3) == p3

    assert p4.rotate(pi, Point(0.5, 0.5)) == p3
    assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
    assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)

    assert p4 * 5 == Point(5, 5)
    assert p4 / 5 == Point(0.2, 0.2)
    assert 5 * p4 == Point(5, 5)

    raises(ValueError, lambda: Point(0, 0) + 10)

    # Point differences should be simplified
    assert Point(x * (x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)

    a, b = S.Half, Rational(1, 3)
    assert Point(a, b).evalf(2) == \
        Point(a.n(2), b.n(2), evaluate=False)
    raises(ValueError, lambda: Point(1, 2) + 1)

    # test transformations
    p = Point(1, 0)
    assert p.rotate(pi / 2) == Point(0, 1)
    assert p.rotate(pi / 2, p) == p
    p = Point(1, 1)
    assert p.scale(2, 3) == Point(2, 3)
    assert p.translate(1, 2) == Point(2, 3)
    assert p.translate(1) == Point(2, 1)
    assert p.translate(y=1) == Point(1, 2)
    assert p.translate(*p.args) == Point(2, 2)

    # Check invalid input for transform
    raises(ValueError, lambda: p3.transform(p3))
    raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
예제 #9
0
def test_nC_nP_nT():
    from sympy.utilities.iterables import (
        multiset_permutations, multiset_combinations, multiset_partitions,
        partitions, subsets, permutations)
    from sympy.functions.combinatorial.numbers import (
        nP, nC, nT, stirling, _multiset_histogram, _AOP_product)
    from sympy.combinatorics.permutations import Permutation
    from sympy.core.numbers import oo
    from random import choice

    c = string.ascii_lowercase
    for i in range(100):
        s = ''.join(choice(c) for i in range(7))
        u = len(s) == len(set(s))
        try:
            tot = 0
            for i in range(8):
                check = nP(s, i)
                tot += check
                assert len(list(multiset_permutations(s, i))) == check
                if u:
                    assert nP(len(s), i) == check
            assert nP(s) == tot
        except AssertionError:
            print(s, i, 'failed perm test')
            raise ValueError()

    for i in range(100):
        s = ''.join(choice(c) for i in range(7))
        u = len(s) == len(set(s))
        try:
            tot = 0
            for i in range(8):
                check = nC(s, i)
                tot += check
                assert len(list(multiset_combinations(s, i))) == check
                if u:
                    assert nC(len(s), i) == check
            assert nC(s) == tot
            if u:
                assert nC(len(s)) == tot
        except AssertionError:
            print(s, i, 'failed combo test')
            raise ValueError()

    for i in range(1, 10):
        tot = 0
        for j in range(1, i + 2):
            check = nT(i, j)
            tot += check
            assert sum(1 for p in partitions(i, j, size=True) if p[0] == j) == check
        assert nT(i) == tot

    for i in range(1, 10):
        tot = 0
        for j in range(1, i + 2):
            check = nT(range(i), j)
            tot += check
            assert len(list(multiset_partitions(range(i), j))) == check
        assert nT(range(i)) == tot

    for i in range(100):
        s = ''.join(choice(c) for i in range(7))
        u = len(s) == len(set(s))
        try:
            tot = 0
            for i in range(1, 8):
                check = nT(s, i)
                tot += check
                assert len(list(multiset_partitions(s, i))) == check
                if u:
                    assert nT(range(len(s)), i) == check
            if u:
                assert nT(range(len(s))) == tot
            assert nT(s) == tot
        except AssertionError:
            print(s, i, 'failed partition test')
            raise ValueError()

    # tests for Stirling numbers of the first kind that are not tested in the
    # above
    assert [stirling(9, i, kind=1) for i in range(11)] == [
        0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0]
    perms = list(permutations(range(4)))
    assert [sum(1 for p in perms if Permutation(p).cycles == i)
            for i in range(5)] == [0, 6, 11, 6, 1] == [
            stirling(4, i, kind=1) for i in range(5)]
    # http://oeis.org/A008275
    assert [stirling(n, k, signed=1)
        for n in range(10) for k in range(1, n + 1)] == [
            1, -1,
            1, 2, -3,
            1, -6, 11, -6,
            1, 24, -50, 35, -10,
            1, -120, 274, -225, 85, -15,
            1, 720, -1764, 1624, -735, 175, -21,
            1, -5040, 13068, -13132, 6769, -1960, 322, -28,
            1, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1]
    # http://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
    assert  [stirling(n, k, kind=1)
        for n in range(10) for k in range(n+1)] == [
            1,
            0, 1,
            0, 1, 1,
            0, 2, 3, 1,
            0, 6, 11, 6, 1,
            0, 24, 50, 35, 10, 1,
            0, 120, 274, 225, 85, 15, 1,
            0, 720, 1764, 1624, 735, 175, 21, 1,
            0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1,
            0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1]
    # http://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
    assert [stirling(n, k, kind=2)
        for n in range(10) for k in range(n+1)] == [
            1,
            0, 1,
            0, 1, 1,
            0, 1, 3, 1,
            0, 1, 7, 6, 1,
            0, 1, 15, 25, 10, 1,
            0, 1, 31, 90, 65, 15, 1,
            0, 1, 63, 301, 350, 140, 21, 1,
            0, 1, 127, 966, 1701, 1050, 266, 28, 1,
            0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1]
    assert stirling(3, 4, kind=1) == stirling(3, 4, kind=1) == 0
    raises(ValueError, lambda: stirling(-2, 2))

    def delta(p):
        if len(p) == 1:
            return oo
        return min(abs(i[0] - i[1]) for i in subsets(p, 2))
    parts = multiset_partitions(range(5), 3)
    d = 2
    assert (sum(1 for p in parts if all(delta(i) >= d for i in p)) ==
            stirling(5, 3, d=d) == 7)

    # other coverage tests
    assert nC('abb', 2) == nC('aab', 2) == 2
    assert nP(3, 3, replacement=True) == nP('aabc', 3, replacement=True) == 27
    assert nP(3, 4) == 0
    assert nP('aabc', 5) == 0
    assert nC(4, 2, replacement=True) == nC('abcdd', 2, replacement=True) == \
        len(list(multiset_combinations('aabbccdd', 2))) == 10
    assert nC('abcdd') == sum(nC('abcdd', i) for i in range(6)) == 24
    assert nC(list('abcdd'), 4) == 4
    assert nT('aaaa') == nT(4) == len(list(partitions(4))) == 5
    assert nT('aaab') == len(list(multiset_partitions('aaab'))) == 7
    assert nC('aabb'*3, 3) == 4  # aaa, bbb, abb, baa
    assert dict(_AOP_product((4,1,1,1))) == {
        0: 1, 1: 4, 2: 7, 3: 8, 4: 8, 5: 7, 6: 4, 7: 1}
    # the following was the first t that showed a problem in a previous form of
    # the function, so it's not as random as it may appear
    t = (3, 9, 4, 6, 6, 5, 5, 2, 10, 4)
    assert sum(_AOP_product(t)[i] for i in range(55)) == 58212000
    raises(ValueError, lambda: _multiset_histogram({1:'a'}))
예제 #10
0
파일: test_point.py 프로젝트: chaffra/sympy
def test_point():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    x2 = Symbol('x2', real=True)
    y1 = Symbol('y1', real=True)
    y2 = Symbol('y2', real=True)
    half = Rational(1, 2)
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)
    p5 = Point(0, 1)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point(y1 - x1, y2 - x2)
    assert p4*5 == Point(5, 5)
    assert -p2 == Point(-y1, -y2)
    raises(ValueError, lambda: Point(3, I))
    raises(ValueError, lambda: Point(2*I, I))
    raises(ValueError, lambda: Point(3 + I, I))

    assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2)
    assert Point.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)

    assert Point.taxicab_distance(p4, p3) == 2

    assert Point.canberra_distance(p4, p5) == 1

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)

    with warnings.catch_warnings(record=True) as w:
        assert Point.is_collinear(p3, Point(p3, dim=4))
        assert len(w) == 1
    assert p3.is_collinear()
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) is False
    assert Point.is_collinear(p3, p3, p4, p5) is False
    line = Line(Point(1,0), slope = 1)
    raises(TypeError, lambda: Point.is_collinear(line))
    raises(TypeError, lambda: p1_1.is_collinear(line))

    assert p3.intersection(Point(0, 0)) == [p3]
    assert p3.intersection(p4) == []

    x_pos = Symbol('x', real=True, positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    for pts in permutations((p2_1, p2_2, p2_3, p2_5)):
        assert Point.is_concyclic(*pts) is False
    assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False
    assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False

    assert p4.scale(2, 3) == Point(2, 3)
    assert p3.scale(2, 3) == p3

    assert p4.rotate(pi, Point(0.5, 0.5)) == p3
    assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
    assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)

    assert p4 * 5 == Point(5, 5)
    assert p4 / 5 == Point(0.2, 0.2)

    raises(ValueError, lambda: Point(0, 0) + 10)

    # Point differences should be simplified
    assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)

    a, b = Rational(1, 2), Rational(1, 3)
    assert Point(a, b).evalf(2) == \
        Point(a.n(2), b.n(2))
    raises(ValueError, lambda: Point(1, 2) + 1)

    # test transformations
    p = Point(1, 0)
    assert p.rotate(pi/2) == Point(0, 1)
    assert p.rotate(pi/2, p) == p
    p = Point(1, 1)
    assert p.scale(2, 3) == Point(2, 3)
    assert p.translate(1, 2) == Point(2, 3)
    assert p.translate(1) == Point(2, 1)
    assert p.translate(y=1) == Point(1, 2)
    assert p.translate(*p.args) == Point(2, 2)

    # Check invalid input for transform
    raises(ValueError, lambda: p3.transform(p3))
    raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
예제 #11
0
def test_point():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    x2 = Symbol('x2', real=True)
    y1 = Symbol('y1', real=True)
    y2 = Symbol('y2', real=True)
    half = S.Half
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)
    p5 = Point(0, 1)
    line = Line(Point(1, 0), slope=1)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point(y1 - x1, y2 - x2)
    assert -p2 == Point(-y1, -y2)
    raises(TypeError, lambda: Point(1))
    raises(ValueError, lambda: Point([1]))
    raises(ValueError, lambda: Point(3, I))
    raises(ValueError, lambda: Point(2*I, I))
    raises(ValueError, lambda: Point(3 + I, I))

    assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2)
    assert Point.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2
    assert p1.origin == Point(0, 0)

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)
    raises(TypeError, lambda: Point.distance(p1, 0))
    raises(TypeError, lambda: Point.distance(p1, GeometryEntity()))

    # distance should be symmetric
    assert p1.distance(line) == line.distance(p1)
    assert p4.distance(line) == line.distance(p4)

    assert Point.taxicab_distance(p4, p3) == 2

    assert Point.canberra_distance(p4, p5) == 1
    raises(ValueError, lambda: Point.canberra_distance(p3, p3))

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)

    with warns(UserWarning, test_stacklevel=False):
        assert Point.is_collinear(p3, Point(p3, dim=4))
    assert p3.is_collinear()
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) is False
    assert Point.is_collinear(p3, p3, p4, p5) is False

    raises(TypeError, lambda: Point.is_collinear(line))
    raises(TypeError, lambda: p1_1.is_collinear(line))

    assert p3.intersection(Point(0, 0)) == [p3]
    assert p3.intersection(p4) == []
    assert p3.intersection(line) == []
    with warns(UserWarning, test_stacklevel=False):
        assert Point.intersection(Point(0, 0, 0), Point(0, 0)) == [Point(0, 0, 0)]

    x_pos = Symbol('x', positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    for pts in permutations((p2_1, p2_2, p2_3, p2_5)):
        assert Point.is_concyclic(*pts) is False
    assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False
    assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False
    assert Point.is_concyclic(Point(0, 0, 0, 0), Point(1, 0, 0, 0), Point(1, 1, 0, 0), Point(1, 1, 1, 0)) is False

    assert p1.is_scalar_multiple(p1)
    assert p1.is_scalar_multiple(2*p1)
    assert not p1.is_scalar_multiple(p2)
    assert Point.is_scalar_multiple(Point(1, 1), (-1, -1))
    assert Point.is_scalar_multiple(Point(0, 0), (0, -1))
    # test when is_scalar_multiple can't be determined
    raises(Undecidable, lambda: Point.is_scalar_multiple(Point(sympify("x1%y1"), sympify("x2%y2")), Point(0, 1)))

    assert Point(0, 1).orthogonal_direction == Point(1, 0)
    assert Point(1, 0).orthogonal_direction == Point(0, 1)

    assert p1.is_zero is None
    assert p3.is_zero
    assert p4.is_zero is False
    assert p1.is_nonzero is None
    assert p3.is_nonzero is False
    assert p4.is_nonzero

    assert p4.scale(2, 3) == Point(2, 3)
    assert p3.scale(2, 3) == p3

    assert p4.rotate(pi, Point(0.5, 0.5)) == p3
    assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
    assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)

    assert p4 * 5 == Point(5, 5)
    assert p4 / 5 == Point(0.2, 0.2)
    assert 5 * p4 == Point(5, 5)

    raises(ValueError, lambda: Point(0, 0) + 10)

    # Point differences should be simplified
    assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)

    a, b = S.Half, Rational(1, 3)
    assert Point(a, b).evalf(2) == \
        Point(a.n(2), b.n(2), evaluate=False)
    raises(ValueError, lambda: Point(1, 2) + 1)

    # test project
    assert Point.project((0, 1), (1, 0)) == Point(0, 0)
    assert Point.project((1, 1), (1, 0)) == Point(1, 0)
    raises(ValueError, lambda: Point.project(p1, Point(0, 0)))

    # test transformations
    p = Point(1, 0)
    assert p.rotate(pi/2) == Point(0, 1)
    assert p.rotate(pi/2, p) == p
    p = Point(1, 1)
    assert p.scale(2, 3) == Point(2, 3)
    assert p.translate(1, 2) == Point(2, 3)
    assert p.translate(1) == Point(2, 1)
    assert p.translate(y=1) == Point(1, 2)
    assert p.translate(*p.args) == Point(2, 2)

    # Check invalid input for transform
    raises(ValueError, lambda: p3.transform(p3))
    raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))

    # test __contains__
    assert 0 in Point(0, 0, 0, 0)
    assert 1 not in Point(0, 0, 0, 0)

    # test affine_rank
    assert Point.affine_rank() == -1