예제 #1
0
    def from_factored_str(cls, numerator, denomenator, factor_numerator):
        if factor_numerator:
            unpacked_numerator = cls.no_powers(factor_list(numerator))
        else:
            unpacked_numerator = [str(numerator.expand())]

        unpacked_denomenator = cls.no_powers(factor_list(denomenator))

        return cls(unpacked_numerator, unpacked_denomenator)
예제 #2
0
파일: algebra.py 프로젝트: srossd/Mathics
    def apply_list(self, expr, vars, evaluation):
        "FactorTermsList[expr_, vars_List]"
        if expr == Integer(0):
            return Expression("List", Integer(1), Integer(0))
        elif isinstance(expr, Number):
            return Expression("List", expr, Integer(1))

        for x in vars.leaves:
            if not (isinstance(x, Atom)):
                return evaluation.message("CoefficientList", "ivar", x)

        sympy_expr = expr.to_sympy()
        if sympy_expr is None:
            return Expression("List", Integer(1), expr)
        sympy_expr = sympy.together(sympy_expr)

        sympy_vars = [
            x.to_sympy() for x in vars.leaves
            if isinstance(x, Symbol) and sympy_expr.is_polynomial(x.to_sympy())
        ]

        result = []
        numer, denom = sympy_expr.as_numer_denom()
        try:
            if denom == 1:
                # Get numerical part
                num_coeff, num_polys = sympy.factor_list(sympy.Poly(numer))
                result.append(num_coeff)

                # Get factors are independent of sub list of variables
                if (sympy_vars and isinstance(expr, Expression) and any(
                        x.free_symbols.issubset(sympy_expr.free_symbols)
                        for x in sympy_vars)):
                    for i in reversed(range(len(sympy_vars))):
                        numer = sympy.factor(numer) / sympy.factor(num_coeff)
                        num_coeff, num_polys = sympy.factor_list(
                            sympy.Poly(numer),
                            *[x for x in sympy_vars[:(i + 1)]])
                        result.append(sympy.expand(num_coeff))

                # Last factor
                numer = sympy.factor(numer) / sympy.factor(num_coeff)
                result.append(sympy.expand(numer))
            else:
                num_coeff, num_polys = sympy.factor_list(sympy.Poly(numer))
                den_coeff, den_polys = sympy.factor_list(sympy.Poly(denom))
                result = [
                    num_coeff / den_coeff,
                    sympy.expand(
                        sympy.factor(numer) / num_coeff /
                        (sympy.factor(denom) / den_coeff)),
                ]
        except sympy.PolynomialError:  # MMA does not raise error for non poly
            result.append(sympy.expand(numer))
            # evaluation.message(self.get_name(), 'poly', expr)

        return Expression("List", *[from_sympy(i) for i in result])
예제 #3
0
    def get_lc(self):
        numerator_factors = factor_list(self.get_n_str())
        n_no_lc = self.no_powers(numerator_factors, include_lc=False)
        n_lc = int(numerator_factors[0])

        denomenator_factors = factor_list(self.get_d_str())
        d_no_lc = self.no_powers(denomenator_factors, include_lc=False)
        d_lc = int(denomenator_factors[0])

        return n_lc, n_no_lc, d_lc, d_no_lc
예제 #4
0
def check_solutions(eq):
    """
    Determines whether solutions returned by diophantine() satisfy the original
    equation. Hope to generalize this so we can remove functions like check_ternay_quadratic,
    check_solutions_normal, check_solutions()
    """
    s = diophantine(eq)

    terms = factor_list(eq)[1]

    var = list(eq.free_symbols)
    var.sort(key=default_sort_key)

    okay = True

    while len(s) and okay:
        solution = s.pop()

        okay = False

        for term in terms:
            subeq = term[0]

            if simplify(_mexpand(Subs(subeq, var, solution).doit())) == 0:
                okay = True
                break

    return okay
예제 #5
0
def check_solutions(eq):
    """
    Determines whether solutions returned by diophantine() satisfy the original
    equation. Hope to generalize this so we can remove functions like check_ternay_quadratic,
    check_solutions_normal, check_solutions()
    """
    s = diophantine(eq)

    terms = factor_list(eq)[1]

    var = list(eq.free_symbols)
    var.sort(key=default_sort_key)

    okay = True

    while len(s) and okay:
        solution = s.pop()

        okay = False

        for term in terms:
            subeq = term[0]

            if simplify(_mexpand(Subs(subeq, var, solution).doit())) == 0:
                okay = True
                break

    return okay
예제 #6
0
    def reduce_squarefree(self):
        eqs_sqf = []
        factored_eqs_sqf = {}
        flag = False
        
        for eq in self.eqs:
            # If factored before, just copy the factorization
            eq_expr = eq.expr
            if eq_expr in self.factored_eqs:
                eqs_sqf.append(eq)
                factored_eqs_sqf[eq_expr] = self.factored_eqs[eq_expr]
                continue
                        
            factors = sp.factor_list(eq, extension = True)
            factors = [ factor[0] for factor in factors[1] ]
            
            eq_sqf = to_poly(1, self.X_vars)
            for factor in factors:
                eq_sqf *= factor
            eq_sqf = to_poly(eq_sqf / eq_sqf.LC(order = 'grevlex'), self.X_vars)

            eqs_sqf.append(eq_sqf)
            factored_eqs_sqf[eq_sqf.expr] = factors
        
            if not flag and eq_sqf.LM() != eq.LM():
                flag = True
        
        self.eqs = eqs_sqf 
        self.factored_eqs = factored_eqs_sqf
        return flag
예제 #7
0
 def apply_list(self, expr, vars, evaluation):
     'FactorTermsList[expr_, vars_List]'
     if expr == Integer(0):
         return Expression('List', Integer(1), Integer(0))
     elif isinstance(expr, Number):
         return Expression('List', expr, Integer(1))
     
     for x in vars.leaves:
         if not(isinstance(x, Atom)):
             return evaluation.message('CoefficientList', 'ivar', x)
     
     sympy_expr = expr.to_sympy()
     if sympy_expr is None:
         return Expression('List', Integer(1), expr)
     sympy_expr = sympy.together(sympy_expr)
     
     sympy_vars = [x.to_sympy() for x in vars.leaves if isinstance(x, Symbol) and sympy_expr.is_polynomial(x.to_sympy())]
     
     result = []
     numer, denom = sympy_expr.as_numer_denom()
     try:
         from sympy import factor, factor_list, Poly
         if denom == 1:
             # Get numerical part
             num_coeff, num_polys = factor_list(Poly(numer))
             result.append(num_coeff)
             
             # Get factors are independent of sub list of variables
             if (sympy_vars and isinstance(expr, Expression) 
                 and any(x.free_symbols.issubset(sympy_expr.free_symbols) for x in sympy_vars)):
                 for i in reversed(range(len(sympy_vars))):
                     numer = factor(numer) / factor(num_coeff)
                     num_coeff, num_polys = factor_list(Poly(numer), *[x for x in sympy_vars[:(i+1)]])
                     result.append(sympy.expand(num_coeff))
             
             # Last factor
             numer = factor(numer) / factor(num_coeff)
             result.append(sympy.expand(numer))
         else:
             num_coeff, num_polys = factor_list(Poly(numer))
             den_coeff, den_polys = factor_list(Poly(denom))
             result = [num_coeff / den_coeff, sympy.expand(factor(numer)/num_coeff / (factor(denom)/den_coeff))]
     except sympy.PolynomialError: # MMA does not raise error for non poly
         result.append(sympy.expand(numer))
         # evaluation.message(self.get_name(), 'poly', expr)
     
     return Expression('List', *[from_sympy(i) for i in result])
예제 #8
0
def factorlist():
    try:
        print('factor list: {}'.format(request.json))
        ps = parse_expr(request.json['expression'], locals())
        return jsonify({'in': latex(ps), 'out': latex(factor_list(ps))})

    except Exception as e:
        print(e)
        return str(e), 400
예제 #9
0
def geratriz(basedir, gx, gy):
    count = 0
    limit = 1000000
    
    while count < limit:
        p = pij(gx, gy) + pij(gx, gy) - pij(gx, gy)

        if len(factor_list(p)[1]) == 1:
            dirname = f"{basedir}/gx={gx}/gy={gy}"
            filename = f"{dirname}/{hash(p)}"
            pathlib.Path(dirname).mkdir(parents=True, exist_ok=True)
            np.save(filename, np.array([p]))
            count =  count + 1
예제 #10
0
def get_max_even_divisor(polynomial):
    """
    :param polynomial: sympy polynomial
    :return: leading coefficient of poly, max polynomial divisor of poly that's even power, remainder of poly / max_divisor
    """
    _factors = factor_list(polynomial)
    _coeff_leading = _factors[0]
    _factors_non_constant = _factors[1]
    _factors_max_even_divisor = [(_p, 2 * (n // 2)) for (_p, n) in _factors_non_constant]
    _factors_remainder = [(_p, n - 2 * (n // 2)) for (_p, n) in _factors_non_constant]
    _max_even_divisor = np.prod([_p.as_expr() ** n for (_p, n) in _factors_max_even_divisor])
    _remainder = np.prod([_p.as_expr() ** n for (_p, n) in _factors_remainder])
    return _coeff_leading, _max_even_divisor, _remainder
예제 #11
0
def eqn_to_mul_add(eqn):

    atoms = {s: 0 for s in eqn.atoms() if s.is_symbol}
    if not atoms:
        return eqn

    coeff, factors = sp.factor_list(eqn)

    if len(factors) > 1:
        for factor, power in factors:
            coeff *= eqn_to_mul_add(factor)
        return coeff
    elif not factors:
        return coeff

    this_factor, power = factors[0]
    _, terms = this_factor.as_coeff_add()

    for term in terms:
        for atom in term.atoms():
            if atom in atoms:
                atoms[atom] += 1

    root, _ = max(atoms.items(), key=lambda x: x[1])

    b = this_factor.coeff(root, 0)
    a = 0

    for i in range(10):
        a += this_factor.coeff(root, i + 1) * (root**i)

    a = eqn_to_mul_add(a)
    b = eqn_to_mul_add(b)

    result = coeff
    for i in range(power):
        result *= (a * root + b)
    return result
예제 #12
0
def divides(a,b):
    x = b/a
    print(re(x))
    real = factor_list(re(x)*Number(1))[0]
    imaginary = factor_list(im(x)*Number(1))[0]
    return real.is_Integer and imaginary.is_Integer
예제 #13
0
 def sympy_factor(self, p):
     sympy_p = self.sympy_from_upolynomial(p)
     if (p.ring().modulus() is None):
         return sympy.factor_list(sympy_p)
     else:
         return sympy.factor_list(sympy_p, modulus=p.ring().modulus())
예제 #14
0
파일: util.py 프로젝트: dselsam/nnsos
def compute_ifactors(poly):
    for (ipoly, _) in sp.factor_list(poly)[1]:
        yield ipoly
예제 #15
0
def integral_basis(f,x,y):
    """
    Compute the integral basis {b1, ..., bg} of the algebraic function
    field C[x,y] / (f).
    """
    # If the curve is not monic then map y |-> y/lc(x) where lc(x)
    # is the leading coefficient of f
    T  = sympy.Dummy('T')
    d  = sympy.degree(f,y)
    lc = sympy.LC(f,y)
    if x in lc:
        f = sympy.ratsimp( f.subs(y,y/lc)*lc**(d-1) )
    else:
        f = f/lc
        lc = 1

    #
    # Compute df
    #
    p = sympy.Poly(f,[x,y])
    n = p.degree(y)
    res = sympy.resultant(p,p.diff(y),y)
    factors = sympy.factor_list(res)[1]
    df = [k for k,deg in factors if (deg > 1) and (sympy.LC(k) == 1)]

    #
    # Compute series truncations at appropriate x points
    #
    alpha = []
    r = []
    for l in range(len(df)):
        k = df[l]
        alphak = sympy.roots(k).keys()[0]
        rk = compute_series_truncations(f,x,y,alphak,T)
        alpha.append(alphak)
        r.append(rk)

        
    #
    # Main Loop
    #
    a = [sympy.Dummy('a%d'%k) for k in xrange(n)]
    b = [1]
    for d in range(1,n):
        bd = y*b[-1]

        for l in range(len(df)):
            k = df[l]
            alphak = alpha[l]
            rk = r[l]

            found_something = True            
            while found_something:
                # construct system of equations consisting of the coefficients
                # of negative powers of (x-alphak) in the substitutions
                # A(r_{k,1}),...,A(r_{k,n})
                A  = (sum(ak*bk for ak,bk in zip(a,b)) + bd) / (x - alphak)

                coeffs = []
                for rki in rk:
                    # substitute and extract coefficients
                    A_rki  = A.subs(y,rki)
                    coeffs.extend(_negative_power_coeffs(A_rki, x, alphak))
               
                # solve the coefficient equations for a0,...,a_{d-1}
                coeffs = [coeff.as_numer_denom()[0] for coeff in coeffs]
                sols = sympy.solve_poly_system(coeffs, a[:d])
                if sols is None or sols == []:
                    found_something = False
                else:
                    sol  = sols[0]
                    bdm1 = sum( sol[i]*bk for i,bk in zip(range(d),b) )
                    bd   = (bdm1 + bd) / k
                        
        # bd found. Append to list of basis elements
        b.append( bd )

    # finally, convert back to singularized curve if necessary
    for i in xrange(1,len(b)):
        b[i] = b[i].subs(y,y*lc).ratsimp()

    return b
예제 #16
0
파일: sympy.py 프로젝트: m-yosefpor/doc
f= sym.lambdify(x,sym1,'numpy')
a=np.arange(1,10,0.01)
f(a) # return the np.ndarray # it's fast
Eq(f,2) or f-2

from  sympy.utilities.autowrap import ufuncify
g = ufuncify([x],f)


ufuncify is better than lambdify for larger than 1 s; do to its compile overhead
############################################################
# 1.1
sym1.simplify()
sym1.expand()
sym1.factor()
sym.factor_list(expr)
sym1.collect(x)
sym1.coeff(x,2)
sym1.cancel()
sym1.apart() # tajziye kasr ha
# 1.2
sym1.trigsimp()
sym1.rewrite(sin) # tan(x).rewrite(sin) , foctorial(x).rewrite(gamma)
######
# 2.1
sym1.series(x,x0,n)
sym1.removeO()
###########################################################
# 3.1 # 3.2
sym.solveset(f,x,domain=sym.S.Complexes) 
sym.solveset(f<0,domain=sym.S.Reals)
예제 #17
0
 def sympy_factor(self, p):
     sympy_p = self.sympy_from_upolynomial(p)
     if (p.ring().modulus() is None):
         return sympy.factor_list(sympy_p)
     else:
         return sympy.factor_list(sympy_p, modulus=p.ring().modulus())