def test_fps__inverse(): f1, f2, f3 = fps(sin(x)), fps(exp(x)), fps(cos(x)) raises(ValueError, lambda: f1.inverse(x)) finv = f2.inverse(x) assert isinstance(finv, FormalPowerSeriesInverse) assert isinstance(finv.ffps, FormalPowerSeries) raises(ValueError, lambda: finv.gfps) assert finv.f == exp(x) assert finv.function == exp(-x) assert finv._eval_terms(5) == 1 - x + x**2/2 - x**3/6 + x**4/24 assert finv.truncate() == 1 - x + x**2/2 - x**3/6 + x**4/24 - x**5/120 + O(x**6) assert finv.truncate(5) == 1 - x + x**2/2 - x**3/6 + x**4/24 + O(x**5) raises(NotImplementedError, lambda: finv._eval_term(5)) raises(ValueError, lambda: finv.g) raises(NotImplementedError, lambda: finv.infinite) raises(NotImplementedError, lambda: finv._eval_derivative(x)) raises(NotImplementedError, lambda: finv.integrate(x)) assert f2.inverse(x).truncate(8) == \ 1 - x + x**2/2 - x**3/6 + x**4/24 - x**5/120 + x**6/720 - x**7/5040 + O(x**8) assert f3.inverse(x).truncate() == 1 + x**2/2 + 5*x**4/24 + O(x**6) assert f3.inverse(x).truncate(8) == 1 + x**2/2 + 5*x**4/24 + 61*x**6/720 + O(x**8)
def test_fps(): assert fps(1) == 1 assert fps(2, x) == 2 assert fps(2, x, dir='+') == 2 assert fps(2, x, dir='-') == 2 assert fps(x**2 + x + 1) == x**2 + x + 1 assert fps(1 / x + 1 / x**2) == 1 / x + 1 / x**2 assert fps(log(1 + x), hyper=False, rational=False) == log(1 + x) f = fps(log(1 + x)) assert isinstance(f, FormalPowerSeries) assert f.function == log(1 + x) assert f.subs(x, y) == f assert f[:5] == [0, x, -x**2 / 2, x**3 / 3, -x**4 / 4] assert f.as_leading_term(x) == x assert f.polynomial(6) == x - x**2 / 2 + x**3 / 3 - x**4 / 4 + x**5 / 5 k = f.ak.variables[0] assert f.infinite == Sum((-(-1)**(-k) * x**k) / k, (k, 1, oo)) ft, s = f.truncate(n=None), f[:5] for i, t in enumerate(ft): if i == 5: break assert s[i] == t f = sin(x).fps(x) assert isinstance(f, FormalPowerSeries) assert f.truncate() == x - x**3 / 6 + x**5 / 120 + O(x**6) raises(NotImplementedError, lambda: fps(y * x)) raises(ValueError, lambda: fps(x, dir=0))
def test_fps(): assert fps(1) == 1 assert fps(2, x) == 2 assert fps(2, x, dir="+") == 2 assert fps(2, x, dir="-") == 2 assert fps(x ** 2 + x + 1) == x ** 2 + x + 1 assert fps(1 / x + 1 / x ** 2) == 1 / x + 1 / x ** 2 assert fps(log(1 + x), hyper=False, rational=False) == log(1 + x) f = fps(log(1 + x)) assert isinstance(f, FormalPowerSeries) assert f.function == log(1 + x) assert f.subs(x, y) == f assert f[:5] == [0, x, -x ** 2 / 2, x ** 3 / 3, -x ** 4 / 4] assert f.as_leading_term(x) == x assert f.polynomial(6) == x - x ** 2 / 2 + x ** 3 / 3 - x ** 4 / 4 + x ** 5 / 5 k = f.ak.variables[0] assert f.infinite == Sum((-(-1) ** (-k) * x ** k) / k, (k, 1, oo)) ft, s = f.truncate(n=None), f[:5] for i, t in enumerate(ft): if i == 5: break assert s[i] == t f = sin(x).fps(x) assert isinstance(f, FormalPowerSeries) assert f.truncate() == x - x ** 3 / 6 + x ** 5 / 120 + O(x ** 6) raises(NotImplementedError, lambda: fps(y * x)) raises(ValueError, lambda: fps(x, dir=0))
def test_fps__fractional(): f = sin(sqrt(x)) / x assert fps(f, x).truncate() == \ (1/sqrt(x) - sqrt(x)/6 + x**Rational(3, 2)/120 - x**Rational(5, 2)/5040 + x**Rational(7, 2)/362880 - x**Rational(9, 2)/39916800 + x**Rational(11, 2)/6227020800 + O(x**6)) f = sin(sqrt(x)) * x assert fps(f, x).truncate() == \ (x**Rational(3, 2) - x**Rational(5, 2)/6 + x**Rational(7, 2)/120 - x**Rational(9, 2)/5040 + x**Rational(11, 2)/362880 + O(x**6)) f = atan(sqrt(x)) / x**2 assert fps(f, x).truncate() == \ (x**Rational(-3, 2) - x**Rational(-1, 2)/3 + x**Rational(1, 2)/5 - x**Rational(3, 2)/7 + x**Rational(5, 2)/9 - x**Rational(7, 2)/11 + x**Rational(9, 2)/13 - x**Rational(11, 2)/15 + O(x**6)) f = exp(sqrt(x)) assert fps(f, x).truncate().expand() == \ (1 + x/2 + x**2/24 + x**3/720 + x**4/40320 + x**5/3628800 + sqrt(x) + x**Rational(3, 2)/6 + x**Rational(5, 2)/120 + x**Rational(7, 2)/5040 + x**Rational(9, 2)/362880 + x**Rational(11, 2)/39916800 + O(x**6)) f = exp(sqrt(x))*x assert fps(f, x).truncate().expand() == \ (x + x**2/2 + x**3/24 + x**4/720 + x**5/40320 + x**Rational(3, 2) + x**Rational(5, 2)/6 + x**Rational(7, 2)/120 + x**Rational(9, 2)/5040 + x**Rational(11, 2)/362880 + O(x**6))
def test_fps__fractional(): f = sin(sqrt(x)) / x assert fps(f, x).truncate() == \ (1/sqrt(x) - sqrt(x)/6 + x**Rational(3, 2)/120 - x**Rational(5, 2)/5040 + x**Rational(7, 2)/362880 - x**Rational(9, 2)/39916800 + x**Rational(11, 2)/6227020800 + O(x**6)) f = sin(sqrt(x)) * x assert fps(f, x).truncate() == \ (x**Rational(3, 2) - x**Rational(5, 2)/6 + x**Rational(7, 2)/120 - x**Rational(9, 2)/5040 + x**Rational(11, 2)/362880 + O(x**6)) f = atan(sqrt(x)) / x**2 assert fps(f, x).truncate() == \ (x**Rational(-3, 2) - x**Rational(-1, 2)/3 + x**Rational(1, 2)/5 - x**Rational(3, 2)/7 + x**Rational(5, 2)/9 - x**Rational(7, 2)/11 + x**Rational(9, 2)/13 - x**Rational(11, 2)/15 + O(x**6)) f = exp(sqrt(x)) assert fps(f, x).truncate().expand() == \ (1 + x/2 + x**2/24 + x**3/720 + x**4/40320 + x**5/3628800 + sqrt(x) + x**Rational(3, 2)/6 + x**Rational(5, 2)/120 + x**Rational(7, 2)/5040 + x**Rational(9, 2)/362880 + x**Rational(11, 2)/39916800 + O(x**6)) f = exp(sqrt(x)) * x assert fps(f, x).truncate().expand() == \ (x + x**2/2 + x**3/24 + x**4/720 + x**5/40320 + x**Rational(3, 2) + x**Rational(5, 2)/6 + x**Rational(7, 2)/120 + x**Rational(9, 2)/5040 + x**Rational(11, 2)/362880 + O(x**6))
def test_fps__logarithmic_singularity(): f = log(1 + 1 / x) assert fps( f, x) != -log(x) + x - x**2 / 2 + x**3 / 3 - x**4 / 4 + x**5 / 5 + O(x**6) assert fps( f, x, rational=False ) != -log(x) + x - x**2 / 2 + x**3 / 3 - x**4 / 4 + x**5 / 5 + O(x**6)
def test_fps__Add_expr(): f = x * atan(x) - log(1 + x ** 2) / 2 assert fps(f, x).truncate() == x ** 2 / 2 - x ** 4 / 12 + O(x ** 6) f = sin(x) + cos(x) - exp(x) + log(1 + x) assert fps(f, x).truncate() == x - 3 * x ** 2 / 2 - x ** 4 / 4 + x ** 5 / 5 + O(x ** 6) f = 1 / x + sin(x) assert fps(f, x).truncate() == 1 / x + x - x ** 3 / 6 + x ** 5 / 120 + O(x ** 6) f = sin(x) - cos(x) + 1 / (x - 1) assert fps(f, x).truncate() == -2 - x ** 2 / 2 - 7 * x ** 3 / 6 - 25 * x ** 4 / 24 - 119 * x ** 5 / 120 + O(x ** 6)
def test_fps__Add_expr(): f = x*atan(x) - log(1 + x**2) / 2 assert fps(f, x).truncate() == x**2/2 - x**4/12 + O(x**6) f = sin(x) + cos(x) - exp(x) + log(1 + x) assert fps(f, x).truncate() == x - 3*x**2/2 - x**4/4 + x**5/5 + O(x**6) f = 1/x + sin(x) assert fps(f, x).truncate() == 1/x + x - x**3/6 + x**5/120 + O(x**6) f = sin(x) - cos(x) + 1/(x - 1) assert fps(f, x).truncate() == \ -2 - x**2/2 - 7*x**3/6 - 25*x**4/24 - 119*x**5/120 + O(x**6)
def test_fps_shift(): f = x ** -5 * sin(x) assert fps(f, x).truncate() == 1 / x ** 4 - 1 / (6 * x ** 2) + S.One / 120 - x ** 2 / 5040 + x ** 4 / 362880 + O( x ** 6 ) f = x ** 2 * atan(x) assert fps(f, x, rational=False).truncate() == x ** 3 - x ** 5 / 3 + O(x ** 6) f = cos(sqrt(x)) * x assert fps(f, x).truncate() == x - x ** 2 / 2 + x ** 3 / 24 - x ** 4 / 720 + x ** 5 / 40320 + O(x ** 6) f = x ** 2 * cos(sqrt(x)) assert fps(f, x).truncate() == x ** 2 - x ** 3 / 2 + x ** 4 / 24 - x ** 5 / 720 + O(x ** 6)
def test_fps__inverse(): f1, f2, f3 = fps(sin(x)), fps(exp(x)), fps(cos(x)) raises(ValueError, lambda: f1.inverse(x)) raises(ValueError, lambda: f1.inverse(x, n=8)) assert f2.inverse( x) == 1 - x + x**2 / 2 - x**3 / 6 + x**4 / 24 - x**5 / 120 + O(x**6) assert f2.inverse(x, n=8) == \ 1 - x + x**2/2 - x**3/6 + x**4/24 - x**5/120 + x**6/720 - x**7/5040 + O(x**8) assert f3.inverse(x) == 1 + x**2 / 2 + 5 * x**4 / 24 + O(x**6) assert f3.inverse( x, n=8) == 1 + x**2 / 2 + 5 * x**4 / 24 + 61 * x**6 / 720 + O(x**8)
def test_fps_shift(): f = x**-5 * sin(x) assert fps(f, x).truncate() == 1 / x**4 - 1 / (6 * x**2) + Rational( 1, 120) - x**2 / 5040 + x**4 / 362880 + O(x**6) f = x**2 * atan(x) assert fps(f, x, rational=False).truncate() == x**3 - x**5 / 3 + O(x**6) f = cos(sqrt(x)) * x assert fps(f, x).truncate( ) == x - x**2 / 2 + x**3 / 24 - x**4 / 720 + x**5 / 40320 + O(x**6) f = x**2 * cos(sqrt(x)) assert fps( f, x).truncate() == x**2 - x**3 / 2 + x**4 / 24 - x**5 / 720 + O(x**6)
def plotAM(I): xs = [] ys = [] x = Symbol('x') for j in np.arange(-15, 15, 0.1): xs.append(x) series = fps(myfx(x, I)).truncate(3) print(series)
def test_fps__product(): f1, f2, f3 = fps(sin(x)), fps(exp(x)), fps(cos(x)) raises(ValueError, lambda: f1.product(exp(x), x)) raises(ValueError, lambda: f1.product(fps(exp(x), dir=-1), x, 4)) raises(ValueError, lambda: f1.product(fps(exp(x), x0=1), x, 4)) raises(ValueError, lambda: f1.product(fps(exp(y)), x, 4)) fprod = f1.product(f2, x) assert isinstance(fprod, FormalPowerSeriesProduct) assert isinstance(fprod.ffps, FormalPowerSeries) assert isinstance(fprod.gfps, FormalPowerSeries) assert fprod.f == sin(x) assert fprod.g == exp(x) assert fprod.function == sin(x) * exp(x) assert fprod._eval_terms(4) == x + x**2 + x**3/3 assert fprod.truncate(4) == x + x**2 + x**3/3 + O(x**4) assert fprod.polynomial(4) == x + x**2 + x**3/3 raises(NotImplementedError, lambda: fprod._eval_term(5)) raises(NotImplementedError, lambda: fprod.infinite) raises(NotImplementedError, lambda: fprod._eval_derivative(x)) raises(NotImplementedError, lambda: fprod.integrate(x)) assert f1.product(f3, x)._eval_terms(4) == x - 2*x**3/3 assert f1.product(f3, x).truncate(4) == x - 2*x**3/3 + O(x**4)
def test_fps__symbolic(): f = x**n*sin(x**2) assert fps(f, x).truncate(8) == x**2*x**n - x**6*x**n/6 + O(x**(n + 8), x) f = x**(n - 2)*cos(x) assert fps(f, x).truncate() == \ (x**n*(-S(1)/2 + x**(-2)) + x**2*x**n/24 - x**4*x**n/720 + O(x**(n + 6), x)) f = x**n*log(1 + x) fp = fps(f, x) k = fp.ak.variables[0] assert fp.infinite == \ Sum((-(-1)**(-k)*x**k*x**n)/k, (k, 1, oo)) f = x**(n - 2)*sin(x) + x**n*exp(x) assert fps(f, x).truncate() == \ (x**n*(1 + 1/x) + 5*x*x**n/6 + x**2*x**n/2 + 7*x**3*x**n/40 + x**4*x**n/24 + 41*x**5*x**n/5040 + O(x**(n + 6), x)) f = (x - 2)**n*log(1 + x) assert fps(f, x, 2).truncate() == \ ((x - 2)**n*log(3) - (x - 2)**2*(x - 2)**n/18 + (x - 2)**3*(x - 2)**n/81 - (x - 2)**4*(x - 2)**n/324 + (x - 2)**5*(x - 2)**n/1215 + (x/3 - S(2)/3)*(x - 2)**n + O((x - 2)**(n + 6), (x, 2))) f = x**n*atan(x) assert fps(f, x, oo).truncate() == \ (-x**n/(5*x**5) + x**n/(3*x**3) + x**n*(pi/2 - 1/x) + O(x**(n - 6), (x, oo)))
def test_fps__symbolic(): f = x**n * sin(x**2) assert fps( f, x).truncate(8) == x**2 * x**n - x**6 * x**n / 6 + O(x**(n + 8), x) f = x**(n - 2) * cos(x) assert fps(f, x).truncate() == \ (x**n*(-S(1)/2 + x**(-2)) + x**2*x**n/24 - x**4*x**n/720 + O(x**(n + 6), x)) f = x**n * log(1 + x) fp = fps(f, x) k = fp.ak.variables[0] assert fp.infinite == \ Sum((-(-1)**(-k)*x**k*x**n)/k, (k, 1, oo)) f = x**(n - 2) * sin(x) + x**n * exp(x) assert fps(f, x).truncate() == \ (x**n*(1 + 1/x) + 5*x*x**n/6 + x**2*x**n/2 + 7*x**3*x**n/40 + x**4*x**n/24 + 41*x**5*x**n/5040 + O(x**(n + 6), x)) f = (x - 2)**n * log(1 + x) assert fps(f, x, 2).truncate() == \ ((x - 2)**n*log(3) - (x - 2)**2*(x - 2)**n/18 + (x - 2)**3*(x - 2)**n/81 - (x - 2)**4*(x - 2)**n/324 + (x - 2)**5*(x - 2)**n/1215 + (x/3 - S(2)/3)*(x - 2)**n + O((x - 2)**(n + 6), (x, 2))) f = x**n * atan(x) assert fps(f, x, oo).truncate() == \ (-x**n/(5*x**5) + x**n/(3*x**3) + x**n*(pi/2 - 1/x) + O(x**(n - 6), (x, oo)))
def test_fps__convolution(): f1, f2, f3 = fps(sin(x)), fps(exp(x)), fps(cos(x)) raises(ValueError, lambda: f1.product(exp(x), x)) raises(ValueError, lambda: f1.product(fps(exp(x), dir=-1), x, 4)) raises(ValueError, lambda: f1.product(fps(exp(x), x0=1), x, 4)) raises(ValueError, lambda: f1.product(fps(exp(y)), x, 4)) assert f1.product(f2, x, 3) == x + x**2 + O(x**3) assert f1.product(f2, x, 4) == x + x**2 + x**3 / 3 + O(x**4) assert f1.product(f3, x, 4) == x - 2 * x**3 / 3 + O(x**4)
def test_fps_symbolic(): f = x**n * sin(x**2) assert fps( f, x).truncate(8) == x**(n + 2) - x**(n + 6) / 6 + O(x**(n + 8), x) f = x**n * log(1 + x) fp = fps(f, x) k = fp.ak.variables[0] assert fp.infinite == Sum((-((-1)**(-k)) * x**(k + n)) / k, (k, 1, oo)) f = (x - 2)**n * log(1 + x) assert fps( f, x, 2).truncate() == ((x - 2)**n * log(3) + (x - 2)**(n + 1) / 3 - (x - 2)**(n + 2) / 18 + (x - 2)**(n + 3) / 81 - (x - 2)**(n + 4) / 324 + (x - 2)**(n + 5) / 1215 + O( (x - 2)**(n + 6), (x, 2))) f = x**(n - 2) * cos(x) assert fps(f, x).truncate() == (x**(n - 2) - x**n / 2 + x**(n + 2) / 24 - x**(n + 4) / 720 + O(x**(n + 6), x)) f = x**(n - 2) * sin(x) + x**n * exp(x) assert fps(f, x).truncate() == (x**(n - 1) + x**n + 5 * x**(n + 1) / 6 + x**(n + 2) / 2 + 7 * x**(n + 3) / 40 + x**(n + 4) / 24 + 41 * x**(n + 5) / 5040 + O(x**(n + 6), x)) f = x**n * atan(x) assert fps(f, x, oo).truncate() == (-(x**(n - 5)) / 5 + x**(n - 3) / 3 + x**n * (pi / 2 - 1 / x) + O( (1 / x)**(-n) / x**6, (x, oo))) f = x**(n / 2) * cos(x) assert fps( f, x).truncate() == x**(n / 2) - x**(n / 2 + 2) / 2 + x**(n / 2 + 4) / 24 + O( x**(n / 2 + 6), x) f = x**(n + m) * sin(x) assert fps(f, x).truncate() == x**( m + n + 1) - x**(m + n + 3) / 6 + x**(m + n + 5) / 120 + O( x**(m + n + 6), x)
def test_fps__asymptotic(): f = exp(x) assert fps(f, x, oo) == f assert fps(f, x, -oo).truncate() == O(1 / x**6, (x, oo)) f = erf(x) assert fps(f, x, oo).truncate() == 1 + O(1 / x**6, (x, oo)) assert fps(f, x, -oo).truncate() == -1 + O(1 / x**6, (x, oo)) f = atan(x) assert fps(f, x, oo, full=True).truncate() == \ -1/(5*x**5) + 1/(3*x**3) - 1/x + pi/2 + O(1/x**6, (x, oo)) assert fps(f, x, -oo, full=True).truncate() == \ -1/(5*x**5) + 1/(3*x**3) - 1/x - pi/2 + O(1/x**6, (x, oo)) f = log(1 + x) assert fps(f, x, oo) != \ (-1/(5*x**5) - 1/(4*x**4) + 1/(3*x**3) - 1/(2*x**2) + 1/x - log(1/x) + O(1/x**6, (x, oo))) assert fps(f, x, -oo) != \ (-1/(5*x**5) - 1/(4*x**4) + 1/(3*x**3) - 1/(2*x**2) + 1/x + I*pi - log(-1/x) + O(1/x**6, (x, oo)))
def test_fps__asymptotic(): f = exp(x) assert fps(f, x, oo) == f assert fps(f, x, -oo).truncate() == O(1/x**6, (x, oo)) f = erf(x) assert fps(f, x, oo).truncate() == 1 + O(1/x**6, (x, oo)) assert fps(f, x, -oo).truncate() == -1 + O(1/x**6, (x, oo)) f = atan(x) assert fps(f, x, oo, full=True).truncate() == \ -1/(5*x**5) + 1/(3*x**3) - 1/x + pi/2 + O(1/x**6, (x, oo)) assert fps(f, x, -oo, full=True).truncate() == \ -1/(5*x**5) + 1/(3*x**3) - 1/x - pi/2 + O(1/x**6, (x, oo)) f = log(1 + x) assert fps(f, x, oo) != \ (-1/(5*x**5) - 1/(4*x**4) + 1/(3*x**3) - 1/(2*x**2) + 1/x - log(1/x) + O(1/x**6, (x, oo))) assert fps(f, x, -oo) != \ (-1/(5*x**5) - 1/(4*x**4) + 1/(3*x**3) - 1/(2*x**2) + 1/x + I*pi - log(-1/x) + O(1/x**6, (x, oo)))
def test_fps__composition(): f1, f2, f3 = fps(exp(x)), fps(sin(x)), fps(cos(x)) raises(ValueError, lambda: f1.compose(sin(x), x)) raises(ValueError, lambda: f1.compose(fps(sin(x), dir=-1), x, 4)) raises(ValueError, lambda: f1.compose(fps(sin(x), x0=1), x, 4)) raises(ValueError, lambda: f1.compose(fps(sin(y)), x, 4)) raises(ValueError, lambda: f1.compose(f3, x)) raises(ValueError, lambda: f2.compose(f3, x)) assert f1.compose(f2, x) == 1 + x + x**2 / 2 - x**4 / 8 - x**5 / 15 + O(x**6) assert f1.compose(f2, x, n=4) == 1 + x + x**2 / 2 + O(x**4) assert f1.compose(f2, x, n=8) == \ 1 + x + x**2/2 - x**4/8 - x**5/15 - x**6/240 + x**7/90 + O(x**8) assert f2.compose(f2, x, n=4) == x - x**3 / 3 + O(x**4) assert f2.compose( f2, x, n=8) == x - x**3 / 3 + x**5 / 10 - 8 * x**7 / 315 + O(x**8)
def test_fps__compose(): f1, f2, f3 = fps(exp(x)), fps(sin(x)), fps(cos(x)) raises(ValueError, lambda: f1.compose(sin(x), x)) raises(ValueError, lambda: f1.compose(fps(sin(x), dir=-1), x, 4)) raises(ValueError, lambda: f1.compose(fps(sin(x), x0=1), x, 4)) raises(ValueError, lambda: f1.compose(fps(sin(y)), x, 4)) raises(ValueError, lambda: f1.compose(f3, x)) raises(ValueError, lambda: f2.compose(f3, x)) fcomp = f1.compose(f2, x) assert isinstance(fcomp, FormalPowerSeriesCompose) assert isinstance(fcomp.ffps, FormalPowerSeries) assert isinstance(fcomp.gfps, FormalPowerSeries) assert fcomp.f == exp(x) assert fcomp.g == sin(x) assert fcomp.function == exp(sin(x)) assert fcomp._eval_terms(6) == 1 + x + x**2 / 2 - x**4 / 8 - x**5 / 15 assert fcomp.truncate() == 1 + x + x**2 / 2 - x**4 / 8 - x**5 / 15 + O(x** 6) assert fcomp.truncate(5) == 1 + x + x**2 / 2 - x**4 / 8 + O(x**5) raises(NotImplementedError, lambda: fcomp._eval_term(5)) raises(NotImplementedError, lambda: fcomp.infinite) raises(NotImplementedError, lambda: fcomp._eval_derivative(x)) raises(NotImplementedError, lambda: fcomp.integrate(x)) assert f1.compose(f2, x).truncate(4) == 1 + x + x**2 / 2 + O(x**4) assert f1.compose(f2, x).truncate( 8 ) == 1 + x + x**2 / 2 - x**4 / 8 - x**5 / 15 - x**6 / 240 + x**7 / 90 + O( x**8) assert f1.compose( f2, x).truncate(6) == 1 + x + x**2 / 2 - x**4 / 8 - x**5 / 15 + O(x**6) assert f2.compose(f2, x).truncate(4) == x - x**3 / 3 + O(x**4) assert f2.compose( f2, x).truncate(8) == x - x**3 / 3 + x**5 / 10 - 8 * x**7 / 315 + O(x**8) assert f2.compose(f2, x).truncate(6) == x - x**3 / 3 + x**5 / 10 + O(x**6)
def test_fps__slow(): f = x * exp(x) * sin(2 * x) # TODO: rsolve needs improvement assert fps(f, x).truncate() == 2 * x ** 2 + 2 * x ** 3 - x ** 4 / 3 - x ** 5 + O(x ** 6)
def test_fps__logarithmic_singularity_fail(): f = asech(x) # Algorithms for computing limits probably needs improvemnts assert fps(f, x) == log(2) - log(x) - x**2 / 4 - 3 * x**4 / 64 + O(x**6)
def solve(FLT_MIN, FLT_MAX): """Solving cos(x) <= -0.99, dx/dt=1, x(0) = 0 # Basic steps: # 1. First compute the n terms for each ode # 2. Next replace the guard with ode(t), so that it is only in t # 3. Then compute the number of terms needed for g(t) # 4. Finally, compute g(t) = 0 and g(t)-2g(0) = 0 # 5. Note that computing number of terms "n" in taylor essentially # guarantees that tᵣ - t ≤ floating point error only, specified by the # polynomial solver. """ # XXX: This is the theta def test_multivariate(): # LTI is easy to solve # Xdiff = S.sympify('(5*x(t) + 2*y(t) + 1)') # Time varying, takes more time in general, # with increasing power for t^n # Xdiff = S.sympify('(5*x(t) + 2*y(t) + t**3)') # Non linear with periodic functions # Xdiff = S.sympify('sin(sqrt(x(t)+1))') # import math # FLT_MIN = 0 # FLT_MAX = 2*math.pi # More complex ode # Xdiff = S.sympify('sin(sin(x(t)+1))') # The angles can only be between 0 and 2π # import math # FLT_MIN = -2*math.pi # FLT_MAX = 2*math.pi # A sqrt # Xdiff = S.sympify('sqrt(x(t)+1)') # The ones below need to have a reduced search space bound for # continous variables. # Another sqrt, does not seem to converge # Xdiff = S.sympify('x(t)*t') # Does not work # Now multiplication, seems to not coverge ever. Xdiff = S.sympify('exp(2*x(t))') # Does not work either # Using scaling factor, to reduce the bounds of the maximisation # problem. FLT_MIN = -1e1 FLT_MAX = 1e1 return FLT_MIN, FLT_MAX, Xdiff FLT_MIN, FLT_MAX, tomaximize = test_multivariate() xt = S.sympify('x(t)') x = S.abc.x yt = S.sympify('y(t)') y = S.abc.y # Coupled ode example (tokens, nx) = getN({xt.diff(t): ([tomaximize], {yt.diff(t): (xt, # args always in # same order for # everyone [x, y, t])}, # Always list all the replacements {xt: x, yt: y}, [x, y, t])}, FLT_MIN=FLT_MIN, FLT_MAX=FLT_MAX, epsilon=1e-6) # print(tokens) print('required terms for θ satisfying Lipschitz constant:', nx) # Now make the taylor polynomial taylorxcoeffs = [5*S.pi/2, 1] + [0]*(nx-2) # These are the smooth tokens taylorxpoly = sum([t**i*v for i, v in zip(range(nx), taylorxcoeffs)]) # The theta' taylor polynomial print('θ(t) = ', taylorxpoly) # The guard function that needs the lipschitz constant def guard(): gt = (S.cos(taylorxpoly)+0.99) return gt.diff(t) gt = S.sympify('g(t)') tokens, n = getN({gt.diff(t): ([guard()], dict(), dict(), [t])}) # print(tokens) print('Number of terms for cos(%s)+0.99: %s' % (taylorxpoly, n)) # Now we do the example of the ode with taylor polynomial cosseries1 = S.fps(S.cos(taylorxpoly)+0.99, x0=0).polynomial(n=n) print('Guard taylor polynomial:', cosseries1, '\n') # print(S.simplify(cosseries1)) root = None try: root1 = S.nsolve(cosseries1, t, 0, dict=True)[0][t] root = root1 except ValueError: print('No root for g(t)=0') # Now the second one, this one fails # g(t) - 2*g(0) = 0 cosseries2 = S.fps(S.cos((5*S.pi/2) + t)-1.98, x0=0).polynomial(n=n) # print(S.simplify(cosseries2)) try: root2 = S.nsolve(cosseries2, t, 0, dict=True)[0][t] root = min(root, root2) except ValueError: print('No root for g(t)-2*g(0) = 0') print('guard Δt:', root)
def test_fps__hyper(): f = sin(x) assert fps(f, x).truncate() == x - x**3 / 6 + x**5 / 120 + O(x**6) f = cos(x) assert fps(f, x).truncate() == 1 - x**2 / 2 + x**4 / 24 + O(x**6) f = exp(x) assert fps(f, x).truncate() == \ 1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6) f = atan(x) assert fps(f, x).truncate() == x - x**3 / 3 + x**5 / 5 + O(x**6) f = exp(acos(x)) assert fps(f, x).truncate() == \ (exp(pi/2) - x*exp(pi/2) + x**2*exp(pi/2)/2 - x**3*exp(pi/2)/3 + 5*x**4*exp(pi/2)/24 - x**5*exp(pi/2)/6 + O(x**6)) f = exp(acosh(x)) assert fps(f, x).truncate() == I + x - I * x**2 / 2 - I * x**4 / 8 + O(x**6) f = atan(1 / x) assert fps(f, x).truncate() == pi / 2 - x + x**3 / 3 - x**5 / 5 + O(x**6) f = x * atan(x) - log(1 + x**2) / 2 assert fps(f, x, rational=False).truncate() == x**2 / 2 - x**4 / 12 + O(x**6) f = log(1 + x) assert fps(f, x, rational=False).truncate() == \ x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6) f = airyai(x**2) assert fps(f, x).truncate() == \ (3**Rational(5, 6)*gamma(Rational(1, 3))/(6*pi) - 3**Rational(2, 3)*x**2/(3*gamma(Rational(1, 3))) + O(x**6)) f = exp(x) * sin(x) assert fps(f, x).truncate() == x + x**2 + x**3 / 3 - x**5 / 30 + O(x**6) f = exp(x) * sin(x) / x assert fps( f, x).truncate() == 1 + x + x**2 / 3 - x**4 / 30 - x**5 / 90 + O(x**6) f = sin(x) * cos(x) assert fps(f, x).truncate() == x - 2 * x**3 / 3 + 2 * x**5 / 15 + O(x**6)
def test_fps__rational(): assert fps(1 / x) == (1 / x) assert fps((x**2 + x + 1) / x**3, dir=-1) == (x**2 + x + 1) / x**3 f = 1 / ((x - 1)**2 * (x - 2)) assert fps(f, x).truncate() == \ (-Rational(1, 2) - 5*x/4 - 17*x**2/8 - 49*x**3/16 - 129*x**4/32 - 321*x**5/64 + O(x**6)) f = (1 + x + x**2 + x**3) / ((x - 1) * (x - 2)) assert fps(f, x).truncate() == \ (Rational(1, 2) + 5*x/4 + 17*x**2/8 + 49*x**3/16 + 113*x**4/32 + 241*x**5/64 + O(x**6)) f = x / (1 - x - x**2) assert fps(f, x, full=True).truncate() == \ x + x**2 + 2*x**3 + 3*x**4 + 5*x**5 + O(x**6) f = 1 / (x**2 + 2 * x + 2) assert fps(f, x, full=True).truncate() == \ Rational(1, 2) - x/2 + x**2/4 - x**4/8 + x**5/8 + O(x**6) f = log(1 + x) assert fps(f, x).truncate() == \ x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6) assert fps(f, x, dir=1).truncate() == fps(f, x, dir=-1).truncate() assert fps(f, x, 2).truncate() == \ (log(3) - Rational(2, 3) - (x - 2)**2/18 + (x - 2)**3/81 - (x - 2)**4/324 + (x - 2)**5/1215 + x/3 + O((x - 2)**6, (x, 2))) assert fps(f, x, 2, dir=-1).truncate() == \ (log(3) - Rational(2, 3) - (-x + 2)**2/18 - (-x + 2)**3/81 - (-x + 2)**4/324 - (-x + 2)**5/1215 + x/3 + O((x - 2)**6, (x, 2))) f = atan(x) assert fps(f, x, full=True).truncate() == x - x**3 / 3 + x**5 / 5 + O(x**6) assert fps(f, x, full=True, dir=1).truncate() == \ fps(f, x, full=True, dir=-1).truncate() assert fps(f, x, 2, full=True).truncate() == \ (atan(2) - Rational(2, 5) - 2*(x - 2)**2/25 + 11*(x - 2)**3/375 - 6*(x - 2)**4/625 + 41*(x - 2)**5/15625 + x/5 + O((x - 2)**6, (x, 2))) assert fps(f, x, 2, full=True, dir=-1).truncate() == \ (atan(2) - Rational(2, 5) - 2*(-x + 2)**2/25 - 11*(-x + 2)**3/375 - 6*(-x + 2)**4/625 - 41*(-x + 2)**5/15625 + x/5 + O((x - 2)**6, (x, 2))) f = x * atan(x) - log(1 + x**2) / 2 assert fps(f, x, full=True).truncate() == x**2 / 2 - x**4 / 12 + O(x**6) f = log((1 + x) / (1 - x)) / 2 - atan(x) assert fps( f, x, full=True).truncate(n=10) == 2 * x**3 / 3 + 2 * x**7 / 7 + O(x**10)
def test_fps__rational(): assert fps(1 / x) == (1 / x) assert fps((x ** 2 + x + 1) / x ** 3, dir=-1) == (x ** 2 + x + 1) / x ** 3 f = 1 / ((x - 1) ** 2 * (x - 2)) assert fps(f, x).truncate() == ( -Rational(1, 2) - 5 * x / 4 - 17 * x ** 2 / 8 - 49 * x ** 3 / 16 - 129 * x ** 4 / 32 - 321 * x ** 5 / 64 + O(x ** 6) ) f = (1 + x + x ** 2 + x ** 3) / ((x - 1) * (x - 2)) assert fps(f, x).truncate() == ( Rational(1, 2) + 5 * x / 4 + 17 * x ** 2 / 8 + 49 * x ** 3 / 16 + 113 * x ** 4 / 32 + 241 * x ** 5 / 64 + O(x ** 6) ) f = x / (1 - x - x ** 2) assert fps(f, x, full=True).truncate() == x + x ** 2 + 2 * x ** 3 + 3 * x ** 4 + 5 * x ** 5 + O(x ** 6) f = 1 / (x ** 2 + 2 * x + 2) assert fps(f, x, full=True).truncate() == Rational(1, 2) - x / 2 + x ** 2 / 4 - x ** 4 / 8 + x ** 5 / 8 + O(x ** 6) f = log(1 + x) assert fps(f, x).truncate() == x - x ** 2 / 2 + x ** 3 / 3 - x ** 4 / 4 + x ** 5 / 5 + O(x ** 6) assert fps(f, x, dir=1).truncate() == fps(f, x, dir=-1).truncate() assert fps(f, x, 2).truncate() == ( log(3) - Rational(2, 3) - (x - 2) ** 2 / 18 + (x - 2) ** 3 / 81 - (x - 2) ** 4 / 324 + (x - 2) ** 5 / 1215 + x / 3 + O((x - 2) ** 6, (x, 2)) ) assert fps(f, x, 2, dir=-1).truncate() == ( log(3) - Rational(2, 3) - (-x + 2) ** 2 / 18 - (-x + 2) ** 3 / 81 - (-x + 2) ** 4 / 324 - (-x + 2) ** 5 / 1215 + x / 3 + O((x - 2) ** 6, (x, 2)) ) f = atan(x) assert fps(f, x, full=True).truncate() == x - x ** 3 / 3 + x ** 5 / 5 + O(x ** 6) assert fps(f, x, full=True, dir=1).truncate() == fps(f, x, full=True, dir=-1).truncate() assert fps(f, x, 2, full=True).truncate() == ( atan(2) - Rational(2, 5) - 2 * (x - 2) ** 2 / 25 + 11 * (x - 2) ** 3 / 375 - 6 * (x - 2) ** 4 / 625 + 41 * (x - 2) ** 5 / 15625 + x / 5 + O((x - 2) ** 6, (x, 2)) ) assert fps(f, x, 2, full=True, dir=-1).truncate() == ( atan(2) - Rational(2, 5) - 2 * (-x + 2) ** 2 / 25 - 11 * (-x + 2) ** 3 / 375 - 6 * (-x + 2) ** 4 / 625 - 41 * (-x + 2) ** 5 / 15625 + x / 5 + O((x - 2) ** 6, (x, 2)) ) f = x * atan(x) - log(1 + x ** 2) / 2 assert fps(f, x, full=True).truncate() == x ** 2 / 2 - x ** 4 / 12 + O(x ** 6) f = log((1 + x) / (1 - x)) / 2 - atan(x) assert fps(f, x, full=True).truncate(n=10) == 2 * x ** 3 / 3 + 2 * x ** 7 / 7 + O(x ** 10)
def test_fps__hyper(): f = sin(x) assert fps(f, x).truncate() == x - x ** 3 / 6 + x ** 5 / 120 + O(x ** 6) f = cos(x) assert fps(f, x).truncate() == 1 - x ** 2 / 2 + x ** 4 / 24 + O(x ** 6) f = exp(x) assert fps(f, x).truncate() == 1 + x + x ** 2 / 2 + x ** 3 / 6 + x ** 4 / 24 + x ** 5 / 120 + O(x ** 6) f = atan(x) assert fps(f, x).truncate() == x - x ** 3 / 3 + x ** 5 / 5 + O(x ** 6) f = exp(acos(x)) assert fps(f, x).truncate() == ( exp(pi / 2) - x * exp(pi / 2) + x ** 2 * exp(pi / 2) / 2 - x ** 3 * exp(pi / 2) / 3 + 5 * x ** 4 * exp(pi / 2) / 24 - x ** 5 * exp(pi / 2) / 6 + O(x ** 6) ) f = exp(acosh(x)) assert fps(f, x).truncate() == I + x - I * x ** 2 / 2 - I * x ** 4 / 8 + O(x ** 6) f = atan(1 / x) assert fps(f, x).truncate() == pi / 2 - x + x ** 3 / 3 - x ** 5 / 5 + O(x ** 6) f = x * atan(x) - log(1 + x ** 2) / 2 assert fps(f, x, rational=False).truncate() == x ** 2 / 2 - x ** 4 / 12 + O(x ** 6) f = log(1 + x) assert fps(f, x, rational=False).truncate() == x - x ** 2 / 2 + x ** 3 / 3 - x ** 4 / 4 + x ** 5 / 5 + O(x ** 6) f = airyai(x ** 2) assert fps(f, x).truncate() == ( 3 ** Rational(5, 6) * gamma(Rational(1, 3)) / (6 * pi) - 3 ** Rational(2, 3) * x ** 2 / (3 * gamma(Rational(1, 3))) + O(x ** 6) ) f = exp(x) * sin(x) assert fps(f, x).truncate() == x + x ** 2 + x ** 3 / 3 - x ** 5 / 30 + O(x ** 6) f = exp(x) * sin(x) / x assert fps(f, x).truncate() == 1 + x + x ** 2 / 3 - x ** 4 / 30 - x ** 5 / 90 + O(x ** 6) f = sin(x) * cos(x) assert fps(f, x).truncate() == x - 2 * x ** 3 / 3 + 2 * x ** 5 / 15 + O(x ** 6)
def test_fps__logarithmic_singularity(): f = log(1 + 1 / x) assert fps(f, x) != -log(x) + x - x ** 2 / 2 + x ** 3 / 3 - x ** 4 / 4 + x ** 5 / 5 + O(x ** 6) assert fps(f, x, rational=False) != -log(x) + x - x ** 2 / 2 + x ** 3 / 3 - x ** 4 / 4 + x ** 5 / 5 + O(x ** 6)
def test_fps__logarithmic_singularity_fail(): f = asech(x) # Algorithms for computing limits probably needs improvemnts assert fps(f, x) == log(2) - log(x) - x ** 2 / 4 - 3 * x ** 4 / 64 + O(x ** 6)
def test_fps__slow(): f = x * exp(x) * sin(2 * x) # TODO: rsolve needs improvement assert fps(f, x).truncate() == 2 * x**2 + 2 * x**3 - x**4 / 3 - x**5 + O(x**6)
def test_fps__operations(): f1, f2 = fps(sin(x)), fps(cos(x)) fsum = f1 + f2 assert fsum.function == sin(x) + cos(x) assert fsum.truncate() == \ 1 + x - x**2/2 - x**3/6 + x**4/24 + x**5/120 + O(x**6) fsum = f1 + 1 assert fsum.function == sin(x) + 1 assert fsum.truncate() == 1 + x - x**3 / 6 + x**5 / 120 + O(x**6) fsum = 1 + f2 assert fsum.function == cos(x) + 1 assert fsum.truncate() == 2 - x**2 / 2 + x**4 / 24 + O(x**6) assert (f1 + x) == Add(f1, x) assert -f2.truncate() == -1 + x**2 / 2 - x**4 / 24 + O(x**6) assert (f1 - f1) == S.Zero fsub = f1 - f2 assert fsub.function == sin(x) - cos(x) assert fsub.truncate() == \ -1 + x + x**2/2 - x**3/6 - x**4/24 + x**5/120 + O(x**6) fsub = f1 - 1 assert fsub.function == sin(x) - 1 assert fsub.truncate() == -1 + x - x**3 / 6 + x**5 / 120 + O(x**6) fsub = 1 - f2 assert fsub.function == -cos(x) + 1 assert fsub.truncate() == x**2 / 2 - x**4 / 24 + O(x**6) raises(ValueError, lambda: f1 + fps(exp(x), dir=-1)) raises(ValueError, lambda: f1 + fps(exp(x), x0=1)) fm = f1 * 3 assert fm.function == 3 * sin(x) assert fm.truncate() == 3 * x - x**3 / 2 + x**5 / 40 + O(x**6) fm = 3 * f2 assert fm.function == 3 * cos(x) assert fm.truncate() == 3 - 3 * x**2 / 2 + x**4 / 8 + O(x**6) assert (f1 * f2) == Mul(f1, f2) assert (f1 * x) == Mul(f1, x) fd = f1.diff() assert fd.function == cos(x) assert fd.truncate() == 1 - x**2 / 2 + x**4 / 24 + O(x**6) fd = f2.diff() assert fd.function == -sin(x) assert fd.truncate() == -x + x**3 / 6 - x**5 / 120 + O(x**6) fd = f2.diff().diff() assert fd.function == -cos(x) assert fd.truncate() == -1 + x**2 / 2 - x**4 / 24 + O(x**6) f3 = fps(exp(sqrt(x))) fd = f3.diff() assert fd.truncate().expand() == \ (1/(2*sqrt(x)) + S(1)/2 + x/12 + x**2/240 + x**3/10080 + x**4/725760 + x**5/79833600 + sqrt(x)/4 + x**(S(3)/2)/48 + x**(S(5)/2)/1440 + x**(S(7)/2)/80640 + x**(S(9)/2)/7257600 + x**(S(11)/2)/958003200 + O(x**6)) assert f1.integrate((x, 0, 1)) == -cos(1) + 1 assert integrate(f1, (x, 0, 1)) == -cos(1) + 1 fi = integrate(f1, x) assert fi.function == -cos(x) assert fi.truncate() == -1 + x**2 / 2 - x**4 / 24 + O(x**6) fi = f2.integrate(x) assert fi.function == sin(x) assert fi.truncate() == x - x**3 / 6 + x**5 / 120 + O(x**6)
def test_fps__operations(): f1, f2 = fps(sin(x)), fps(cos(x)) fsum = f1 + f2 assert fsum.function == sin(x) + cos(x) assert fsum.truncate() == 1 + x - x ** 2 / 2 - x ** 3 / 6 + x ** 4 / 24 + x ** 5 / 120 + O(x ** 6) fsum = f1 + 1 assert fsum.function == sin(x) + 1 assert fsum.truncate() == 1 + x - x ** 3 / 6 + x ** 5 / 120 + O(x ** 6) fsum = 1 + f2 assert fsum.function == cos(x) + 1 assert fsum.truncate() == 2 - x ** 2 / 2 + x ** 4 / 24 + O(x ** 6) assert (f1 + x) == Add(f1, x) assert -f2.truncate() == -1 + x ** 2 / 2 - x ** 4 / 24 + O(x ** 6) assert (f1 - f1) == S.Zero fsub = f1 - f2 assert fsub.function == sin(x) - cos(x) assert fsub.truncate() == -1 + x + x ** 2 / 2 - x ** 3 / 6 - x ** 4 / 24 + x ** 5 / 120 + O(x ** 6) fsub = f1 - 1 assert fsub.function == sin(x) - 1 assert fsub.truncate() == -1 + x - x ** 3 / 6 + x ** 5 / 120 + O(x ** 6) fsub = 1 - f2 assert fsub.function == -cos(x) + 1 assert fsub.truncate() == x ** 2 / 2 - x ** 4 / 24 + O(x ** 6) raises(ValueError, lambda: f1 + fps(exp(x), dir=-1)) raises(ValueError, lambda: f1 + fps(exp(x), x0=1)) fm = f1 * 3 assert fm.function == 3 * sin(x) assert fm.truncate() == 3 * x - x ** 3 / 2 + x ** 5 / 40 + O(x ** 6) fm = 3 * f2 assert fm.function == 3 * cos(x) assert fm.truncate() == 3 - 3 * x ** 2 / 2 + x ** 4 / 8 + O(x ** 6) assert (f1 * f2) == Mul(f1, f2) assert (f1 * x) == Mul(f1, x) fd = f1.diff() assert fd.function == cos(x) assert fd.truncate() == 1 - x ** 2 / 2 + x ** 4 / 24 + O(x ** 6) fd = f2.diff() assert fd.function == -sin(x) assert fd.truncate() == -x + x ** 3 / 6 - x ** 5 / 120 + O(x ** 6) fd = f2.diff().diff() assert fd.function == -cos(x) assert fd.truncate() == -1 + x ** 2 / 2 - x ** 4 / 24 + O(x ** 6) f3 = fps(exp(sqrt(x))) fd = f3.diff() assert fd.truncate().expand() == ( 1 / (2 * sqrt(x)) + S(1) / 2 + x / 12 + x ** 2 / 240 + x ** 3 / 10080 + x ** 4 / 725760 + x ** 5 / 79833600 + sqrt(x) / 4 + x ** (S(3) / 2) / 48 + x ** (S(5) / 2) / 1440 + x ** (S(7) / 2) / 80640 + x ** (S(9) / 2) / 7257600 + x ** (S(11) / 2) / 958003200 + O(x ** 6) ) assert f1.integrate((x, 0, 1)) == -cos(1) + 1 fi = f1.integrate(x) assert fi.function == -cos(x) assert fi.truncate() == -1 + x ** 2 / 2 - x ** 4 / 24 + O(x ** 6) fi = f2.integrate() assert fi.function == sin(x) assert fi.truncate() == x - x ** 3 / 6 + x ** 5 / 120 + O(x ** 6)