예제 #1
0
 def simplify(self):
     """
         Simplify the expression, returns a  new instance of Expression
         For more information about simplification: https://docs.sympy.org/latest/tutorial/simplification.html
     """
     logger.log("EXPRESSION", (f"{self} - simplify"))
     return Expression(str(simp(self.expression)))
예제 #2
0
파일: tut.py 프로젝트: dylangoepel/tutgen
 def randomProblem(self, significant=2):
     given = {}
     for key in self.given:
         while True:
             given[key] = simp(int(
                 random() * (10**significant))) / (10**(significant - 1))
             if given[key] > 0:
                 break
     return Problem(self.concept,
                    given,
                    self.wanted,
                    significant=significant)
예제 #3
0
파일: tut.py 프로젝트: dylangoepel/tutgen
 def __init__(self, name, **params):
     self.name = name
     self.variables = {}
     self.units = {}
     self.givenSentences = {}
     self.wantedSentences = {}
     self.initSentence = params["init"]
     for i, p in enumerate(params):
         if p in ["init", "laws"]:
             continue
         self.variables[p] = simp("x_" + str(i))
         self.units[p] = params[p][2]
         self.givenSentences[p] = params[p][0]
         self.wantedSentences[p] = params[p][1]
     self.laws = []
     for law in params["laws"]:
         self.add_law(law)
예제 #4
0
def approximants(l, X=Symbol('x'), simplify=False):
    """
    Return a generator for consecutive Pade approximants for a series.
    It can also be used for computing the rational generating function of a
    series when possible, since the last approximant returned by the generator
    will be the generating function (if any).

    The input list can contain more complex expressions than integer or rational
    numbers; symbols may also be involved in the computation. An example below
    show how to compute the generating function of the whole Pascal triangle.

    The generator can be asked to apply the sympy.simplify function on each
    generated term, which will make the computation slower; however it may be
    useful when symbols are involved in the expressions.

    Examples
    ========

    >>> from sympy.series import approximants
    >>> from sympy import lucas, fibonacci, symbols, binomial
    >>> g = [lucas(k) for k in range(16)]
    >>> [e for e in approximants(g)]
    [2, -4/(x - 2), (5*x - 2)/(3*x - 1), (x - 2)/(x**2 + x - 1)]

    >>> h = [fibonacci(k) for k in range(16)]
    >>> [e for e in approximants(h)]
    [x, -x/(x - 1), (x**2 - x)/(2*x - 1), -x/(x**2 + x - 1)]

    >>> x, t = symbols("x,t")
    >>> p=[sum(binomial(k,i)*x**i for i in range(k+1)) for k in range(16)]
    >>> y = approximants(p, t)
    >>> for k in range(3): print(next(y))
    1
    (x + 1)/((-x - 1)*(t*(x + 1) + (x + 1)/(-x - 1)))
    nan

    >>> y = approximants(p, t, simplify=True)
    >>> for k in range(3): print(next(y))
    1
    -1/(t*(x + 1) - 1)
    nan

    See Also
    ========
    See function sympy.concrete.guess.guess_generating_function_rational and
    function mpmath.pade

    """
    p1, q1 = [Integer(1)], [Integer(0)]
    p2, q2 = [Integer(0)], [Integer(1)]
    while len(l):
        b = 0
        while l[b] == 0:
            b += 1
            if b == len(l):
                return
        m = [Integer(1) / l[b]]
        for k in range(b + 1, len(l)):
            s = 0
            for j in range(b, k):
                s -= l[j + 1] * m[b - j - 1]
            m.append(s / l[b])
        l = m
        a, l[0] = l[0], 0
        p = [0] * max(len(p2), b + len(p1))
        q = [0] * max(len(q2), b + len(q1))
        for k in range(len(p2)):
            p[k] = a * p2[k]
        for k in range(b, b + len(p1)):
            p[k] += p1[k - b]
        for k in range(len(q2)):
            q[k] = a * q2[k]
        for k in range(b, b + len(q1)):
            q[k] += q1[k - b]
        while p[-1] == 0:
            p.pop()
        while q[-1] == 0:
            q.pop()
        p1, p2 = p2, p
        q1, q2 = q2, q

        # yield result
        from sympy import denom, lcm, simplify as simp
        c = 1
        for x in p:
            c = lcm(c, denom(x))
        for x in q:
            c = lcm(c, denom(x))
        out = (sum(c * e * X**k
                   for k, e in enumerate(p)) / sum(c * e * X**k
                                                   for k, e in enumerate(q)))
        if simplify: yield (simp(out))
        else: yield out
    return
예제 #5
0
def approximants(l, X=Symbol('x'), simplify=False):
    """
    Return a generator for consecutive Pade approximants for a series.
    It can also be used for computing the rational generating function of a
    series when possible, since the last approximant returned by the generator
    will be the generating function (if any).

    The input list can contain more complex expressions than integer or rational
    numbers; symbols may also be involved in the computation. An example below
    show how to compute the generating function of the whole Pascal triangle.

    The generator can be asked to apply the sympy.simplify function on each
    generated term, which will make the computation slower; however it may be
    useful when symbols are involved in the expressions.

    Examples
    ========

    >>> from sympy.series import approximants
    >>> from sympy import lucas, fibonacci, symbols, binomial
    >>> g = [lucas(k) for k in range(16)]
    >>> [e for e in approximants(g)]
    [2, -4/(x - 2), (5*x - 2)/(3*x - 1), (x - 2)/(x**2 + x - 1)]

    >>> h = [fibonacci(k) for k in range(16)]
    >>> [e for e in approximants(h)]
    [x, -x/(x - 1), (x**2 - x)/(2*x - 1), -x/(x**2 + x - 1)]

    >>> x, t = symbols("x,t")
    >>> p=[sum(binomial(k,i)*x**i for i in range(k+1)) for k in range(16)]
    >>> y = approximants(p, t)
    >>> for k in range(3): print(next(y))
    1
    (x + 1)/((-x - 1)*(t*(x + 1) + (x + 1)/(-x - 1)))
    nan

    >>> y = approximants(p, t, simplify=True)
    >>> for k in range(3): print(next(y))
    1
    -1/(t*(x + 1) - 1)
    nan

    See also
    ========
    See function sympy.concrete.guess.guess_generating_function_rational and
    function mpmath.pade

    """
    p1, q1 = [Integer(1)], [Integer(0)]
    p2, q2 = [Integer(0)], [Integer(1)]
    while len(l):
        b = 0
        while l[b]==0:
            b += 1
            if b == len(l):
                return
        m = [Integer(1)/l[b]]
        for k in range(b+1, len(l)):
            s = 0
            for j in range(b, k):
                s -= l[j+1] * m[b-j-1]
            m.append(s/l[b])
        l = m
        a, l[0] = l[0], 0
        p = [0] * max(len(p2), b+len(p1))
        q = [0] * max(len(q2), b+len(q1))
        for k in range(len(p2)):
            p[k] = a*p2[k]
        for k in range(b, b+len(p1)):
            p[k] += p1[k-b]
        for k in range(len(q2)):
            q[k] = a*q2[k]
        for k in range(b, b+len(q1)):
            q[k] += q1[k-b]
        while p[-1]==0: p.pop()
        while q[-1]==0: q.pop()
        p1, p2 = p2, p
        q1, q2 = q2, q

        # yield result
        from sympy import denom, lcm, simplify as simp
        c = 1
        for x in p:
            c = lcm(c, denom(x))
        for x in q:
            c = lcm(c, denom(x))
        out = ( sum(c*e*X**k for k, e in enumerate(p))
              / sum(c*e*X**k for k, e in enumerate(q)) )
        if simplify: yield(simp(out))
        else: yield out
    return
예제 #6
0
파일: tut.py 프로젝트: dylangoepel/tutgen
 def to_expr(self, formula):
     return simp(formula, locals=self.variables)