def test_array_expr_construction_with_functions(): tp = tensorproduct(M, N) assert tp == ArrayTensorProduct(M, N) expr = tensorproduct(A, eye(2)) assert expr == ArrayTensorProduct(A, eye(2)) # Contraction: expr = tensorcontraction(M, (0, 1)) assert expr == ArrayContraction(M, (0, 1)) expr = tensorcontraction(tp, (1, 2)) assert expr == ArrayContraction(tp, (1, 2)) expr = tensorcontraction(tensorcontraction(tp, (1, 2)), (0, 1)) assert expr == ArrayContraction(tp, (0, 3), (1, 2)) # Diagonalization: expr = tensordiagonal(M, (0, 1)) assert expr == ArrayDiagonal(M, (0, 1)) expr = tensordiagonal(tensordiagonal(tp, (0, 1)), (0, 1)) assert expr == ArrayDiagonal(tp, (0, 1), (2, 3)) # Permutation of dimensions: expr = permutedims(M, [1, 0]) assert expr == PermuteDims(M, [1, 0]) expr = permutedims(PermuteDims(tp, [1, 0, 2, 3]), [0, 1, 3, 2]) assert expr == PermuteDims(tp, [1, 0, 3, 2])
def test_array_as_explicit_call(): assert ZeroArray(3, 2, 4).as_explicit() == ImmutableDenseNDimArray.zeros( 3, 2, 4) assert OneArray(3, 2, 4).as_explicit() == ImmutableDenseNDimArray( [1 for i in range(3 * 2 * 4)]).reshape(3, 2, 4) k = Symbol("k") X = ArraySymbol("X", k, 3, 2) raises(ValueError, lambda: X.as_explicit()) raises(ValueError, lambda: ZeroArray(k, 2, 3).as_explicit()) raises(ValueError, lambda: OneArray(2, k, 2).as_explicit()) A = ArraySymbol("A", 3, 3) B = ArraySymbol("B", 3, 3) texpr = tensorproduct(A, B) assert isinstance(texpr, ArrayTensorProduct) assert texpr.as_explicit() == tensorproduct(A.as_explicit(), B.as_explicit()) texpr = tensorcontraction(A, (0, 1)) assert isinstance(texpr, ArrayContraction) assert texpr.as_explicit() == A[0, 0] + A[1, 1] + A[2, 2] texpr = tensordiagonal(A, (0, 1)) assert isinstance(texpr, ArrayDiagonal) assert texpr.as_explicit() == ImmutableDenseNDimArray( [A[0, 0], A[1, 1], A[2, 2]]) texpr = permutedims(A, [1, 0]) assert isinstance(texpr, PermuteDims) assert texpr.as_explicit() == permutedims(A.as_explicit(), [1, 0])
def test_array_expr_construction_with_functions(): tp = tensorproduct(M, N) assert tp == ArrayTensorProduct(M, N) expr = tensorproduct(A, eye(2)) assert expr == ArrayTensorProduct(A, eye(2)) # Contraction: expr = tensorcontraction(M, (0, 1)) assert expr == ArrayContraction(M, (0, 1)) expr = tensorcontraction(tp, (1, 2)) assert expr == ArrayContraction(tp, (1, 2)) expr = tensorcontraction(tensorcontraction(tp, (1, 2)), (0, 1)) assert expr == ArrayContraction(tp, (0, 3), (1, 2)) # Diagonalization: expr = tensordiagonal(M, (0, 1)) assert expr == ArrayDiagonal(M, (0, 1)) expr = tensordiagonal(tensordiagonal(tp, (0, 1)), (0, 1)) assert expr == ArrayDiagonal(tp, (0, 1), (2, 3)) # Permutation of dimensions: expr = permutedims(M, [1, 0]) assert expr == PermuteDims(M, [1, 0]) expr = permutedims(PermuteDims(tp, [1, 0, 2, 3]), [0, 1, 3, 2]) assert expr == PermuteDims(tp, [1, 0, 3, 2]) expr = PermuteDims(tp, index_order_new=["a", "b", "c", "d"], index_order_old=["d", "c", "b", "a"]) assert expr == PermuteDims(tp, [3, 2, 1, 0]) arr = Array(range(32)).reshape(2, 2, 2, 2, 2) expr = PermuteDims(arr, index_order_new=["a", "b", "c", "d", "e"], index_order_old=['b', 'e', 'a', 'd', 'c']) assert expr == PermuteDims(arr, [2, 0, 4, 3, 1]) assert expr.as_explicit() == permutedims(arr, index_order_new=["a", "b", "c", "d", "e"], index_order_old=['b', 'e', 'a', 'd', 'c'])
def test_array_expr_as_explicit_with_explicit_component_arrays(): # Test if .as_explicit() works with explicit-component arrays # nested in array expressions: from sympy.abc import x, y, z, t A = Array([[x, y], [z, t]]) assert ArrayTensorProduct(A, A).as_explicit() == tensorproduct(A, A) assert ArrayDiagonal(A, (0, 1)).as_explicit() == tensordiagonal(A, (0, 1)) assert ArrayContraction(A, (0, 1)).as_explicit() == tensorcontraction(A, (0, 1)) assert ArrayAdd(A, A).as_explicit() == A + A assert ArrayElementwiseApplyFunc(sin, A).as_explicit() == A.applyfunc(sin) assert PermuteDims(A, [1, 0]).as_explicit() == permutedims(A, [1, 0]) assert Reshape(A, [4]).as_explicit() == A.reshape(4)
def test_array_as_explicit_matrix_symbol(): A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) texpr = tensorproduct(A, B) assert isinstance(texpr, ArrayTensorProduct) assert texpr.as_explicit() == tensorproduct(A.as_explicit(), B.as_explicit()) texpr = tensorcontraction(A, (0, 1)) assert isinstance(texpr, ArrayContraction) assert texpr.as_explicit() == A[0, 0] + A[1, 1] + A[2, 2] texpr = tensordiagonal(A, (0, 1)) assert isinstance(texpr, ArrayDiagonal) assert texpr.as_explicit() == ImmutableDenseNDimArray( [A[0, 0], A[1, 1], A[2, 2]]) texpr = permutedims(A, [1, 0]) assert isinstance(texpr, PermuteDims) assert texpr.as_explicit() == permutedims(A.as_explicit(), [1, 0])
def as_explicit(self): return tensordiagonal(self.expr.as_explicit(), *self.diagonal_indices)