def test_factorial2_rewrite(): n = Symbol('n', integer=True) assert factorial2(n).rewrite(gamma) == \ 2**(n/2)*Piecewise((1, Eq(Mod(n, 2), 0)), (sqrt(2)/sqrt(pi), Eq(Mod(n, 2), 1)))*gamma(n/2 + 1) assert factorial2(2 * n).rewrite(gamma) == 2**n * gamma(n + 1) assert factorial2(2*n + 1).rewrite(gamma) == \ sqrt(2)*2**(n + S.Half)*gamma(n + Rational(3, 2))/sqrt(pi)
def test_KroneckerProduct_entry(): A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', o, p) assert KroneckerProduct(A, B)._entry( i, j) == A[Mod(floor(i / o), n), Mod(floor(j / p), m)] * B[Mod(i, o), Mod(j, p)]
def test_simplified_FiniteSet_in_CondSet(): assert ConditionSet(x, And(x < 1, x > -3), FiniteSet(0, 1, 2)) == FiniteSet(0) assert ConditionSet(x, x < 0, FiniteSet(0, 1, 2)) == EmptySet() assert ConditionSet(x, And(x < -3), EmptySet()) == EmptySet() y = Symbol('y') assert (ConditionSet(x, And(x > 0), FiniteSet(-1, 0, 1, y)) == Union(FiniteSet(1), ConditionSet(x, And(x > 0), FiniteSet(y)))) assert (ConditionSet(x, Eq(Mod(x, 3), 1), FiniteSet(1, 4, 2, y)) == Union(FiniteSet(1, 4), ConditionSet(x, Eq(Mod(x, 3), 1), FiniteSet(y))))
def test_fcode_functions(): x, y = symbols('x,y') assert fcode(sin(x)**cos(y)) == " sin(x)**cos(y)" raises(NotImplementedError, lambda: fcode(Mod(x, y), standard=66)) raises(NotImplementedError, lambda: fcode(x % y, standard=66)) raises(NotImplementedError, lambda: fcode(Mod(x, y), standard=77)) raises(NotImplementedError, lambda: fcode(x % y, standard=77)) for standard in [90, 95, 2003, 2008]: assert fcode(Mod(x, y), standard=standard) == " modulo(x, y)" assert fcode(x % y, standard=standard) == " modulo(x, y)"
def test_mod_usual(): assert_equal("128\\mod 3", Mod(128, 3)) assert_equal("7\\mod 128", Mod(7, 128)) assert_equal("5\\mod 10", Mod(5, 10)) assert_equal("5\\mod 5", Mod(5, 5)) assert_equal("3\\mod 2", Mod(3, 2)) assert_equal("0 \\mod 6", Mod(0, 6)) assert_equal("6109\\mod 28", Mod(6109, 28)) assert_equal("4000000000\\mod 28791", Mod(4000000000, 28791)) assert_equal("128*10^300\\mod 876123", Mod(Rational('128E300'), 876123)) assert_equal("876,123\\mod 128E300)", Mod(876123, Rational('128E300')))
def test_issue_15230(): has_module('f2py') x, y = symbols('x, y') expr = Mod(x, 3.0) - Mod(y, -2.0) f = autowrap(expr, args=[x, y], language='F95') exp_res = float(expr.xreplace({x: 3.5, y: 2.7}).evalf()) assert abs(f(3.5, 2.7) - exp_res) < 1e-14 x, y = symbols('x, y', integer=True) expr = Mod(x, 3) - Mod(y, -2) f = autowrap(expr, args=[x, y], language='F95') assert f(3, 2) == expr.xreplace({x: 3, y: 2})
def test_mod_symbol(): assert_equal("x\\mod y", Mod(x, y)) assert_equal("2x\\mod y", Mod(2 * x, y)) assert_equal("y + 3\\mod 2 / 4", y + Rational(Mod(3, 2), 4), symbolically=True) assert_equal("0.5x * 2 + \\sqrt{x}\\mod 8y", 0.5 * x * 2 + Mod(sqrt(x), 8 * y), symbolically=True) assert_equal("6.673E-11 * ((8.85418782E-12\\mod 9x) + 4) / 2y", Rational('6.673E-11') * (Mod(Rational('8.85418782E-12'), 9 * x) + 4) / (2 * y), symbolically=True)
def test_mod_negative(): assert_equal("-1\\mod 2", Mod(-1, 2)) assert_equal("-3\\mod 3", Mod(-3, 3)) assert_equal("-12\\mod -12", Mod(-12, -12)) assert_equal("-128\\mod 4", Mod(-128, 4)) assert_equal("9\\mod -213", Mod(9, -213)) assert_equal("123123\\mod -541", Mod(123123, -541)) assert_equal("-123123\\mod 541", Mod(-123123, 541)) assert_equal("-97E34\\mod 7", Mod(Rational('-97E34'), 7))
def gen_points(pol, points_x, prime): points = [] for point_x in points_x: point_y = Mod(pol, prime).subs({x: point_x}) points.append([point_x, point_y]) return points
def isst(nu, q, l, i_n, i, sigma): return Piecewise( (0, Eq(Mod(nu, 2), 1)), (f(l, l, i_n, i, nu), Eq(q, 0)), ((-1/2 * (-1)**sigma * f(l, l, i_n, i, nu) * safe_divide(Wigner3j(l, 1, l, 1, nu, -2), Wigner3j(l, 1, l, -1, nu, 0))), Eq(Abs(q), 2)), (0, True))
def test_Mod(): assert Mod(5, 3) == 2 assert Mod(-5, 3) == 1 assert Mod(5, -3) == -1 assert Mod(-5, -3) == -2 assert type(Mod(3.2, 2, evaluate=False)) == Mod assert 5 % x == Mod(5, x) assert x % 5 == Mod(x, 5) assert x % y == Mod(x, y) assert (x % y).subs({x: 5, y: 3}) == 2
def test_mod_fraction(): assert_equal("1/2\\mod 3", Mod(Rational(1, 2), 3)) assert_equal("6/2\\mod 3", Mod(Rational(6, 2), 3)) assert_equal("-14/2\\mod 5", Mod(Rational(-14, 2), 5)) assert_equal("123\\mod (42/6)", Mod(123, Rational(42, 6))) assert_equal("431\\mod (2/123)", Mod(431, Rational(2, 123))) assert_equal("5/5\\mod (5/5)", Mod(Rational(5, 5), Rational(5, 5))) assert_equal("849/-21\\mod (092/2)", Mod(Rational(849, -21), Rational(92, 2))) assert_equal("13*10^9\\mod (21/-2)", Mod(13E9, Rational(21, -2)))
def compute(l): # first check that no two differ by an integer for i, b in enumerate(l): if not b.is_Rational: return oo for j in range(i + 1, len(l)): if not Mod((b - l[j]).simplify(), 1): return oo return reduce(ilcm, (x.q for x in l), 1)
def modf(x): """modf(x) Return the fractional and integer parts of x. Both results carry the sign of x. """ signx = sign(x) absx = Abs(x) return (signx * Mod(absx, 1), signx * floor(absx))
def interpolate(points, prime): # unpack points_x, points_y = list(points[points.columns[0]]), list(points[points.columns[1]]) # sum of Lagrange Basis Func in Finite Field k = len(points.index) poly = 0 for i in range(0, k): poly += int(points_y[i])*lbf(k, points_x, i, prime) return Mod(poly, prime)
def test_mod_float(): assert_equal("0.41\\mod 2", Mod(Rational('0.41'), 2)) assert_equal("143E-13\\mod 21", Mod(Rational('143E-13'), 21)) assert_equal("-9.80665\\mod 9.80665", Mod(-9.80665, 9.80665)) assert_equal("0.0000923423\\mod -8341.234802909", nsimplify(Mod(0.0000923423, -8341.234802909))) assert_equal("\\sqrt{5}\\mod \\sqrt{2}", Mod(sqrt(5), sqrt(2))) assert_equal("987\\mod \\pi", Mod(987, pi)) assert_equal("\\pi\\mod ((1+\\sqrt{5})/2)", Mod(pi, nsimplify(GoldenRatio)), symbolically=True) assert_equal("1234\\mod 1E-29", Mod(1234, Rational('1E-29'), evaluate=False))
def create_ops_fetch(f, name_to_ops_dat, time_upper_bound): if f.is_TimeFunction: ops_fetch = [ namespace['ops_dat_fetch_data']( name_to_ops_dat[f.name].indexify( [Mod(Add(time_upper_bound, -i), f._time_size)]), Byref( f.indexify([Mod(Add(time_upper_bound, -i), f._time_size)]))) for i in range(f._time_size) ] else: # The second parameter is the beginning of the array. But I didn't manage # to generate a C code like: `v`. Instead, I am generating `&(v[0])`. ops_fetch = [ namespace['ops_dat_fetch_data'](name_to_ops_dat[f.name], Byref(f.indexify([0]))) ] return ops_fetch
def _visit_BinaryOperatorNode(self, stmt): first = self._visit(stmt.first) second = self._visit(stmt.second) if stmt.value == '+': return Add(first, second, evaluate=False) elif stmt.value == '*': if isinstance(first, (Tuple, List)): return Dlist(first[0], second) return Mul(first, second, evaluate=False) elif stmt.value == '-': if isinstance(stmt.second, BinaryOperatorNode) \ and isinstance(second, (Add, Mul)): args = second.args second = second._new_rawargs(-args[0], args[1]) else: second = Mul(-1, second) return Add(first, second, evaluate=False) elif stmt.value == '/': if isinstance(second, Mul) and isinstance(stmt.second, BinaryOperatorNode): args = list(second.args) second = Pow(args[0], -1, evaluate=False) second = Mul(second, args[1], evaluate=False) else: second = Pow(second, -1, evaluate=False) return Mul(first, second, evaluate=False) elif stmt.value == '**': return Pow(first, second, evaluate=False) elif stmt.value == '//': if isinstance(second, Mul) and isinstance(stmt.second, BinaryOperatorNode): args = second.args second = Pow(args[0], -1, evaluate=False) first = floor(Mul(first, second, evaluate=False)) return Mul(first, args[1], evaluate=False) else: second = Pow(second, -1, evaluate=False) return floor(Mul(first, second, evaluate=False)) elif stmt.value == '%': return Mod(first, second) else: msg = 'unknown/unavailable BinaryOperatorNode {node}' msg = msg.format(node=type(stmt.value)) raise PyccelSyntaxError(msg)
def test_mod_expr(): assert_equal("1+1\\mod 2", 1 + Mod(1, 2)) assert_equal("876123\\mod 128\\times 10^300", Mod(876123, 128) * 1E300) assert_equal("141\\mod 9/3", Rational(Mod(141, 9) / 3)) assert_equal("872 / (12\\mod 9 * 4) * 2", Rational(2 * 872, (Mod(12, 9) * 4))) assert_equal("1E-32 * (1E29\\mod 74)", Rational('1E-32') * Mod(Rational('1E29'), 74)) assert_equal("299,792,458\\mod 9.81", Mod(299792458, Rational('9.81')))
def test_mod(): e = Mod(a, b) f = lambdify((a, b), e) a_ = np.array([0, 1, 2, 3]) b_ = 2 assert np.array_equal(f(a_, b_), [0, 1, 0, 1]) a_ = np.array([0, 1, 2, 3]) b_ = np.array([2, 2, 2, 2]) assert np.array_equal(f(a_, b_), [0, 1, 0, 1]) a_ = np.array([2, 3, 4, 5]) b_ = np.array([2, 3, 4, 5]) assert np.array_equal(f(a_, b_), [0, 0, 0, 0])
def _factor_pairs(expr): factors = expr.as_ordered_factors() expanded_factors = [] for f in factors: if f.is_Number: continue base, exp = f.as_base_exp() if exp.q != 1: expanded_factors.append(base ** Mod(exp, 1)) exp = floor(exp) if exp >= 0: f = (base,) * exp else: f = (1 / base,) * abs(exp) expanded_factors.extend(f) return list(itertools.combinations(expanded_factors, 2))
def test_mod(): if not np: skip("NumPy not installed") e = Mod(a, b) f = lambdify((a, b), e) a_ = np.array([0, 1, 2, 3]) b_ = 2 assert np.array_equal(f(a_, b_), [0, 1, 0, 1]) a_ = np.array([0, 1, 2, 3]) b_ = np.array([2, 2, 2, 2]) assert np.array_equal(f(a_, b_), [0, 1, 0, 1]) a_ = np.array([2, 3, 4, 5]) b_ = np.array([2, 3, 4, 5]) assert np.array_equal(f(a_, b_), [0, 0, 0, 0])
def test_binomial_Mod(): p, q = 10**5 + 3, 10**9 + 33 # prime modulo r = 10**7 + 5 # composite modulo # A few tests to get coverage # Lucas Theorem assert Mod(binomial(156675, 4433, evaluate=False), p) == Mod(binomial(156675, 4433), p) # factorial Mod assert Mod(binomial(1234, 432, evaluate=False), q) == Mod(binomial(1234, 432), q) # binomial factorize assert Mod(binomial(253, 113, evaluate=False), r) == Mod(binomial(253, 113), r)
def test_Mod(): assert Mod(5, 3) == 2 assert Mod(-5, 3) == 1 assert Mod(5, -3) == -1 assert Mod(-5, -3) == -2 assert type(Mod(3.2, 2, evaluate=False)) == Mod assert 5 % x == Mod(5, x) assert x % 5 == Mod(x, 5) assert x % y == Mod(x, y) assert (x % y).subs({x: 5, y: 3}) == 2 assert (x + 3) % 1 == Mod(x, 1) assert (x + 3.0) % 1 == Mod(x, 1) assert (x - S(33) / 10) % 1 == Mod(x + S(7) / 10, 1) assert (x - 3.3) % 1 == Mod(x + 0.7, 1) assert Mod(-3.3, 1) == Mod(0.7, 1) == Float(0.7) e = Mod(1.3, 1) assert e == .3 and e.is_Float e = Mod(1.3, .7) assert e == .6 and e.is_Float e = Mod(1.3, Rational(7, 10)) assert e == .6 and e.is_Float e = Mod(Rational(13, 10), 0.7) assert e == .6 and e.is_Float e = Mod(Rational(13, 10), Rational(7, 10)) assert e == .6 and e.is_Rational
def test_issue_10024(): x = Dummy("x") assert Mod(x, 2 * pi).is_zero is None
def test_Mod(): assert Mod(x, 1).func is Mod assert pi % pi == S.Zero assert Mod(5, 3) == 2 assert Mod(-5, 3) == 1 assert Mod(5, -3) == -1 assert Mod(-5, -3) == -2 assert type(Mod(3.2, 2, evaluate=False)) == Mod assert 5 % x == Mod(5, x) assert x % 5 == Mod(x, 5) assert x % y == Mod(x, y) assert (x % y).subs({x: 5, y: 3}) == 2 # Float handling point3 = Float(3.3) % 1 assert (x - 3.3) % 1 == Mod(1.*x + 1 - point3, 1) assert Mod(-3.3, 1) == 1 - point3 assert Mod(0.7, 1) == Float(0.7) e = Mod(1.3, 1) point3 = Float._new(Float(.3)._mpf_, 51) assert e == point3 and e.is_Float e = Mod(1.3, .7) point6 = Float._new(Float(.6)._mpf_, 51) assert e == point6 and e.is_Float e = Mod(1.3, Rational(7, 10)) assert e == point6 and e.is_Float e = Mod(Rational(13, 10), 0.7) assert e == point6 and e.is_Float e = Mod(Rational(13, 10), Rational(7, 10)) assert e == .6 and e.is_Rational # check that sign is right r2 = sqrt(2) r3 = sqrt(3) for i in [-r3, -r2, r2, r3]: for j in [-r3, -r2, r2, r3]: assert test_numerically(i % j, i.n() % j.n()) for _x in range(4): for _y in range(9): reps = [(x, _x), (y, _y)] assert Mod(3*x + y, 9).subs(reps) == (3*_x + _y) % 9 # denesting # easy case assert Mod(Mod(x, y), y) == Mod(x, y) # in case someone attempts more denesting for i in [-3, -2, 2, 3]: for j in [-3, -2, 2, 3]: for k in range(3): # print i, j, k assert Mod(Mod(k, i), j) == (k % i) % j # known difference assert Mod(5*sqrt(2), sqrt(5)) == 5*sqrt(2) - 3*sqrt(5) p = symbols('p', positive=True) assert Mod(p + 1, p + 3) == p + 1 n = symbols('n', negative=True) assert Mod(n - 3, n - 1) == -2 assert Mod(n - 2*p, n - p) == -p assert Mod(p - 2*n, p - n) == -n # handling sums assert (x + 3) % 1 == Mod(x, 1) assert (x + 3.0) % 1 == Mod(1.*x, 1) assert (x - S(33)/10) % 1 == Mod(x + S(7)/10, 1) assert str(Mod(.6*x + y, .3*y)) == str(Mod(0.1*y + 0.6*x, 0.3*y)) assert (x + 1) % x == 1 % x assert (x + y) % x == y % x assert (x + y + 2) % x == (y + 2) % x assert (a + 3*x + 1) % (2*x) == Mod(a + x + 1, 2*x) assert (12*x + 18*y) % (3*x) == 3*Mod(6*y, x) # gcd extraction assert (-3*x) % (-2*y) == -Mod(3*x, 2*y) assert (.6*pi) % (.3*x*pi) == 0.3*pi*Mod(2, x) assert (.6*pi) % (.31*x*pi) == pi*Mod(0.6, 0.31*x) assert (6*pi) % (.3*x*pi) == pi*Mod(6, 0.3*x) assert (6*pi) % (.31*x*pi) == pi*Mod(6, 0.31*x) assert (6*pi) % (.42*x*pi) == pi*Mod(6, 0.42*x) assert (12*x) % (2*y) == 2*Mod(6*x, y) assert (12*x) % (3*5*y) == 3*Mod(4*x, 5*y) assert (12*x) % (15*x*y) == 3*x*Mod(4, 5*y) assert (-2*pi) % (3*pi) == pi assert (2*x + 2) % (x + 1) == 0 assert (x*(x + 1)) % (x + 1) == (x + 1)*Mod(x, 1) assert Mod(5.0*x, 0.1*y) == 0.1*Mod(50*x, y) i = Symbol('i', integer=True) assert (3*i*x) % (2*i*y) == i*Mod(3*x, 2*y) assert Mod(4*i, 4) == 0
class TestAllGood(object): # These latex strings should parse to the corresponding SymPy expression GOOD_PAIRS = [ ("0", Rational(0)), ("1", Rational(1)), ("-3.14", Rational(-314, 100)), ("5-3", _Add(5, _Mul(-1, 3))), ("(-7.13)(1.5)", _Mul(Rational('-7.13'), Rational('1.5'))), ("\\left(-7.13\\right)\\left(1.5\\right)", _Mul(Rational('-7.13'), Rational('1.5'))), ("x", x), ("2x", 2 * x), ("x^2", x**2), ("x^{3 + 1}", x**_Add(3, 1)), ("x^{\\left\\{3 + 1\\right\\}}", x**_Add(3, 1)), ("-3y + 2x", _Add(_Mul(2, x), Mul(-1, 3, y, evaluate=False))), ("-c", -c), ("a \\cdot b", a * b), ("a / b", a / b), ("a \\div b", a / b), ("a + b", a + b), ("a + b - a", Add(a, b, _Mul(-1, a), evaluate=False)), ("a^2 + b^2 = c^2", Eq(a**2 + b**2, c**2)), ("a^2 + b^2 != 2c^2", Ne(a**2 + b**2, 2 * c**2)), ("a\\mod b", Mod(a, b)), ("\\sin \\theta", sin(theta)), ("\\sin(\\theta)", sin(theta)), ("\\sin\\left(\\theta\\right)", sin(theta)), ("\\sin^{-1} a", asin(a)), ("\\sin a \\cos b", _Mul(sin(a), cos(b))), ("\\sin \\cos \\theta", sin(cos(theta))), ("\\sin(\\cos \\theta)", sin(cos(theta))), ("\\arcsin(a)", asin(a)), ("\\arccos(a)", acos(a)), ("\\arctan(a)", atan(a)), ("\\sinh(a)", sinh(a)), ("\\cosh(a)", cosh(a)), ("\\tanh(a)", tanh(a)), ("\\sinh^{-1}(a)", asinh(a)), ("\\cosh^{-1}(a)", acosh(a)), ("\\tanh^{-1}(a)", atanh(a)), ("\\arcsinh(a)", asinh(a)), ("\\arccosh(a)", acosh(a)), ("\\arctanh(a)", atanh(a)), ("\\arsinh(a)", asinh(a)), ("\\arcosh(a)", acosh(a)), ("\\artanh(a)", atanh(a)), ("\\operatorname{arcsinh}(a)", asinh(a)), ("\\operatorname{arccosh}(a)", acosh(a)), ("\\operatorname{arctanh}(a)", atanh(a)), ("\\operatorname{arsinh}(a)", asinh(a)), ("\\operatorname{arcosh}(a)", acosh(a)), ("\\operatorname{artanh}(a)", atanh(a)), ("\\operatorname{gcd}(a, b)", UnevaluatedExpr(gcd(a, b))), ("\\operatorname{lcm}(a, b)", UnevaluatedExpr(lcm(a, b))), ("\\operatorname{gcd}(a,b)", UnevaluatedExpr(gcd(a, b))), ("\\operatorname{lcm}(a,b)", UnevaluatedExpr(lcm(a, b))), ("\\operatorname{floor}(a)", floor(a)), ("\\operatorname{ceil}(b)", ceiling(b)), ("\\cos^2(x)", cos(x)**2), ("\\cos(x)^2", cos(x)**2), ("\\gcd(a, b)", UnevaluatedExpr(gcd(a, b))), ("\\lcm(a, b)", UnevaluatedExpr(lcm(a, b))), ("\\gcd(a,b)", UnevaluatedExpr(gcd(a, b))), ("\\lcm(a,b)", UnevaluatedExpr(lcm(a, b))), ("\\floor(a)", floor(a)), ("\\ceil(b)", ceiling(b)), ("\\max(a, b)", Max(a, b)), ("\\min(a, b)", Min(a, b)), ("\\frac{a}{b}", a / b), ("\\frac{a + b}{c}", _Mul(a + b, _Pow(c, -1))), ("\\frac{7}{3}", Rational(7, 3)), ("(\\csc x)(\\sec y)", csc(x) * sec(y)), ("\\lim_{x \\to 3} a", Limit(a, x, 3)), ("\\lim_{x \\rightarrow 3} a", Limit(a, x, 3)), ("\\lim_{x \\Rightarrow 3} a", Limit(a, x, 3)), ("\\lim_{x \\longrightarrow 3} a", Limit(a, x, 3)), ("\\lim_{x \\Longrightarrow 3} a", Limit(a, x, 3)), ("\\lim_{x \\to 3^{+}} a", Limit(a, x, 3, dir='+')), ("\\lim_{x \\to 3^{-}} a", Limit(a, x, 3, dir='-')), ("\\infty", oo), ("\\infty\\%", oo), ("\\$\\infty", oo), ("-\\infty", -oo), ("-\\infty\\%", -oo), ("-\\$\\infty", -oo), ("\\lim_{x \\to \\infty} \\frac{1}{x}", Limit(_Mul(1, _Pow(x, -1)), x, oo)), ("\\frac{d}{dx} x", Derivative(x, x)), ("\\frac{d}{dt} x", Derivative(x, t)), # ("f(x)", f(x)), # ("f(x, y)", f(x, y)), # ("f(x, y, z)", f(x, y, z)), # ("\\frac{d f(x)}{dx}", Derivative(f(x), x)), # ("\\frac{d\\theta(x)}{dx}", Derivative(theta(x), x)), ("|x|", _Abs(x)), ("\\left|x\\right|", _Abs(x)), ("||x||", _Abs(_Abs(x))), ("|x||y|", _Abs(x) * _Abs(y)), ("||x||y||", _Abs(_Abs(x) * _Abs(y))), ("\\lfloor x\\rfloor", floor(x)), ("\\lceil y\\rceil", ceiling(y)), ("\\pi^{|xy|}", pi**_Abs(x * y)), ("\\frac{\\pi}{3}", _Mul(pi, _Pow(3, -1))), ("\\sin{\\frac{\\pi}{2}}", sin(_Mul(pi, _Pow(2, -1)), evaluate=False)), ("a+bI", a + I * b), ("e^{I\\pi}", Integer(-1)), ("\\int x dx", Integral(x, x)), ("\\int x d\\theta", Integral(x, theta)), ("\\int (x^2 - y)dx", Integral(x**2 - y, x)), ("\\int x + a dx", Integral(_Add(x, a), x)), ("\\int da", Integral(1, a)), ("\\int_0^7 dx", Integral(1, (x, 0, 7))), ("\\int_a^b x dx", Integral(x, (x, a, b))), ("\\int^b_a x dx", Integral(x, (x, a, b))), ("\\int_{a}^b x dx", Integral(x, (x, a, b))), ("\\int^{b}_a x dx", Integral(x, (x, a, b))), ("\\int_{a}^{b} x dx", Integral(x, (x, a, b))), ("\\int_{ }^{}x dx", Integral(x, x)), ("\\int^{ }_{ }x dx", Integral(x, x)), ("\\int^{b}_{a} x dx", Integral(x, (x, a, b))), # ("\\int_{f(a)}^{f(b)} f(z) dz", Integral(f(z), (z, f(a), f(b)))), ("\\int (x+a)", Integral(_Add(x, a), x)), ("\\int a + b + c dx", Integral(Add(a, b, c, evaluate=False), x)), ("\\int \\frac{dz}{z}", Integral(Pow(z, -1), z)), ("\\int \\frac{3 dz}{z}", Integral(3 * Pow(z, -1), z)), ("\\int \\frac{1}{x} dx", Integral(Pow(x, -1), x)), ("\\int \\frac{1}{a} + \\frac{1}{b} dx", Integral(_Add(_Pow(a, -1), Pow(b, -1)), x)), ("\\int \\frac{3 \\cdot d\\theta}{\\theta}", Integral(3 * _Pow(theta, -1), theta)), ("\\int \\frac{1}{x} + 1 dx", Integral(_Add(_Pow(x, -1), 1), x)), ("x_0", Symbol('x_0', real=True, positive=True)), ("x_{1}", Symbol('x_1', real=True, positive=True)), ("x_a", Symbol('x_a', real=True, positive=True)), ("x_{b}", Symbol('x_b', real=True, positive=True)), ("h_\\theta", Symbol('h_{\\theta}', real=True, positive=True)), ("h_\\theta ", Symbol('h_{\\theta}', real=True, positive=True)), ("h_{\\theta}", Symbol('h_{\\theta}', real=True, positive=True)), # ("h_{\\theta}(x_0, x_1)", Symbol('h_{theta}', real=True)(Symbol('x_{0}', real=True), Symbol('x_{1}', real=True))), ("x!", _factorial(x)), ("100!", _factorial(100)), ("\\theta!", _factorial(theta)), ("(x + 1)!", _factorial(_Add(x, 1))), ("\\left(x + 1\\right)!", _factorial(_Add(x, 1))), ("(x!)!", _factorial(_factorial(x))), ("x!!!", _factorial(_factorial(_factorial(x)))), ("5!7!", _Mul(_factorial(5), _factorial(7))), ("\\sqrt{x}", sqrt(x)), ("\\sqrt{x + b}", sqrt(_Add(x, b))), ("\\sqrt[3]{\\sin x}", root(sin(x), 3)), ("\\sqrt[y]{\\sin x}", root(sin(x), y)), ("\\sqrt[\\theta]{\\sin x}", root(sin(x), theta)), ("x < y", StrictLessThan(x, y)), ("x \\leq y", LessThan(x, y)), ("x > y", StrictGreaterThan(x, y)), ("x \\geq y", GreaterThan(x, y)), ("\\sum_{k = 1}^{3} c", Sum(c, (k, 1, 3))), ("\\sum_{k = 1}^3 c", Sum(c, (k, 1, 3))), ("\\sum^{3}_{k = 1} c", Sum(c, (k, 1, 3))), ("\\sum^3_{k = 1} c", Sum(c, (k, 1, 3))), ("\\sum_{k = 1}^{10} k^2", Sum(k**2, (k, 1, 10))), ("\\sum_{n = 0}^{\\infty} \\frac{1}{n!}", Sum(_Pow(_factorial(n), -1), (n, 0, oo))), ("\\prod_{a = b}^{c} x", Product(x, (a, b, c))), ("\\prod_{a = b}^c x", Product(x, (a, b, c))), ("\\prod^{c}_{a = b} x", Product(x, (a, b, c))), ("\\prod^c_{a = b} x", Product(x, (a, b, c))), ("\\ln x", _log(x, E)), ("\\ln xy", _log(x * y, E)), ("\\log x", _log(x, 10)), ("\\log xy", _log(x * y, 10)), # ("\\log_2 x", _log(x, 2)), ("\\log_{2} x", _log(x, 2)), # ("\\log_a x", _log(x, a)), ("\\log_{a} x", _log(x, a)), ("\\log_{11} x", _log(x, 11)), ("\\log_{a^2} x", _log(x, _Pow(a, 2))), ("[x]", x), ("[a + b]", _Add(a, b)), ("\\frac{d}{dx} [ \\tan x ]", Derivative(tan(x), x)), ("2\\overline{x}", 2 * Symbol('xbar', real=True, positive=True)), ("2\\overline{x}_n", 2 * Symbol('xbar_n', real=True, positive=True)), ("\\frac{x}{\\overline{x}_n}", x / Symbol('xbar_n', real=True, positive=True)), ("\\frac{\\sin(x)}{\\overline{x}_n}", sin(x) / Symbol('xbar_n', real=True, positive=True)), ("2\\bar{x}", 2 * Symbol('xbar', real=True, positive=True)), ("2\\bar{x}_n", 2 * Symbol('xbar_n', real=True, positive=True)), ("\\sin\\left(\\theta\\right) \\cdot4", sin(theta) * 4), ("\\ln\\left(\\theta\\right)", _log(theta, E)), ("\\ln\\left(x-\\theta\\right)", _log(x - theta, E)), ("\\ln\\left(\\left(x-\\theta\\right)\\right)", _log(x - theta, E)), ("\\ln\\left(\\left[x-\\theta\\right]\\right)", _log(x - theta, E)), ("\\ln\\left(\\left\\{x-\\theta\\right\\}\\right)", _log(x - theta, E)), ("\\ln\\left(\\left|x-\\theta\\right|\\right)", _log(_Abs(x - theta), E)), ("\\frac{1}{2}xy(x+y)", Mul(Rational(1, 2), x, y, (x + y), evaluate=False)), ("\\frac{1}{2}\\theta(x+y)", Mul(Rational(1, 2), theta, (x + y), evaluate=False)), ("1-f(x)", 1 - f * x), ("\\begin{matrix}1&2\\\\3&4\\end{matrix}", Matrix([[1, 2], [3, 4]])), ("\\begin{matrix}x&x^2\\\\\\sqrt{x}&x\\end{matrix}", Matrix([[x, x**2], [_Pow(x, S.Half), x]])), ("\\begin{matrix}\\sqrt{x}\\\\\\sin(\\theta)\\end{matrix}", Matrix([_Pow(x, S.Half), sin(theta)])), ("\\begin{pmatrix}1&2\\\\3&4\\end{pmatrix}", Matrix([[1, 2], [3, 4]])), ("\\begin{bmatrix}1&2\\\\3&4\\end{bmatrix}", Matrix([[1, 2], [3, 4]])), # scientific notation ("2.5\\times 10^2", Rational(250)), ("1,500\\times 10^{-1}", Rational(150)), # e notation ("2.5E2", Rational(250)), ("1,500E-1", Rational(150)), # multiplication without cmd ("2x2y", Mul(2, x, 2, y, evaluate=False)), ("2x2", Mul(2, x, 2, evaluate=False)), ("x2", x * 2), # lin alg processing ("\\theta\\begin{matrix}1&2\\\\3&4\\end{matrix}", MatMul(theta, Matrix([[1, 2], [3, 4]]), evaluate=False)), ("\\theta\\begin{matrix}1\\\\3\\end{matrix} - \\begin{matrix}-1\\\\2\\end{matrix}", MatAdd(MatMul(theta, Matrix([[1], [3]]), evaluate=False), MatMul(-1, Matrix([[-1], [2]]), evaluate=False), evaluate=False)), ("\\theta\\begin{matrix}1&0\\\\0&1\\end{matrix}*\\begin{matrix}3\\\\-2\\end{matrix}", MatMul(theta, Matrix([[1, 0], [0, 1]]), Matrix([3, -2]), evaluate=False)), ("\\frac{1}{9}\\theta\\begin{matrix}1&2\\\\3&4\\end{matrix}", MatMul(Rational(1, 9), theta, Matrix([[1, 2], [3, 4]]), evaluate=False)), ("\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix},\\begin{pmatrix}4\\\\3\\\\1\\end{pmatrix}", [Matrix([1, 2, 3]), Matrix([4, 3, 1])]), ("\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix};\\begin{pmatrix}4\\\\3\\\\1\\end{pmatrix}", [Matrix([1, 2, 3]), Matrix([4, 3, 1])]), ("\\left\\{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix},\\begin{pmatrix}4\\\\3\\\\1\\end{pmatrix}\\right\\}", [Matrix([1, 2, 3]), Matrix([4, 3, 1])]), ("\\left\\{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix},\\begin{pmatrix}4\\\\3\\\\1\\end{pmatrix},\\begin{pmatrix}1\\\\1\\\\1\\end{pmatrix}\\right\\}", [Matrix([1, 2, 3]), Matrix([4, 3, 1]), Matrix([1, 1, 1])]), ("\\left\\{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix}\\right\\}", Matrix([1, 2, 3])), ("\\left{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix}\\right}", Matrix([1, 2, 3])), ("{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix}}", Matrix([1, 2, 3])), # us dollars ("\\$1,000.00", Rational(1000)), ("\\$543.21", Rational(54321, 100)), ("\\$0.009", Rational(9, 1000)), # percentages ("100\\%", Rational(1)), ("1.5\\%", Rational(15, 1000)), ("0.05\\%", Rational(5, 10000)), # empty set ("\\emptyset", S.EmptySet), # divide by zero ("\\frac{1}{0}", _Pow(0, -1)), ("1+\\frac{5}{0}", _Add(1, _Mul(5, _Pow(0, -1)))), # adjacent single char sub sup ("4^26^2", _Mul(_Pow(4, 2), _Pow(6, 2))), ("x_22^2", _Mul(Symbol('x_2', real=True, positive=True), _Pow(2, 2))) ] def test_good_pair(self, s, eq): assert_equal(s, eq)
def block4(exprs, iters, dims): # Non-perfect loop nest due to conditional # for i # if i % 2 == 0 # for j return iters[0](Conditional(Eq(Mod(dims['i'], 2), 0), iters[1](exprs[0])))
def test_binomial_Mod_slow(): p, q = 10**5 + 3, 10**9 + 33 # prime modulo r, s = 10**7 + 5, 33333333 # composite modulo n, k, m = symbols('n k m') assert (binomial(n, k) % q).subs({n: s, k: p}) == Mod(binomial(s, p), q) assert (binomial(n, k) % m).subs({n: 8, k: 5, m: 13}) == 4 assert (binomial(9, k) % 7).subs(k, 2) == 1 # Lucas Theorem assert Mod(binomial(123456, 43253, evaluate=False), p) == Mod(binomial(123456, 43253), p) assert Mod(binomial(-178911, 237, evaluate=False), p) == Mod(-binomial(178911 + 237 - 1, 237), p) assert Mod(binomial(-178911, 238, evaluate=False), p) == Mod(binomial(178911 + 238 - 1, 238), p) # factorial Mod assert Mod(binomial(9734, 451, evaluate=False), q) == Mod(binomial(9734, 451), q) assert Mod(binomial(-10733, 4459, evaluate=False), q) == Mod(binomial(-10733, 4459), q) assert Mod(binomial(-15733, 4458, evaluate=False), q) == Mod(binomial(-15733, 4458), q) # binomial factorize assert Mod(binomial(753, 119, evaluate=False), r) == Mod(binomial(753, 119), r) assert Mod(binomial(3781, 948, evaluate=False), s) == Mod(binomial(3781, 948), s) assert Mod(binomial(25773, 1793, evaluate=False), s) == Mod(binomial(25773, 1793), s) assert Mod(binomial(-753, 118, evaluate=False), r) == Mod(binomial(-753, 118), r) assert Mod(binomial(-25773, 1793, evaluate=False), s) == Mod(binomial(-25773, 1793), s)
def test_factorial_Mod(): pr = Symbol('pr', prime=True) p, q = 10**9 + 9, 10**9 + 33 # prime modulo r, s = 10**7 + 5, 33333333 # composite modulo assert Mod(factorial(pr - 1), pr) == pr - 1 assert Mod(factorial(pr - 1), -pr) == -1 assert Mod(factorial(r - 1, evaluate=False), r) == 0 assert Mod(factorial(s - 1, evaluate=False), s) == 0 assert Mod(factorial(p - 1, evaluate=False), p) == p - 1 assert Mod(factorial(q - 1, evaluate=False), q) == q - 1 assert Mod(factorial(p - 50, evaluate=False), p) == 854928834 assert Mod(factorial(q - 1800, evaluate=False), q) == 905504050 assert Mod(factorial(153, evaluate=False), r) == Mod(factorial(153), r) assert Mod(factorial(255, evaluate=False), s) == Mod(factorial(255), s)