def test_count_ops_non_visual(): def count(val): return count_ops(val, visual=False) assert count(x) == 0 assert count(x) is not S.Zero assert count(x + y) == 1 assert count(x + y) is not S.One assert count(x + y*x + 2*y) == 4 assert count({x + y: x}) == 1 assert count({x + y: S(2) + x}) is not S.One assert count(Or(x,y)) == 1 assert count(And(x,y)) == 1 assert count(Not(x)) == 0 assert count(Nor(x,y)) == 1 assert count(Nand(x,y)) == 1 assert count(Xor(x,y)) == 3 assert count(Implies(x,y)) == 1 assert count(Equivalent(x,y)) == 1 assert count(ITE(x,y,z)) == 3 assert count(ITE(True,x,y)) == 0
def test_pretty_Boolean(): expr = Not(x, evaluate=False) assert pretty(expr) == "Not(x)" assert upretty(expr) == u"¬ x" expr = And(x, y) assert pretty(expr) == "And(x, y)" assert upretty(expr) == u"x ∧ y" expr = Or(x, y) assert pretty(expr) == "Or(x, y)" assert upretty(expr) == u"x ∨ y" expr = Xor(x, y, evaluate=False) assert pretty(expr) == "Xor(x, y)" assert upretty(expr) == u"x ⊻ y" expr = Nand(x, y, evaluate=False) assert pretty(expr) == "Nand(x, y)" assert upretty(expr) == u"x ⊼ y" expr = Nor(x, y, evaluate=False) assert pretty(expr) == "Nor(x, y)" assert upretty(expr) == u"x ⊽ y" expr = Implies(x, y, evaluate=False) assert pretty(expr) == "Implies(x, y)" assert upretty(expr) == u"x → y" expr = Equivalent(x, y, evaluate=False) assert pretty(expr) == "Equivalent(x, y)" assert upretty(expr) == u"x ≡ y"
def test_Nand(): A, B, C = map(Boolean, symbols('A,B,C')) assert Nand() == False assert Nand(A) == ~A assert Nand(True) == False assert Nand(False) == True assert Nand(True, True) == False assert Nand(True, False) == True assert Nand(False, False) == True assert Nand(True, A) == ~A assert Nand(False, A) == True assert Nand(True, True, True) == False assert Nand(True, True, A) == ~A assert Nand(True, False, A) == True
def test_count_ops_visual(): ADD, MUL, POW, SIN, COS, EXP, AND, D, G, M = symbols( 'Add Mul Pow sin cos exp And Derivative Integral Sum'.upper()) DIV, SUB, NEG = symbols('DIV SUB NEG') LT, LE, GT, GE, EQ, NE = symbols('LT LE GT GE EQ NE') NOT, OR, AND, XOR, IMPLIES, EQUIVALENT, _ITE, BASIC, TUPLE = symbols( 'Not Or And Xor Implies Equivalent ITE Basic Tuple'.upper()) def count(val): return count_ops(val, visual=True) assert count(7) is S.Zero assert count(S(7)) is S.Zero assert count(-1) == NEG assert count(-2) == NEG assert count(S(2) / 3) == DIV assert count(Rational(2, 3)) == DIV assert count(pi / 3) == DIV assert count(-pi / 3) == DIV + NEG assert count(I - 1) == SUB assert count(1 - I) == SUB assert count(1 - 2 * I) == SUB + MUL assert count(x) is S.Zero assert count(-x) == NEG assert count(-2 * x / 3) == NEG + DIV + MUL assert count(Rational(-2, 3) * x) == NEG + DIV + MUL assert count(1 / x) == DIV assert count(1 / (x * y)) == DIV + MUL assert count(-1 / x) == NEG + DIV assert count(-2 / x) == NEG + DIV assert count(x / y) == DIV assert count(-x / y) == NEG + DIV assert count(x**2) == POW assert count(-x**2) == POW + NEG assert count(-2 * x**2) == POW + MUL + NEG assert count(x + pi / 3) == ADD + DIV assert count(x + S.One / 3) == ADD + DIV assert count(x + Rational(1, 3)) == ADD + DIV assert count(x + y) == ADD assert count(x - y) == SUB assert count(y - x) == SUB assert count(-1 / (x - y)) == DIV + NEG + SUB assert count(-1 / (y - x)) == DIV + NEG + SUB assert count(1 + x**y) == ADD + POW assert count(1 + x + y) == 2 * ADD assert count(1 + x + y + z) == 3 * ADD assert count(1 + x**y + 2 * x * y + y**2) == 3 * ADD + 2 * POW + 2 * MUL assert count(2 * z + y + x + 1) == 3 * ADD + MUL assert count(2 * z + y**17 + x + 1) == 3 * ADD + MUL + POW assert count(2 * z + y**17 + x + sin(x)) == 3 * ADD + POW + MUL + SIN assert count(2 * z + y**17 + x + sin(x**2)) == 3 * ADD + MUL + 2 * POW + SIN assert count(2 * z + y**17 + x + sin(x**2) + exp(cos(x))) == 4 * ADD + MUL + 2 * POW + EXP + COS + SIN assert count(Derivative(x, x)) == D assert count(Integral(x, x) + 2 * x / (1 + x)) == G + DIV + MUL + 2 * ADD assert count(Sum(x, (x, 1, x + 1)) + 2 * x / (1 + x)) == M + DIV + MUL + 3 * ADD assert count(Basic()) is S.Zero assert count({x + 1: sin(x)}) == ADD + SIN assert count([x + 1, sin(x) + y, None]) == ADD + SIN + ADD assert count({x + 1: sin(x), y: cos(x) + 1}) == SIN + COS + 2 * ADD assert count({}) is S.Zero assert count([x + 1, sin(x) * y, None]) == SIN + ADD + MUL assert count([]) is S.Zero assert count(Basic()) == 0 assert count(Basic(Basic(), Basic(x, x + y))) == ADD + 2 * BASIC assert count(Basic(x, x + y)) == ADD + BASIC assert [count(Rel(x, y, op)) for op in '< <= > >= == <> !='.split() ] == [LT, LE, GT, GE, EQ, NE, NE] assert count(Or(x, y)) == OR assert count(And(x, y)) == AND assert count(Or(x, Or(y, And(z, a)))) == AND + OR assert count(Nor(x, y)) == NOT + OR assert count(Nand(x, y)) == NOT + AND assert count(Xor(x, y)) == XOR assert count(Implies(x, y)) == IMPLIES assert count(Equivalent(x, y)) == EQUIVALENT assert count(ITE(x, y, z)) == _ITE assert count([Or(x, y), And(x, y), Basic(x + y)]) == ADD + AND + BASIC + OR assert count(Basic(Tuple(x))) == BASIC + TUPLE #It checks that TUPLE is counted as an operation. assert count(Eq(x + y, S(2))) == ADD + EQ
def test_count_ops_visual(): ADD, MUL, POW, SIN, COS, EXP, AND, D, G = symbols( 'Add Mul Pow sin cos exp And Derivative Integral'.upper()) DIV, SUB, NEG = symbols('DIV SUB NEG') OR, AND, IMPLIES, EQUIVALENT, BASIC, TUPLE = symbols( 'Or And Implies Equivalent Basic Tuple'.upper()) def count(val): return count_ops(val, visual=True) assert count(7) is S.Zero assert count(S(7)) is S.Zero assert count(-1) == NEG assert count(-2) == NEG assert count(S(2)/3) == DIV assert count(pi/3) == DIV assert count(-pi/3) == DIV + NEG assert count(I - 1) == SUB assert count(1 - I) == SUB assert count(1 - 2*I) == SUB + MUL assert count(x) is S.Zero assert count(-x) == NEG assert count(-2*x/3) == NEG + DIV + MUL assert count(1/x) == DIV assert count(1/(x*y)) == DIV + MUL assert count(-1/x) == NEG + DIV assert count(-2/x) == NEG + DIV assert count(x/y) == DIV assert count(-x/y) == NEG + DIV assert count(x**2) == POW assert count(-x**2) == POW + NEG assert count(-2*x**2) == POW + MUL + NEG assert count(x + pi/3) == ADD + DIV assert count(x + S(1)/3) == ADD + DIV assert count(x + y) == ADD assert count(x - y) == SUB assert count(y - x) == SUB assert count(-1/(x - y)) == DIV + NEG + SUB assert count(-1/(y - x)) == DIV + NEG + SUB assert count(1 + x**y) == ADD + POW assert count(1 + x + y) == 2*ADD assert count(1 + x + y + z) == 3*ADD assert count(1 + x**y + 2*x*y + y**2) == 3*ADD + 2*POW + 2*MUL assert count(2*z + y + x + 1) == 3*ADD + MUL assert count(2*z + y**17 + x + 1) == 3*ADD + MUL + POW assert count(2*z + y**17 + x + sin(x)) == 3*ADD + POW + MUL + SIN assert count(2*z + y**17 + x + sin(x**2)) == 3*ADD + MUL + 2*POW + SIN assert count(2*z + y**17 + x + sin( x**2) + exp(cos(x))) == 4*ADD + MUL + 2*POW + EXP + COS + SIN assert count(Derivative(x, x)) == D assert count(Integral(x, x) + 2*x/(1 + x)) == G + DIV + MUL + 2*ADD assert count(Basic()) is S.Zero assert count({x + 1: sin(x)}) == ADD + SIN assert count([x + 1, sin(x) + y, None]) == ADD + SIN + ADD assert count({x + 1: sin(x), y: cos(x) + 1}) == SIN + COS + 2*ADD assert count({}) is S.Zero assert count([x + 1, sin(x)*y, None]) == SIN + ADD + MUL assert count([]) is S.Zero assert count(Basic()) == 0 assert count(Basic(Basic(),Basic(x,x+y))) == ADD + 2*BASIC assert count(Basic(x, x + y)) == ADD + BASIC assert count(Or(x,y)) == OR assert count(And(x,y)) == AND assert count(And(x**y,z)) == AND + POW assert count(Or(x,Or(y,And(z,a)))) == AND + 2*OR assert count(Nor(x,y)) == AND assert count(Nand(x,y)) == OR assert count(Xor(x,y)) == 2*AND + OR assert count(Implies(x,y)) == IMPLIES assert count(Equivalent(x,y)) == EQUIVALENT assert count(ITE(x,y,z)) == 2*AND + OR assert count([Or(x,y), And(x,y), Basic(x+y)]) == ADD + AND + BASIC + OR assert count(Basic(Tuple(x))) == BASIC + TUPLE #It checks that TUPLE is counted as an operation. assert count(Eq(x + y, S(2))) == ADD