예제 #1
0
def process_args():
    opts, args = getopt.getopt(sys.argv[1:], "glnd")
    for o, a in opts:
      if o == "-g": interaction.enable_gpu()
      if o == "-n": RUNCONFIG['update_networks'] = 1
      if o == "-d": RUNCONFIG['run_developer'] = 1
      if o == "-l": RUNCONFIG['lottery_choices'] = 1
    return args
예제 #2
0
def process_args():
    opts, args = getopt.getopt(sys.argv[1:], "glnd")
    for o, a in opts:
        if o == "-g": interaction.enable_gpu()
        if o == "-n": RUNCONFIG['update_networks'] = 1
        if o == "-d": RUNCONFIG['run_developer'] = 1
        if o == "-l": RUNCONFIG['lottery_choices'] = 1
    return args
예제 #3
0
파일: lcmnl.py 프로젝트: vijakshay/urbansim
from synthicity.urbansim import interaction, mnl
import numpy as np, pandas as pd

GPU = 0
if GPU: interaction.enable_gpu()

EMTOL = 1e-03
MAXITER = 10000

def lcmnl_estimate(cmdata,numclasses,csdata,numalts,chosen,maxiter=MAXITER,emtol=EMTOL):

  loglik = -999999
  beta = [np.ones(csdata.shape[1]) for i in range(numclasses)]
  #cmbeta = np.ones((cmdata.shape[1]+1)*(numclasses-1)) # +1 if for asc, -1 is base alt
  cmbeta = np.ones(cmdata.shape[1])
  
  for i in range(maxiter):
    print "Running iteration %d" % (i+1)

    # EXPECTATION
    print "Running class membership model"
    print "cmbeta", cmbeta
    cmprobs = mnl.mnl_simulate(cmdata,cmbeta,numclasses,GPU=GPU,returnprobs=1)
    print "cmprobs", cmprobs

    csprobs = []
    for cno in range(numclasses):
      print "Running class specific model for class %d" % (cno+1)
      print "csbeta", beta[cno]
      tmp = mnl.mnl_simulate(csdata,beta[cno],numalts,GPU=GPU,returnprobs=1)
      print "csprobs", tmp