#!/usr/bin/env python import os, sys import setlog conf_file = os.environ['DEV'] + 'dl_management/.log/logging.yaml' save_file = os.path.abspath(sys.argv[0])[:-len(sys.argv[0])] + 'log/' setlog.reconfigure(conf_file, save_file) import system.DescriptorLearning as System if __name__ == '__main__': machine = System.MultNet(root=os.path.abspath(sys.argv[0])[:-len(sys.argv[0])], cnn_type='cnn.yaml', trainer_file='../trainer_mult_mod_pca.yaml', dataset_file='../../../SummerTests/datasets/cmu_lt.yaml') machine.compute_PCA(2048, desc=['desc_no_pca'])
#!/usr/bin/env python import os, sys import setlog conf_file = os.environ['DEV'] + 'dl_management/.log/logging.yaml' save_file = os.path.abspath(sys.argv[0])[:-len(sys.argv[0])] + 'log/' setlog.reconfigure(conf_file, save_file) import system.DescriptorLearning as System if __name__ == '__main__': machine = System.MultNet( root=os.path.abspath(sys.argv[0])[:-len(sys.argv[0])], cnn_type='cnn.yaml', dataset_file='../../../../../datasets/default.yaml') action = input( 'Exec:\n[t]\ttrain\n[e]\ttest\n[p]\tprint (console)\n[P]\tprint (full)\n[ ]\ttrain+test\n' ) if action == 't': machine.train() elif action == 'e': machine.test() machine.plot(print_loss=False, print_val=False) elif action == 'p': machine.plot(print_loss=False, print_val=False) elif action == 'P': machine.plot() elif action == '': machine.train() machine.test() machine.plot(print_loss=False, print_val=False)
#!/usr/bin/env python import os, sys import setlog conf_file = os.environ['DEV'] + 'dl_management/.log/logging.yaml' save_file = os.path.abspath(sys.argv[0])[:-len(sys.argv[0])] + 'log/' setlog.reconfigure(conf_file, save_file) import system.DescriptorLearning as System if __name__ == '__main__': print(os.getcwd()) machine = System.MultNet( root=os.path.abspath(sys.argv[0])[:-len(sys.argv[0])], dataset_file='../../../../datasets/cmu_training.yaml', trainer_file='../trainer.yaml') action = input( 'Exec:\n[t]\ttrain\n[e]\ttest\n[p]\tprint (console)\n[P]\tprint (full)\n[ ]\ttrain+test\n' ) if action == 't': machine.train() elif action == 'e': machine.test() machine.plot(print_loss=False, print_val=False) elif action == 'p': machine.plot(print_loss=False, print_val=False) elif action == 'P': machine.plot() elif action == '': machine.train() machine.test()
#!/usr/bin/env python import os, sys import torch import setlog conf_file = os.environ['DEV'] + 'dl_management/.log/logging.yaml' save_file = os.path.abspath(sys.argv[0])[:-len(sys.argv[0])] + 'log/' setlog.reconfigure(conf_file, save_file) import system.DescriptorLearning as System if __name__ == '__main__': machine = System.Default( root=os.path.abspath(sys.argv[0])[:-len(sys.argv[0])]) action = input(''' Exec: [t]\ttrain [e]\ttest [p]\tprint (console) [P]\tprint (full) [s]\tserialize net [c]\tcreat clusters [ ]\ttrain+test ''') if action == 't': machine.train() elif action == 'e': machine.test() machine.plot(print_loss=False, print_val=False) elif action == 'p': machine.plot(print_loss=False, print_val=False)
#!/usr/bin/env python import os, sys import setlog conf_file = os.environ['DEV'] + 'dl_management/.log/logging.yaml' save_file = os.path.abspath(sys.argv[0])[:-len(sys.argv[0])] + 'log/' setlog.reconfigure(conf_file, save_file) import system.DescriptorLearning as System if __name__ == '__main__': machine = System.Default(root=os.path.abspath( sys.argv[0])[:-len(sys.argv[0])], dataset_file='../../../../datasets/default.yaml', trainer_file='../trainer.yaml') action = input( 'Exec:\n[t]\ttrain\n[e]\ttest\n[p]\tprint (console)\n[P]\tprint (full)\n[ ]\ttrain+test\n' ) if action == 't': machine.train() elif action == 'e': machine.test() machine.plot(print_loss=False, print_val=False) elif action == 'p': machine.plot(print_loss=False, print_val=False) elif action == 'P': machine.plot() elif action == '': machine.train() machine.test() machine.plot(print_loss=False, print_val=False)
#!/usr/bin/env python import os, sys import setlog conf_file = os.environ['DEV'] + 'dl_management/.log/logging.yaml' save_file = os.path.abspath(sys.argv[0])[:-len(sys.argv[0])] + 'log/' setlog.reconfigure(conf_file, save_file) import system.DescriptorLearning as System if __name__ == '__main__': machine = System.MultNet(root=os.path.abspath( sys.argv[0])[:-len(sys.argv[0])], dataset_file='sparse_dataset.yaml') action = input( 'Exec:\n[t]\ttrain\n[e]\ttest\n[p]\tprint (console)\n[P]\tprint (full)\n[ ]\ttrain+test\n' ) if action == 't': machine.train() elif action == 'e': machine.test() machine.plot(print_loss=False, print_val=False) elif action == 'p': machine.plot(print_loss=False, print_val=False) elif action == 'P': machine.plot() elif action == '': machine.train() machine.test() machine.plot(print_loss=False, print_val=False) elif action == 's':
#!/usr/bin/env python import os, sys import setlog conf_file = os.environ['DEV'] + 'dl_management/.log/logging.yaml' save_file = os.path.abspath(sys.argv[0])[:-len(sys.argv[0])] + 'log/' setlog.reconfigure(conf_file, save_file) import system.DescriptorLearning as System if __name__ == '__main__': machine = System.MultNet( root=os.path.abspath(sys.argv[0])[:-len(sys.argv[0])], cnn_type='cnn.yaml', trainer_file='../trainer_only_depth.yaml', dataset_file='../../../SummerTests/datasets/night_ft.yaml') action = input( 'Exec:\n[t]\ttrain\n[e]\ttest\n[p]\tprint (console)\n[P]\tprint (full)\n[ ]\ttrain+test\n' ) if action == 't': machine.train() elif action == 'e': machine.test() machine.plot(print_loss=False, print_val=False) elif action == 'p': machine.plot(print_loss=False, print_val=False) elif action == 'P': machine.plot() elif action == '': machine.train() machine.test()