def add_l_opt_marker(handle, l_opt=None): """Add a vertical labeled line on the graph @l_opt (uses the default l_opt if l_opt is None)""" if l_opt is None: muscle_parameters = MuscleParameters() l_opt = muscle_parameters.l_opt plt.figure(handle) plt.axvline(x=l_opt, color="k") plt.text(l_opt + 0.001, 2000, "L_opt", rotation=-90, color="k")
def plotRelationLceAPForces(muscle_stretch,muscle_stimulation=1.,l_opt=0.11): # Defination of muscles parameters = MuscleParameters() # Create muscle object muscle = Muscle(parameters) # Instatiate isometric muscle system sys = IsometricMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) sys.muscle.L_OPT = l_opt # Set the initial condition x0 = [0.0, sys.muscle.L_OPT] # x0[0] --> muscle stimulation intial value # x0[1] --> muscle contracticle length initial value # Set the time for integration t_start = 0.0 t_stop = 0.2 time_step = 0.001 time = np.arange(t_start, t_stop, time_step) # Store the results l_ce = [] active = [] passive = [] tendon = [] # Run the experiment for different length of the MTU for l in muscle_stretch: # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=muscle_stimulation, muscle_length=l) l_ce.append(result.l_ce[-1]) active.append(result.active_force[-1]) passive.append(result.passive_force[-1]) tendon.append(result.tendon_force[-1]) plt.figure('Active/passive forces as function of l_ce\n'+ '(activation: {}, l_opt: {})' .format(muscle_stimulation,l_opt)) plt.plot(l_ce, active,label='active force') plt.plot(l_ce, passive,label='passive force') plt.plot(l_ce, tendon,label='tendon force') plt.legend() plt.title('Isometric muscle experiment\nActive/passive forces as function '+ 'of l_ce\n(activation: {}, l_opt: {})'.format(muscle_stimulation,l_opt)) plt.xlabel('l_ce [m]') plt.ylabel('Force [N]') axes = plt.gca() axes.set_xlim([0.05,0.2]) axes.set_ylim([0,1700]) plt.grid()
def isotonic_experiment(muscle_stimulation, loads, time_param=TimeParameters()): # Muscle muscle_parameters = MuscleParameters() muscle = Muscle(muscle_parameters) # Initial conditions x0 = [0] * StatesIsotonic.NB_STATES.value x0[StatesIsotonic.STIMULATION.value] = 0. x0[StatesIsotonic.L_CE.value] = muscle.L_OPT x0[StatesIsotonic.LOAD_POS.value] = muscle.L_OPT + muscle.L_SLACK x0[StatesIsotonic.LOAD_SPEED.value] = 0. # Containers v_ce = [] tendon_force = [] # Integration pylog.info("Running the experiments (this might take a while)...") for load in loads: # New load definition mass_parameters = MassParameters() mass_parameters.mass = load mass = Mass(mass_parameters) # System definition sys = IsotonicMuscleSystem() sys.add_muscle(muscle) sys.add_mass(mass) result = sys.integrate(x0=x0, time=time_param.times, time_step=time_param.t_step, time_stabilize=time_param.t_stabilize, stimulation=muscle_stimulation, load=load) # Result processing if result.l_mtc[-1] > x0[StatesIsotonic.LOAD_POS.value]: # Extension index = result.v_ce.argmax() v_ce.append(result.v_ce.max()) tendon_force.append(result.tendon_force[index]) else: # Contraction index = result.v_ce.argmin() v_ce.append(result.v_ce.min()) tendon_force.append(result.tendon_force[index]) return v_ce, tendon_force
def system_initialisation(l_pendulum=0.5, m_pendulum=1., f_max=1500, l_attach=0.17): """Generates a oscillatory system and its default initial conditions""" # Neural parameters for oscillatory system d = 1. w = np.array([[0, -5, -5, 0], [-5, 0, 0, -5], [5, -5, 0, 0], [-5, 5, 0, 0]]) b = np.array([3., 3., -3., -3.]) tau = np.array([0.02, 0.02, 0.1, 0.1]) # Pendulum parameters pendulum_params = PendulumParameters() pendulum_params.L = l_pendulum pendulum_params.m = m_pendulum pendulum = PendulumSystem(pendulum_params) # Muscles parameters m1_param = MuscleParameters() m1_param.f_max = f_max m2_param = MuscleParameters() m2_param.f_max = f_max m1 = Muscle(m1_param) m2 = Muscle(m2_param) muscles = MuscleSytem(m1, m2) # Muscle_attachment m1_origin = np.array([-l_attach, 0.0]) m1_insertion = np.array([0.0, -l_attach]) m2_origin = np.array([l_attach, 0.0]) m2_insertion = np.array([0.0, -l_attach]) muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) # Neural network n_params = NetworkParameters() n_params.D = d n_params.w = w n_params.b = b n_params.tau = tau neural_network = NeuralSystem(n_params) # System creation sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system sys.add_neural_system( neural_network) # Add neural network model to the system # Default initial conditions x0_p = np.array([0, 0.]) # Pendulum initial condition x0_m = np.array([0., m1.L_OPT, 0., m2.L_OPT]) # Muscle Model initial condition x0_n = np.array([-0.5, 1, 0.5, 1]) # Neural Network initial condition x0 = np.concatenate((x0_p, x0_m, x0_n)) # System initial conditions return sys, x0
def exercise1a(): """ Exercise 1a The goal of this exercise is to understand the relationship between muscle length and tension. Here you will re-create the isometric muscle contraction experiment. To do so, you will have to keep the muscle at a constant length and observe the force while stimulating the muscle at a constant activation.""" # Defination of muscles parameters = MuscleParameters() pylog.warning("Loading default muscle parameters") pylog.info(parameters.showParameters()) pylog.info("Use the parameters object to change the muscle parameters") # Create muscle object muscle = Muscle(parameters) pylog.warning("Isometric muscle contraction to be completed") # Instatiate isometric muscle system sys = IsometricMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) # You can still access the muscle inside the system by doing # >>> sys.muscle.L_OPT # To get the muscle optimal length muscle_stretches = np.arange(.12, .30, .002) #muscle_tendon_forces = [] #Erase or comment muscle_active_forces = [] muscle_passive_forces = [] total_force = [] contractile_element_length = [] # Evalute for a single muscle stretch for muscle_stretch in muscle_stretches: # Evalute for a single muscle stimulation muscle_stimulation = 1. # Set the initial condition x0 = [0.0, sys.muscle.L_OPT] # x0[0] --> muscle stimulation intial value # x0[1] --> muscle contracticle length initial value # Set the time for integration t_start = 0.0 t_stop = 0.3 time_step = 0.001 time = np.arange(t_start, t_stop, time_step) # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=muscle_stimulation, muscle_length=muscle_stretch) # muscle_tendon_forces.append(result.tendon_force[-1])#Erase or comment muscle_active_forces.append(result.active_force[-1]) muscle_passive_forces.append(result.passive_force[-1]) total_force.append(result.active_force[-1] + result.passive_force[-1]) contractile_element_length.append(result.l_ce[-1]) # plotXY(time,result.l_ce,'Time [s]','Contractile Element Length [m]','Active', # 'Isometric Muscle: Contractile Element Length vs Time', # 'Isometric Muscle: Contractile Element Length vs Time') # plotXY(result.l_ce,result.active_force,'Contractile Element Length [m]','Active Force [N]','Active', # 'Isometric Muscle: Contractile Element Length vs Force', # 'Isometric Muscle: Contractile Element Length vs Force') # plt.plot(result.l_ce, result.passive_force, label='passive') # plt.plot(result.l_ce, result.active_force+result.passive_force, label='total') # Plotting plt.figure('Isometric Muscle: L_ce vs Force') plt.plot(contractile_element_length, muscle_active_forces, label='active') plt.plot(contractile_element_length, muscle_passive_forces, label='passive') plt.plot(contractile_element_length, total_force, label='total') plt.title('Isometric Muscle: Stretch Length vs Force') plt.xlabel('Contractile Element Length [m]') plt.ylabel('Muscle Force [N]') plt.legend(loc='upper right') plt.grid()
def exercise1c(): """describe how fiber length influences the force-length curve. Compare a muscle comprised of short muscle fibers to a muscle comprised of long muscle fibers. Change the parameter, you can use system_parameters.py::MuscleParameters before instantiating the muscle No more than 2 plots are required. """ # Defination of muscles parameters = MuscleParameters() pylog.warning("Loading default muscle parameters") pylog.info(parameters.showParameters()) pylog.info("Use the parameters object to change the muscle parameters") # Create muscle object muscle = Muscle(parameters) pylog.warning("Isometric muscle contraction to be completed") # Instatiate isometric muscle system sys = IsometricMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) # You can still access the muscle inside the system by doing # >>> sys.muscle.L_OPT # To get the muscle optimal length muscle_lengths = np.arange(.1, .26, .03) max_muscle_active_forces = [] max_muscle_passive_forces = [] max_total_force = [] max_force_stretch = [] # Evalute for a single muscle stretch for muscle_length in muscle_lengths: parameters.l_opt = muscle_length muscle = Muscle(parameters) pylog.warning("Isometric muscle contraction to be completed") # Instatiate isometric muscle system sys = IsometricMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) if muscle_length < .16: start_stretch_length = .16 else: start_stretch_length = muscle_length muscle_stretches = np.arange( start_stretch_length, 1.2 * muscle_length + .16, (1.2 * muscle_length + .16 - start_stretch_length) / 40) muscle_active_forces = [] muscle_passive_forces = [] total_force = [] # Evalute for a single muscle stretch for muscle_stretch in muscle_stretches: # Evalute for a single muscle stimulation muscle_stimulation = 1. # Set the initial condition x0 = [0.0, sys.muscle.L_OPT] # x0[0] --> muscle stimulation intial value # x0[1] --> muscle contracticle length initial value # Set the time for integration t_start = 0.0 t_stop = 0.3 time_step = 0.001 time = np.arange(t_start, t_stop, time_step) # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=muscle_stimulation, muscle_length=muscle_stretch) muscle_active_forces.append(result.active_force[-1]) muscle_passive_forces.append(result.passive_force[-1]) total_force.append(result.active_force[-1] + result.passive_force[-1]) max_muscle_active_forces.append(max(muscle_active_forces)) active_max_index = muscle_active_forces.index( max(muscle_active_forces)) max_muscle_passive_forces.append( muscle_passive_forces[active_max_index]) max_total_force.append(total_force[active_max_index]) max_force_stretch.append(muscle_stretches[active_max_index]) # Plotting max force for each muscle length over different stretch values. Uncomment to see (adds ~8 plots) # plt.figure('Isometric muscle experiment. L_opt = %.2f'%(muscle_length)) # plt.plot(muscle_stretches, muscle_active_forces, label='active') # plt.plot(muscle_stretches, muscle_passive_forces, label='passive') # plt.plot(muscle_stretches, total_force, label='total') # plt.title('Isometric muscle experiment 1C, L_opt = %.2f'%(muscle_length)) # plt.xlabel('Stretch Length [m]') # plt.ylabel('Muscle Force [N]') # plt.legend(loc='upper left') # plt.grid() # Plotting active on its own plt.figure('Isometric muscle experiment, Active Force') plt.plot(muscle_stretches, muscle_active_forces, label=('L_opt = %.2f' % (muscle_length))) plt.title('Isometric muscle experiment: Active Force vs L_Opt') plt.xlabel('Stretch Length [m]') plt.ylabel('Active Muscle Force [N]') plt.legend(loc='upper left') plt.grid() # Plotting passive on its own plt.figure('Isometric muscle experiment, Passive Force') plt.plot(muscle_stretches, muscle_passive_forces, label=('L_opt = %.2f' % (muscle_length))) plt.title('Isometric muscle experiment: Passive Force vs L_Opt') plt.xlabel('Stretch Length [m]') plt.ylabel('Passive Muscle Force [N]') plt.legend(loc='upper left') plt.grid() # Plot max vals plt.figure('Isometric muscle experiment max Force') plt.plot(muscle_lengths, max_muscle_active_forces, label='active') #plt.plot(muscle_lengths, max_muscle_passive_forces, label='passive') #plt.plot(muscle_lengths, max_total_force, label='total') plt.title('Isometric muscle experiment 1C, Max') plt.xlabel('Muscle Optimal Length [m]') plt.ylabel('Max Muscle Force [N]') plt.legend(loc='upper left') plt.grid() # print(max_muscle_active_forces) # Plot max stretch lengths of max vals plt.figure('Isometric muscle experiment max Force stretch') plt.plot(muscle_lengths, max_force_stretch, label='active') #plt.plot(muscle_lengths, max_muscle_passive_forces, label='passive') #plt.plot(muscle_lengths, max_total_force, label='total') plt.title('Isometric muscle experiment 1C, Max Stretch') plt.xlabel('Muscle Optimal Length [m]') plt.ylabel('Muscle Stretch of Max Force [m]') plt.legend(loc='upper left') plt.grid()
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 3 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([0., 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time simsin = SystemSimulation(sys) # Instantiate Simulation object #simsquare = SystemSimulation(sys) # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent label_test = [] """" definition of different kinds of activation for each muscle. Amplitude1 and amplitude2 allows to play with the amplitude of activation on each muscle (RMS value for the sinus activation) act1 and act2 activates the muscle all the time. actsin activates with sin(wi) if sin(wi)>0 (no negative activation). The 2 muscles are in opposition of phase. actsquare does the same with a square signal. """ amplitude1 = 1. amplitude2 = 1. #declaration of the activations act1 = np.ones((len(time), 1)) * amplitude1 act2 = np.ones((len(time), 1)) * amplitude2 actsin = np.ones((len(time), 1)) actsin2 = np.ones((len(time), 1)) actsquare = np.ones((len(time), 1)) actsquare2 = np.ones((len(time), 1)) wlist = [0.1, 0.05, 0.01, 0.005] k = 0 for w in wlist: #generation of the signals at pulsation w for i in range(len(actsin)): if math.sin(w * i) <= 0: actsin[i] = 0 actsin2[i] = abs(amplitude2 * math.sqrt(2) * math.sin(w * i)) else: actsin[i] = abs(amplitude1 * math.sqrt(2) * math.sin(w * i)) actsin2[i] = 0 for i in range(len(actsquare)): if i % (2 * math.pi / w) <= math.pi / w: actsquare[i] = amplitude1 actsquare2[i] = 0 else: actsquare[i] = 0 actsquare2[i] = amplitude2 """ uncomment this to plot the activation signals""" # #Plot of the activation through time # plt.figure # plt.plot(actsquare) # plt.plot(actsin) # plt.title("Activations wave forms used") # plt.xlabel("Time (s)") # plt.ylabel("Activation amplitude (.)") """ put as parameters the activation you want (act1/2, actsin1/2 or actsquare1/2)""" activationssin = np.hstack((actsquare, actsquare2)) #activationssquare = np.hstack((actsquare, actsquare2)) # Method to add the muscle activations to the simulation simsin.add_muscle_activations(activationssin) #simsquare.add_muscle_activations(activationssquare) # Simulate the system for given time simsin.initalize_system(x0, time) # Initialize the system state #simsquare.initalize_system(x0, time) #: If you would like to perturb the pedulum model then you could do # so by """perturbation of the signal""" simsin.sys.pendulum_sys.parameters.PERTURBATION = False #simsquare.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time simsin.simulate() #simsquare.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 ressin = simsin.results() #ressquare = simsquare.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = simsin.sys.muscle_sys.Muscle1.results muscle2_results = simsin.sys.muscle_sys.Muscle2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(ressin[:, 1], ressin[:, 2]) label_test.append('w=' + str(wlist[k])) k = k + 1 #plt.plot(ressquare[:, 1], ressquare[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.legend(label_test) plt.grid() # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulationsin = SystemAnimation(ressin, pendulum, muscles) #simulationsquare = SystemAnimation(ressquare, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulationsin.animate() #simulationsquare.animate() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def exercise2c(): pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Model Initial Conditions ##### x0_P = np.array([0, 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object #Frequency effect : stim_frequency = np.array([0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500]) #in Hz stim_amplitude = 1 # belongs to 0-1 phase = np.pi frequency_pendelum = np.zeros(len(stim_frequency)) amplitude_pendelum = np.zeros(len(stim_frequency)) for j, frequency in enumerate(stim_frequency): t_max = 5 / frequency # Maximum simulation time time_step = 0.001 * (1 / frequency) time = np.arange(0., t_max, time_step) # Time vector act1 = np.zeros((len(time), 1)) act2 = np.zeros((len(time), 1)) act1[:, 0] = stim_amplitude * (1 + np.sin(2 * np.pi * frequency * time)) / 2 act2[:, 0] = stim_amplitude * ( 1 + np.sin(2 * np.pi * frequency * time + phase)) / 2 activations = np.hstack((act1, act2)) sim.add_muscle_activations(activations) sim.initalize_system(x0, time) # Initialize the system state sim.simulate() res = sim.results() #computing the freuquency and amplitude angular_position = res[:, 1] #signal_stat = signal[index_start:len(signal)] start_index = int(len(angular_position) / 2) final_index = (len(angular_position)) index_zeros = np.where( np.diff(np.sign(angular_position[start_index:final_index])))[ 0] #np.where(signal_stat==0)[0] deltas = np.diff(index_zeros) delta = np.mean(deltas) frequency_pendelum[j] = 1 / (2 * delta * time_step) signal = angular_position[start_index:len(angular_position)] amplitude = (np.max(signal) - np.min(signal)) / 2 amplitude_pendelum[j] = amplitude plt.figure() plt.subplot(121) plt.loglog(stim_frequency, frequency_pendelum) plt.grid() plt.xlabel('Stimulation Frequency [Hz]') plt.ylabel('Pendulum Oscillation Frequency [Hz]') plt.subplot(122) plt.loglog(stim_frequency, amplitude_pendelum) plt.grid() plt.xlabel('Stimulation Frequency [Hz]') plt.ylabel('Pendulum Oscillation Amplitude [rad]') plt.savefig('2c.png') plt.show() stim_frequency = 10 #in Hz stim_amplitude = np.arange(0, 1.1, 0.1) frequency_pendelum = np.zeros(len(stim_amplitude)) amplitude_pendelum = np.zeros(len(stim_amplitude)) for j, amplitude_ in enumerate(stim_amplitude): t_max = 5 / stim_frequency # Maximum simulation time time_step = 0.001 * (1 / stim_frequency) time = np.arange(0., t_max, time_step) # Time vector act1 = np.zeros((len(time), 1)) act2 = np.zeros((len(time), 1)) act1[:, 0] = amplitude_ * (1 + np.sin(2 * np.pi * stim_frequency * time)) / 2 act2[:, 0] = amplitude_ * ( 1 + np.sin(2 * np.pi * stim_frequency * time + phase)) / 2 activations = np.hstack((act1, act2)) sim.add_muscle_activations(activations) sim.initalize_system(x0, time) # Initialize the system state sim.simulate() res = sim.results() #computing the freuquency and amplitude angular_position = res[:, 1] #signal_stat = signal[index_start:len(signal)] start_index = int(len(angular_position) / 2) final_index = (len(angular_position)) index_zeros = np.where( np.diff(np.sign(angular_position[start_index:final_index])))[ 0] #np.where(signal_stat==0)[0] deltas = np.diff(index_zeros) delta = np.mean(deltas) frequency_pendelum[j] = 1 / (2 * delta * time_step) signal = angular_position[start_index:len(angular_position)] amplitude = (np.max(signal) - np.min(signal)) / 2 amplitude_pendelum[j] = amplitude frequency_pendelum[0] = 0 plt.figure() plt.subplot(121) plt.plot(stim_amplitude, frequency_pendelum) plt.grid() plt.xlabel('Stimulation Amplitude [rad]') plt.ylabel('Pendulum Oscillation Frequency [Hz]') plt.subplot(122) plt.plot(stim_amplitude, amplitude_pendelum) plt.grid() plt.xlabel('Stimulation Amplitude[rad]') plt.ylabel('Pendulum Oscillation Amplitude [rad]') plt.savefig('2c_amplitude.png') plt.show()
def exercise2b(): """ Main function to run for Exercise 2b. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 20 # Maximum simulation time time = np.arange(0., t_max, 0.005) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([np.pi / 4, 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim1 = SystemSimulation(sys) # Instantiate Simulation object # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent #act1 = np.ones((len(time), 1)) * 1. #act2 = np.ones((len(time), 1)) * 0.05 act1 = np.array([np.sin(time)]).T act2 = np.array([-np.sin(time)]).T activations = np.hstack((act1, act2)) # Method to add the muscle activations to the simulation sim1.add_muscle_activations(activations) # Simulate the system for given time sim1.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by #sim.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim1.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res1 = sim1.results() sim2 = SystemSimulation(sys) # Instantiate Simulation object sim2.add_muscle_activations(activations) # Simulate the system for given time sim2.initalize_system(x0, time) # Initialize the system state #add perturbation sim2.sys.pendulum_sys.parameters.PERTURBATION = True # Integrate the system for the above initialized state and time sim2.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res2 = sim2.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim1.sys.muscle_sys.Muscle1.results muscle2_results = sim1.sys.muscle_sys.Muscle2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res1[:, 1], res1[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() plt.figure('Pendulum with perturbation') plt.title('Pendulum Phase') plt.plot(res2[:, 1], res2[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() plt.figure('Activation Wave Forms') plt.title('Activation Wave Forms') plt.plot(time, act1) plt.plot(time, act2) plt.xlabel('Time [s]') plt.ylabel('Activation') plt.legend(('Actication muscle 1', 'Activation muscle 2')) plt.grid poincare_crossings(res1, 0.5, 1, "poincare_cross") # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation1 = SystemAnimation(res1, pendulum, muscles) simulation2 = SystemAnimation(res2, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulation1.animate() simulation2.animate()
def exercise2(): """ Main function to run for Exercise 2. """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # 2a : set of muscle 1 attachment points m1_origin = np.array([[-0.17, 0.0]]) # Origin of Muscle 1 m1_insertion = np.array([[0.0, -0.17], [0.0, -0.3], [0.0, -0.4], [0.0, -0.5]]) # Insertion of Muscle 1 theta = np.linspace(-np.pi/2,np.pi/2) m_lengths = np.zeros((len(m1_insertion),len(theta))) m_moment_arms = np.zeros((len(m1_insertion),len(theta))) leg=[] for i in range(0,len(m1_insertion)): m_lengths[i,:]=np.sqrt(m1_origin[0,0]**2 + m1_insertion[i,1]**2 + 2 * np.abs(m1_origin[0,0]) * np.abs(m1_insertion[i,1]) * np.sin(theta)) m_moment_arms[i,:]= m1_origin[0,0] * m1_insertion[i,1] * np.cos(theta) / m_lengths[i,:] leg.append('Origin: {}m, Insertion: {}m'.format(m1_origin[0,0],m1_insertion[i,1])) # Plotting plt.figure('2a length') plt.title('Length of M1 with respect to the position of the limb') for i in range(0,len(m_lengths)): plt.plot(theta*180/np.pi, m_lengths[i,:]) plt.plot((theta[0]*180/np.pi,theta[len(theta)-1]*180/np.pi),(0.11,0.11), ls='dashed') leg.append('l_opt') plt.plot((theta[0]*180/np.pi,theta[len(theta)-1]*180/np.pi),(0.13,0.13), ls='dashed') leg.append('l_slack') plt.xlabel('Position [deg]') plt.ylabel('Muscle length [m]') plt.legend(leg) plt.grid() plt.savefig('2_a_length.png') plt.figure('2a moment') plt.title('Moment arm over M1 with respect to the position of the limb') for i in range(0,len(m_moment_arms)): plt.plot(theta*180/np.pi, m_moment_arms[i,:]) plt.xlabel('Position [deg]') plt.ylabel('Moment arm [m]') plt.legend(leg) plt.grid() plt.savefig('2_a_moment.png') # 2b : simple activation wave forms # Muscle 2 attachement point m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin[0,:], m1_insertion[0,:]]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 2.5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([np.pi/4, 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent sin_frequency = 2 #Hz amp_stim = 1 phase_shift = np.pi act1 = np.zeros((len(time),1)) act2 = np.zeros((len(time),1)) for i in range(0,len(time)): act1[i,0] = amp_stim*(1+np.sin(2*np.pi*sin_frequency*time[i]))/2 act2[i,0] = amp_stim*(1+ np.sin(2*np.pi*sin_frequency*time[i] + phase_shift))/2 plt.figure('2b activation') plt.plot(time,act1) plt.plot(time,act2) plt.legend(["Activation for muscle 1", "Activation for muscle 2"]) plt.title('Activation for muscle 1 and 2 with simple activation wave forms') plt.xlabel("Time [s]") plt.ylabel("Activation") plt.savefig('2_b_activation.png') plt.show() activations = np.hstack((act1, act2)) # Method to add the muscle activations to the simulation sim.add_muscle_activations(activations) # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # Plotting the results plt.figure('2b phase') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() plt.savefig('2_b_phase.png') plt.show() plt.figure('2b oscillations') plt.title('Pendulum Oscillations') plt.plot(time,res[:, 1]) plt.xlabel('Time [s]') plt.ylabel('Position [rad]') plt.grid() plt.savefig('2_b_oscillations.png') plt.show() # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulation.animate() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig) # 2c : relationship between stimulation frequency and amplitude # Effect of frequency stim_frequency_range = np.array([0.05,0.1,0.5,1,5,10,50,100,500]) #Hz stim_amp = 1 phase_shift = np.pi frequency_pend=np.zeros(len(stim_frequency_range)) amplitude_pend=np.zeros(len(stim_frequency_range)) for j,stim_frequency in enumerate(stim_frequency_range): period = 1/stim_frequency t_max = 10*period # Maximum simulation time time = np.arange(0., t_max, 0.001*period) # Time vector act1 = np.zeros((len(time),1)) act2 = np.zeros((len(time),1)) act1[:,0] = stim_amp*(1 + np.sin(2*np.pi*stim_frequency*time))/2 act2[:,0] = stim_amp*(1+ np.sin(2*np.pi*stim_frequency*time + phase_shift))/2 activations = np.hstack((act1, act2)) sim.add_muscle_activations(activations) sim.initalize_system(x0, time) # Initialize the system state sim.simulate() res = sim.results() # computing the frequency and amplitude angular_position = res[:,1] signal_stat = angular_position[int(len(angular_position)/2):len(angular_position)] index_zeros = np.where(np.diff(np.sign(signal_stat)))[0] deltas = np.diff(index_zeros) delta = np.mean(deltas) period = 2*delta*0.001*period frequency_pend[j] = 1/period amplitude_pend[j] = (np.max(signal_stat)-np.min(signal_stat))/2 # Plotting plt.figure('2c : effect of frequency') plt.subplot(121) plt.loglog(stim_frequency_range,frequency_pend) plt.grid() plt.xlabel('Stimulation Frequency in Hz') plt.ylabel('Pendulum Oscillation Frequency [Hz]') plt.subplot(122) plt.loglog(stim_frequency_range,amplitude_pend) plt.grid() plt.xlabel('Stimulation Frequency in Hz') plt.ylabel('Pendulum Oscillation Amplitude [rad]') plt.savefig('2c_frequency.png') plt.show() # Effect of amplitude stim_frequency = 10 #Hz stim_amp_range = np.arange(0,1.1,0.1) phase_shift = np.pi frequency_pend=np.zeros(len(stim_amp_range)) amplitude_pend=np.zeros(len(stim_amp_range)) for j,stim_amp in enumerate(stim_amp_range): period = 1/stim_frequency t_max = 5*period # Maximum simulation time time = np.arange(0., t_max, 0.001*period) # Time vector act1 = np.zeros((len(time),1)) act2 = np.zeros((len(time),1)) act1[:,0] = stim_amp*(1 + np.sin(2*np.pi*stim_frequency*time))/2 act2[:,0] = stim_amp*(1+ np.sin(2*np.pi*stim_frequency*time + phase_shift))/2 activations = np.hstack((act1, act2)) sim.add_muscle_activations(activations) sim.initalize_system(x0, time) # Initialize the system state sim.simulate() res = sim.results() # computing the frequency and amplitude angular_position = res[:,1] signal_stat = angular_position[int(len(angular_position)/2):len(angular_position)] index_zeros = np.where(np.diff(np.sign(signal_stat)))[0] deltas = np.diff(index_zeros) delta = np.mean(deltas) period = 2*delta*0.001*period frequency_pend[j] = 1/period amplitude_pend[j] = (np.max(signal_stat)-np.min(signal_stat))/2 frequency_pend[0] = 0.0; # Plotting plt.figure('2c : effect of amplitude') plt.subplot(121) plt.plot(stim_amp_range,frequency_pend) plt.grid() plt.xlabel('Stimulation Amplitude') plt.ylabel('Pendulum Oscillation Frequency [Hz]') plt.subplot(122) plt.plot(stim_amp_range,amplitude_pend) plt.grid() plt.xlabel('Stimulation Amplitude') plt.ylabel('Pendulum Oscillation Amplitude [rad]') plt.savefig('2c_amplitude.png') plt.show()
def exercise1a(): """ Exercise 1a The goal of this exercise is to understand the relationship between muscle length and tension. Here you will re-create the isometric muscle contraction experiment. To do so, you will have to keep the muscle at a constant length and observe the force while stimulating the muscle at a constant activation.""" # Defination of muscles parameters = MuscleParameters() pylog.warning("Loading default muscle parameters") pylog.info(parameters.showParameters()) pylog.info("Use the parameters object to change the muscle parameters") # Create muscle object muscle = Muscle(parameters) pylog.warning("Isometric muscle contraction to be completed") # Instatiate isometric muscle system sys = IsometricMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) # You can still access the muscle inside the system by doing # >>> sys.muscle.l_opt # To get the muscle optimal length #x0 = [0.0, sys.muscle.L_OPT] # Evalute for a single muscle stretch muscle_stretch = 0.2 # Evalute for a single muscle stimulation muscle_stimulation = 1. # Set the initial condition x0 = [0.0, sys.muscle.l_opt] # x0[0] --> muscle stimulation intial value # x0[1] --> muscle contracticle length initial value # Set the time for integration t_start = 0.0 t_stop = 0.2 time_step = 0.001 time = np.arange(t_start, t_stop, time_step) # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=muscle_stimulation, muscle_length=muscle_stretch) # Plotting plt.figure('Isometric muscle experiment') plt.plot(result.time, result.l_ce) plt.title('Isometric muscle experiment') plt.xlabel('Time [s]') plt.ylabel('Muscle contracticle length [m]') plt.grid() muscle_stretches = np.arange(0, muscle_stretch, 0.001) ###################################################################### ###################################################################### ###################################################################### ###################################################################### ###################################################################### ###################################################################### ### code for 1a pylog.info( "1a. relationship between forces and contractile element length") length_start = 0.0 length_stop = 0.3 length_step = 0.005 muscle_lengths = np.arange(length_start, length_stop, length_step) active_forces = [] passive_forces = [] total_forces = [] element_lengths = [] for temp_length in muscle_lengths: temp_result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=muscle_stimulation, muscle_length=temp_length) temp_active_force = temp_result.active_force[-1] temp_passive_force = temp_result.passive_force[-1] tenp_total_force = temp_active_force + temp_passive_force temp_element_length = temp_result.l_ce[-1] active_forces = active_forces + [temp_active_force] passive_forces = passive_forces + [temp_passive_force] total_forces = total_forces + [tenp_total_force] element_lengths = element_lengths + [temp_element_length] plt.figure("1a. Isometric muscle experiment (muscle_stimulation == 1)") plt.plot(element_lengths, active_forces) plt.plot(element_lengths, passive_forces) plt.plot(element_lengths, total_forces) plt.title('Isometric Muscle Experiment (muscle_stimulation == 1)') plt.xlabel('Muscle contracticle length [m]') plt.ylabel('Tension [N]') plt.legend(("Active Force", "Passive Force", "Total force")) plt.grid() plt.show() ###################################################################### ###################################################################### ###################################################################### ###################################################################### ###################################################################### ###################################################################### ### code for 1b pylog.info( "1b. relationship between forces and contractile element length with different stimulations" ) length_start = 0.0 length_stop = 0.3 length_step = 0.005 muscle_lengths = np.arange(length_start, length_stop, length_step) muscle_stimulations = np.arange(0, muscle_stimulation + 0.1, 0.1) all_active_forces = [] all_passive_forces = [] all_total_forces = [] all_element_lengths = [] for temp_muscle_stimulation in muscle_stimulations: temp_active_forces = [] temp_passive_forces = [] temp_total_forces = [] temp_element_lengths = [] for temp_length in muscle_lengths: temp_result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=temp_muscle_stimulation, muscle_length=temp_length) temp_active_force = temp_result.active_force[-1] temp_passive_force = temp_result.passive_force[-1] tenp_total_force = temp_active_force + temp_passive_force temp_element_length = temp_result.l_ce[-1] temp_active_forces = temp_active_forces + [temp_active_force] temp_passive_forces = temp_passive_forces + [temp_passive_force] temp_total_forces = temp_total_forces + [tenp_total_force] temp_element_lengths = temp_element_lengths + [temp_element_length] all_active_forces = all_active_forces + [temp_active_forces] all_passive_forces = all_passive_forces + [temp_passive_forces] all_total_forces = all_total_forces + [temp_total_forces] all_element_lengths = all_element_lengths + [temp_element_lengths] plt.figure( '1b. Isometric muscle experiment for active forces with different stimulations' ) for i in range(len(muscle_stimulations)): plt.plot(all_element_lengths[i], all_active_forces[i]) plt.title( 'Isometric muscle experiment for active forces with different stimulations' ) plt.xlabel('Muscle contracticle length [m]') plt.ylabel('Tension [N]') temp_legends = [ 'stimulation = ' + format((temp_stimulation), '.1f') for temp_stimulation in muscle_stimulations ] plt.legend(temp_legends) plt.grid() plt.show() plt.figure( '1b. Isometric muscle experiment for passive forces with different stimulations' ) for i in range(len(muscle_stimulations)): plt.plot(all_element_lengths[i], all_passive_forces[i]) plt.title( 'Isometric muscle experiment for passive forces with different stimulations' ) plt.xlabel('Muscle contracticle length [m]') plt.ylabel('Tension [N]') temp_legends = [ 'stimulation = ' + format((temp_stimulation), '.1f') for temp_stimulation in muscle_stimulations ] plt.legend(temp_legends) plt.grid() plt.show() plt.figure( '1b. Isometric muscle experiment for total forces with different stimulations' ) for i in range(len(muscle_stimulations)): plt.plot(all_element_lengths[i], all_total_forces[i]) plt.title( 'Isometric muscle experiment for total forces with different stimulations' ) plt.xlabel('Muscle contracticle length [m]') plt.ylabel('Tension [N]') temp_legends = [ 'stimulation = ' + format((temp_stimulation), '.1f') for temp_stimulation in muscle_stimulations ] plt.legend(temp_legends) plt.grid() plt.show() ###################################################################### ###################################################################### ###################################################################### ###################################################################### ###################################################################### ###################################################################### ### code for 1c pylog.info( "1c. relationship between forces and contractile element length with different fiber lengths" ) short_opt = 0.05 medium_opt = 0.1 long_opt = 0.15 opt_range = [short_opt, medium_opt, long_opt] muscle_stimulation = 1. length_start = 0.0 length_stop = 0.3 length_step = 0.005 muscle_lengths = np.arange(length_start, length_stop, length_step) for temp_opt in opt_range: parameters = MuscleParameters(l_opt=temp_opt) muscle = Muscle(parameters) sys = IsometricMuscleSystem() sys.add_muscle(muscle) #muscle.L_OPT = temp_opt temp_active_forces = [] temp_passive_forces = [] temp_total_forces = [] temp_element_lengths = [] for temp_length in muscle_lengths: temp_result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=muscle_stimulation, muscle_length=temp_length) temp_active_force = temp_result.active_force[-1] temp_passive_force = temp_result.passive_force[-1] tenp_total_force = temp_active_force + temp_passive_force temp_element_length = temp_result.l_ce[-1] temp_active_forces = temp_active_forces + [temp_active_force] temp_passive_forces = temp_passive_forces + [temp_passive_force] temp_total_forces = temp_total_forces + [tenp_total_force] temp_element_lengths = temp_element_lengths + [temp_element_length] plt.figure( "1c. Isometric muscle experiment with musle fiber length = " + format((temp_opt), '.2f')) plt.plot(temp_element_lengths, temp_active_forces) plt.plot(temp_element_lengths, temp_passive_forces) plt.plot(temp_element_lengths, temp_total_forces) plt.xlabel('Muscle contracticle length [m]') plt.ylabel('Tension [N]') plt.title("Isometric muscle experiment with musle fiber length = " + format((temp_opt), '.2f')) plt.legend(("Active Force", "Passive Force ", "Total Force ")) plt.grid() plt.show()
def system_init(): """Initialize default system.""" ########## PENDULUM ########## # Define and Setup your pendulum model here # Check Pendulum.py for more details on Pendulum class P_params = PendulumParameters() # Instantiate pendulum parameters P_params.L = 1.0 # To change the default length of the pendulum P_params.m = 0.25 # To change the default mass of the pendulum pendulum = PendulumSystem(P_params) # Instantiate Pendulum object #### CHECK OUT Pendulum.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) ########## MUSCLES ########## # Define and Setup your muscle model here # Check MuscleSystem.py for more details on MuscleSystem class m1_param = MuscleParameters() # Instantiate Muscle 1 parameters m1_param.f_max = 200. # To change Muscle 1 max force m1_param.l_opt = 0.4 m1_param.l_slack = 0.45 m2_param = MuscleParameters() # Instantiate Muscle 2 parameters m2_param.f_max = 200. # To change Muscle 2 max force m2_param.l_opt = 0.4 m2_param.l_slack = 0.45 m1 = Muscle('m1', m1_param) # Instantiate Muscle 1 object m2 = Muscle('m2', m2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system # Instantiate Muscle System with two muscles muscles = MuscleSystem(m1, m2) pylog.info('Muscle system initialized \n {} \n {}'.format( m1.parameters.showParameters(), m2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.asarray([0.0, 0.9]) # Origin of Muscle 1 m1_insertion = np.asarray([0.0, 0.15]) # Insertion of Muscle 1 m2_origin = np.asarray([0.0, 0.8]) # Origin of Muscle 2 m2_insertion = np.asarray([0.0, -0.3]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.asarray([m1_origin, m1_insertion]), np.asarray([m2_origin, m2_insertion])) ########## ADD SYSTEMS ########## # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ########## INITIALIZATION ########## t_max = 2 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.asarray([np.pi / 2, 0.0]) # Pendulum initial condition # Muscle Model initial condition l_ce_0 = sys.muscle_sys.initialize_muscle_length(np.pi / 2) x0_M = np.asarray([0.05, l_ce_0[0], 0.05, l_ce_0[1]]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ########## System Simulation ########## sim = SystemSimulation(sys) # Instantiate Simulation object # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state return sim
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ ''' sim = system_init() # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent act1 = np.ones((len(sim.time), 1)) * 0.05 act2 = np.ones((len(sim.time), 1)) * 0.05 activations = np.hstack((act1, act2)) # Method to add the muscle activations to the simulation sim.add_muscle_stimulations(activations) #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.asarray [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle_1_results = sim.sys.muscle_sys.muscle_1.results muscle_2_results = sim.sys.muscle_sys.muscle_2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() ''' ########################################################### ########################################################### ########################################################### ########################################################### ########################################################### ### code for 2a pylog.info("2a") theta = np.arange(np.pi / 4, np.pi * 3 / 4, 0.001) temp_a1 = 0.35 ratios = [ 0.2, 0.5, 1., 2., 5., ] L2_s = [] h2_s = [] for temp_ratio in ratios: temp_a2 = temp_a1 * temp_ratio temp_L2 = np.sqrt(temp_a1 * temp_a1 + temp_a2 * temp_a2 + 2 * temp_a1 * temp_a2 * np.cos(theta)) temp_h2 = (temp_a1 * temp_a2 * np.sin(theta)) / temp_L2 L2_s = L2_s + [temp_L2] h2_s = h2_s + [temp_h2] plt.figure( '2a. Relationship between muscle length and pendulum angular position') plt.title( 'Relationship between muscle length and pendulum angular position') for i in range(len(ratios)): plt.plot(theta, L2_s[i]) plt.xlabel('Angular Position [rad]') plt.ylabel('Muscle Length [m]') temp_legends = [ 'ratio of a2/a1 = ' + format((temp_ratio), '.2f') for temp_ratio in ratios ] plt.legend(temp_legends) plt.grid() plt.show() plt.figure( '2a. Relationship between moment arm and pendulum angular position') plt.title('Relationship between moment arm and pendulum angular position') for i in range(len(ratios)): plt.plot(theta, h2_s[i]) plt.xlabel('Angular Position [rad]') plt.ylabel('Moment Arm [m]') temp_legends = [ 'ratio of a2/a1 = ' + format((temp_ratio), '.2f') for temp_ratio in ratios ] plt.legend(temp_legends) plt.grid() plt.show() ########################################################### ########################################################### ########################################################### ########################################################### ########################################################### ### code for 2b pylog.info("2b") #initialization P_params = PendulumParameters() # Instantiate pendulum parameters P_params.L = 1.0 # To change the default length of the pendulum P_params.m = 0.25 # To change the default mass of the pendulum pendulum = PendulumSystem(P_params) # Instantiate Pendulum object #### CHECK OUT Pendulum.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) ########## MUSCLES ########## # Define and Setup your muscle model here # Check MuscleSystem.py for more details on MuscleSystem class m1_param = MuscleParameters() # Instantiate Muscle 1 parameters m1_param.f_max = 200. # To change Muscle 1 max force m1_param.l_opt = 0.4 m1_param.l_slack = 0.45 m2_param = MuscleParameters() # Instantiate Muscle 2 parameters m2_param.f_max = 200. # To change Muscle 2 max force m2_param.l_opt = 0.4 m2_param.l_slack = 0.45 m1 = Muscle('m1', m1_param) # Instantiate Muscle 1 object m2 = Muscle('m2', m2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system # Instantiate Muscle System with two muscles muscles = MuscleSystem(m1, m2) pylog.info('Muscle system initialized \n {} \n {}'.format( m1.parameters.showParameters(), m2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.asarray([0.0, 0.9]) # Origin of Muscle 1 m1_insertion = np.asarray([0.0, 0.15]) # Insertion of Muscle 1 m2_origin = np.asarray([0.0, 0.8]) # Origin of Muscle 2 m2_insertion = np.asarray([0.0, -0.3]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.asarray([m1_origin, m1_insertion]), np.asarray([m2_origin, m2_insertion])) ########## ADD SYSTEMS ########## # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ########## INITIALIZATION ########## t_max = 2 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.asarray([np.pi / 2, 0.0]) # Pendulum initial condition # Muscle Model initial condition l_ce_0 = sys.muscle_sys.initialize_muscle_length(np.pi / 2) x0_M = np.asarray([0.05, l_ce_0[0], 0.05, l_ce_0[1]]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ########## System Simulation ########## sim = SystemSimulation(sys) # Instantiate Simulation object # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state omega = 1.5 sin_act_1 = np.sin(2 * np.pi * omega * time).reshape(len(time), 1) sin_act_1[sin_act_1 < 0] = 0 #sin_act_2=np.sin(2*np.pi*omega*time+np.pi/2).reshape(len(time),1) sin_act_2 = -np.sin(2 * np.pi * omega * time).reshape(len(time), 1) sin_act_2[sin_act_2 < 0] = 0 activations = np.hstack((sin_act_1, sin_act_2)) plt.figure('2b. Activation wave') plt.title('Activation wave') plt.plot(time, sin_act_1, label='Activation 1') plt.plot(time, sin_act_2, label='Activation 2') plt.xlabel('Time [s]') plt.ylabel('Activation') plt.grid() plt.legend() # without pertubation sim.add_muscle_stimulations(activations) sim.initalize_system(x0, time) sim.sys.pendulum_sys.parameters.PERTURBATION = False sim.simulate() res = sim.results() muscle1_results = sim.sys.muscle_sys.muscle_1.results muscle2_results = sim.sys.muscle_sys.muscle_2.results plt.figure('2b. Limit cycle without pertubation') plt.title('Pendulum Phase without pertubation') plt.plot( res[:, 1], res[:, 2], ) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() plt.legend() # with pertubation sim.add_muscle_stimulations(activations) sim.initalize_system(x0, time) sim.sys.pendulum_sys.parameters.PERTURBATION = True sim.simulate() res = sim.results() muscle1_results = sim.sys.muscle_sys.muscle_1.results muscle2_results = sim.sys.muscle_sys.muscle_2.results plt.figure('2b. Limit cycle with pertubation') plt.title('Pendulum Phase with pertubation') plt.plot( res[:, 1], res[:, 2], ) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() plt.legend() ########################################################### ########################################################### ########################################################### ########################################################### ########################################################### ### code for 2c pylog.info("2c") # different frequencies omegas = 1.5 * np.array([0.5, 2.]) positions = [] vels = [] for temp_omega in omegas: sin_act_1 = np.sin(2 * np.pi * temp_omega * time).reshape(len(time), 1) sin_act_1[sin_act_1 < 0] = 0 sin_act_2 = -np.sin(2 * np.pi * temp_omega * time).reshape( len(time), 1) sin_act_2[sin_act_2 < 0] = 0 activations = np.hstack((sin_act_1, sin_act_2)) sim.add_muscle_stimulations(activations) sim.initalize_system(x0, time) sim.sys.pendulum_sys.parameters.PERTURBATION = False sim.simulate() res = sim.results() muscle1_results = sim.sys.muscle_sys.muscle_1.results muscle2_results = sim.sys.muscle_sys.muscle_2.results positions = positions + [res[:, 1]] vels = vels + [res[:, 2]] plt.figure('2c.Pendulum phase plane with stimulation frequencies') plt.title('Pendulum phase plane with stimulation frequencies') for i in range(len(omegas)): plt.plot(positions[i], vels[i]) plt.xlabel('Angular Position [rad]') plt.ylabel('Velocity [rad/s]') temp_legends = [ 'ratio of frequency = ' + format((temp_omega / 1.5), '.2f') for temp_omega in omegas ] plt.legend(temp_legends) plt.grid() plt.show() ''' # different frequencies omegas=1.5*np.array([0.2,0.5,1.,2.,5.]) positions=[] vels=[] for temp_omega in omegas: sin_act_1=np.sin(2*np.pi*temp_omega*time).reshape(len(time),1) sin_act_1[sin_act_1<0]=0 sin_act_2=np.sin(2*np.pi*temp_omega*(np.pi/6+time)).reshape(len(time),1) sin_act_2[sin_act_2<0]=0 activations = np.hstack((sin_act_1,sin_act_2)) sim.add_muscle_stimulations(activations) sim.initalize_system(x0, time) sim.sys.pendulum_sys.parameters.PERTURBATION = False sim.simulate() res = sim.results() muscle1_results = sim.sys.muscle_sys.muscle_1.results muscle2_results = sim.sys.muscle_sys.muscle_2.results positions=positions+[res[:, 1]] vels=vels+[res[:,2]] plt.figure('2c.Pendulum phase plane with stimulation frequencies') plt.title('Pendulum phase plane with stimulation frequencies') for i in range(len(ratios)): plt.plot(positions[i], vels[i]) plt.xlabel('Angular Position [rad]') plt.ylabel('Muscle Length [m]') temp_legends=['ratio of frequency = '+ format((temp_omega/1.5),'.2f') for temp_omega in omegas] plt.legend(temp_legends) plt.grid() plt.show() ''' # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, sim.sys.pendulum_sys, sim.sys.muscle_sys) if not DEFAULT["save_figures"]: # To start the animation simulation.animate() plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def system_init(): """ Use this function to create a new default system. """ ########## PENDULUM ########## # Define and Setup your pendulum model here # Check Pendulum.py for more details on Pendulum class P_params = PendulumParameters() # Instantiate pendulum parameters P_params.L = 1.0 # To change the default length of the pendulum P_params.m = 0.25 # To change the default mass of the pendulum pendulum = PendulumSystem(P_params) # Instantiate Pendulum object #### CHECK OUT Pendulum.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) ########## MUSCLES ########## # Define and Setup your muscle model here # Check MuscleSystem.py for more details on MuscleSystem class m1_param = MuscleParameters() # Instantiate Muscle 1 parameters m1_param.f_max = 200. # To change Muscle 1 max force m1_param.l_opt = 0.4 m1_param.l_slack = 0.45 m2_param = MuscleParameters() # Instantiate Muscle 2 parameters m2_param.f_max = 200. # To change Muscle 2 max force m2_param.l_opt = 0.4 m2_param.l_slack = 0.45 m1 = Muscle('m1', m1_param) # Instantiate Muscle 1 object m2 = Muscle('m2', m2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system # Instantiate Muscle System with two muscles muscles = MuscleSystem(m1, m2) pylog.info('Muscle system initialized \n {} \n {}'.format( m1.parameters.showParameters(), m2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.asarray([0.0, 0.9]) # Origin of Muscle 1 m1_insertion = np.asarray([0.0, 0.15]) # Insertion of Muscle 1 m2_origin = np.asarray([0.0, 0.8]) # Origin of Muscle 2 m2_insertion = np.asarray([0.0, -0.3]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.asarray([m1_origin, m1_insertion]), np.asarray([m2_origin, m2_insertion])) ########## Network ########## # The network consists of four neurons N_params = NetworkParameters() # Instantiate default network parameters N_params.D = 1 # To change a network parameter # Similarly to change w -> N_params.w = (4x4) array N_params.tau = [0.02, 0.02, 0.1, 0.1] N_params.w = [[0, -5, 5, -5], [-5, 0, -5, 5], [-5, 0, 0, 0], [0, -5, 0, 0]] N_params.b = [3.0, 3.0, -3.0, -3.0] N_params.w = np.transpose(N_params.w) # Create a new neural network with above parameters neural_network = NeuralSystem(N_params) pylog.info('Neural system initialized \n {}'.format( N_params.showParameters())) ########## ADD SYSTEMS ########## # Create system of Pendulum, Muscles and neural network using SystemClass # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system # Add the neural network to the system sys.add_neural_system(neural_network) ##### Time ##### t_max = 2.5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.asarray([np.pi / 2, 0.]) # Pendulum initial condition # Muscle Model initial condition l_ce_0 = sys.muscle_sys.initialize_muscle_length(np.pi / 2) x0_M = np.asarray([0.05, l_ce_0[0], 0.05, l_ce_0[1]]) x0_N = np.asarray([-0.5, 1, 0.5, 1]) # Neural Network Initial Conditions x0 = np.concatenate((x0_P, x0_M, x0_N)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object sim.initalize_system(x0, time) # Initialize the system state return sim
def exercise3(): """ Main function to run for Exercise 3. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check Pendulum.py for more details on Pendulum class P_params = PendulumParameters() # Instantiate pendulum parameters P_params.L = 0.5 # To change the default length of the pendulum P_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(P_params) # Instantiate Pendulum object #### CHECK OUT Pendulum.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) ##### Neural Network ##### # The network consists of four neurons N_params = NetworkParameters() # Instantiate default network parameters # Similarly to change w -> N_params.w = (4x4) array # From lecture 4, slide 85 -> Generate oscillations !! N_params.D = 2. N_params.tau = [0.02,0.02,0.1,0.1] N_params.b = [3.0,3.0,-3.0,-3.0] N_params.w = [[0,-5,-5,0], # 1 <- 2 [-5,0,0,-5], [5,-5,0,-5], [-5,5,0,0]] # Create a new neural network with above parameters neural_network = NeuralSystem(N_params) pylog.info('Neural system initialized \n {}'.format( N_params.showParameters())) # Create system of Pendulum, Muscles and neural network using SystemClass # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system # Add the neural network to the system sys.add_neural_system(neural_network) ##### Time ##### t_max = 2.5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([0., 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0_N = np.array([-0.5, 1, 0.5, 1]) # Neural Network Initial Conditions x0 = np.concatenate((x0_P, x0_M, x0_N)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add external inputs to neural network # sim.add_external_inputs_to_network(np.ones((len(time), 4))) #ext_in = np.ones((len(time), 4)) #ext_in[:,2] = 0.2 #ext_in[:,3] = 0.2 #sim.add_external_inputs_to_network(ext_in) sim.initalize_system(x0, time) # Initialize the system state # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 #res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the phase fig = plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() fig.tight_layout() fig.savefig('graphs/PendulumPhase.png') # Plotting the neuronal activation # Access the neurons outputs: # [t] theta theta. A1 lCE1 A2 lCE2 m1 m2 m3 m4 fig = plt.figure('Neuron output') plt.title('Membrane potentials') plt.plot(res[:, 0], res[:, 7],label='m1') plt.plot(res[:, 0], res[:, 8],label='m2') plt.plot(res[:, 0], res[:, 9],label='m3') plt.plot(res[:, 0], res[:, 10],label='m4') plt.xlabel('Time [s]') plt.ylabel('Potential') plt.legend() plt.grid() fig.tight_layout() fig.savefig('graphs/MembranePotentials.png') if DEFAULT["save_figures"] is False: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig) # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation( res, sim.sys.pendulum_sys, sim.sys.muscle_sys, sim.sys.neural_sys) # To start the animation simulation.animate() # 3.b ext_in = np.ones((len(time), 4))*0.0 plotExternalDrive(sys,x0,ext_in,typ='low') ext_in = np.ones((len(time), 4)) plotExternalDrive(sys,x0,ext_in,typ='high') ext_in = np.ones((len(time), 4)) ext_in[:,0] *= 0.1 ext_in[:,1] *= 0.1 plotExternalDrive(sys,x0,ext_in,typ='asymmetric')
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) ############Exercise 2A ############################################### # rigth after creating and attaching both muscles: print(m1_origin, m2_origin) m1a1 = abs(abs(m1_origin[0]) - abs(m1_origin[1])) m1a2 = abs(abs(m1_insertion[0]) - abs(m1_insertion[1])) m1a1 = m1_origin[0] - m1_origin[1] m1a2 = m1_insertion[0] - m1_insertion[1] m2a1 = m2_origin[0] - m2_origin[1] m2a2 = m2_insertion[0] - m2_insertion[1] print(m1a1, m1a2) fromtheta(M1, m1a1, m1a2, 1) fromtheta(M2, m2a1, m2a2, 2) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 5 # Maximum simulation time time = np.arange(0., t_max, 0.002) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([np.pi / 4, 0.]) # Pendulum initial condition x0_P = np.array([0., 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent wave_h1 = np.sin(time * 3) * 1 #makes a sinusoidal wave from 'time' wave_h2 = np.sin(time * 3 + np.pi) * 1 #makes a sinusoidal wave from 'time' wave_h1[wave_h1 < 0] = 0 #formality of passing negative values to zero wave_h2[wave_h2 < 0] = 0 #formality of passing negative values to zero act1 = wave_h1.reshape(len(time), 1) #makes a vertical array like act1 act2 = wave_h2.reshape(len(time), 1) #makes a vertical array like act1 # Plotting the waveforms plt.figure('Muscle Activations') plt.title('Muscle Activation Functions') plt.plot(time, wave_h1, label='Muscle 1') plt.plot(time, wave_h2, label='Muscle 2') plt.xlabel('Time [s]') plt.ylabel('Muscle Excitation') plt.legend(loc='upper right') plt.grid() activations = np.hstack((act1, act2)) # Method to add the muscle activations to the simulation sim.add_muscle_activations(activations) # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = False # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the results plt.figure('Pendulum_phase') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() # Plotting the results: Amplidute stimulation plt.figure('Amplidute stimulation') plt.title('Amplidute stimulation') plt.plot(time, res[:, 1], label='Stimul. 0.2') plt.xlabel('time [s]') plt.ylabel('Position [rad]') plt.legend(loc='upper left') plt.grid() # Plotting the results: frequency stimulation plt.figure('Frequency stimulation') plt.title('Frequency stimulation') plt.plot(time, res[:, 1], label='w: 3 rad/s') plt.xlabel('time [s]') plt.ylabel('Position [rad]') plt.legend(loc='upper left') plt.grid() poincare_crossings(res, -2, 1, "Pendulum") # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulation.animate() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def exercise1d(): """ Exercise 1d Under isotonic conditions external load is kept constant. A constant stimulation is applied and then suddenly the muscle is allowed contract. The instantaneous velocity at which the muscle contracts is of our interest.""" # Defination of muscles muscle_parameters = MuscleParameters() print(muscle_parameters.showParameters()) mass_parameters = MassParameters() print(mass_parameters.showParameters()) # Create muscle object muscle = Muscle(muscle_parameters) # Create mass object mass = Mass(mass_parameters) pylog.warning("Isotonic muscle contraction to be implemented") # Instatiate isotonic muscle system sys = IsotonicMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) # Add the mass to the system sys.add_mass(mass) # You can still access the muscle inside the system by doing # >>> sys.muscle.L_OPT # To get the muscle optimal length # Evaluate for a single muscle stimulation muscle_stimulation = 1. # Set the initial condition x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0] # x0[0] - -> activation # x0[1] - -> contractile length(l_ce) # x0[2] - -> position of the mass/load # x0[3] - -> velocity of the mass/load # Set the time for integration t_start = 0.0 t_stop = 1.25 time_step = 0.001 time_stabilize = 0.2 time = np.arange(t_start, t_stop, time_step) # Set max_vce max_vce = [] # --------------------------------------------- # Small load experiment # --------------------------------------------- load_table_small = [5, 10, 20, 50, 100] # Begin plotting plt.figure('Isotonic muscle experiment - load [10, 200] [N]') max_vce_small = ex1d_for(sys, x0, time, time_step, time_stabilize, muscle_stimulation, load_table_small, False) plt.title('Isotonic muscle experiment - load [5, 140] [N]') plt.xlabel('Time [s]') plt.ylabel('Muscle contractile velocity [m/s]') plt.legend(loc='upper right') plt.grid() # --------------------------------------------- # Big load experiment # --------------------------------------------- load_table_big = [150, 200, 220, 250, 500, 1000, 1500] # Begin plotting plt.figure('Isotonic muscle experiment - load [150, 1500] [N]') max_vce += ex1d_for(sys, x0, time, time_step, time_stabilize, muscle_stimulation, load_table_big, True) plt.title('Isotonic muscle experiment - load [150, 1500] [N]') plt.xlabel('Time [s]') plt.ylabel('Muscle contractile velocity [m/s]') plt.legend(loc='upper right') plt.grid() # --------------------------------------------- # Plot velocity - tension relation # --------------------------------------------- load = np.arange(5, 2500, 200) (max_vce, active_force) = ex1d_for(sys, x0, time, time_step, time_stabilize, muscle_stimulation, load, False) fig = plt.figure('Velocity - Tension') ax = fig.add_subplot(111) # Plot comments and line at 0 value min_val = 0.0 if min(map(abs, max_vce)) not in max_vce: min_val = -min(map(abs, max_vce)) else: min_val = min(map(abs, max_vce)) xy = (load[max_vce.index(min_val)], min_val) xytext = (load[max_vce.index(min_val)] + 50, min_val) ax.annotate('load = {:0.1f}'.format(152.2), xy=xy, xytext=xytext) plt.title('Velocity [m/s] - Tension [N]') plt.xlabel('Tension [N]') plt.ylabel('Velocity [m/s]') plt.grid() plt.plot(load, max_vce) plt.plot(load[max_vce.index(min_val)], min_val, 'o')
def exercise1d(): """ Exercise 1d Under isotonic conditions external load is kept constant. A constant stimulation is applied and then suddenly the muscle is allowed contract. The instantaneous velocity at which the muscle contracts is of our interest.""" # Defination of muscles muscle_parameters = MuscleParameters() print(muscle_parameters.showParameters()) mass_parameters = MassParameters() print(mass_parameters.showParameters()) # Create muscle object muscle = Muscle(muscle_parameters) # Create mass object mass = Mass(mass_parameters) pylog.warning("Isotonic muscle contraction to be implemented") # Instatiate isotonic muscle system sys = IsotonicMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) # Add the mass to the system sys.add_mass(mass) # You can still access the muscle inside the system by doing # >>> sys.muscle.l_opt # To get the muscle optimal length # Evalute for a single load load = 250 / 9.81 # Evalute for a single muscle stimulation muscle_stimulation = 1.0 # Set the initial condition x0 = [0.0, sys.muscle.l_opt, sys.muscle.l_opt + sys.muscle.l_slack, 0.0] # x0[0] - -> activation # x0[1] - -> contractile length(l_ce) # x0[2] - -> position of the mass/load # x0[3] - -> velocity of the mass/load # Set the time for integration t_start = 0.0 t_stop = 0.4 time_step = 0.001 time_stabilize = 0.2 time = np.arange(t_start, t_stop, time_step) # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, time_stabilize=time_stabilize, stimulation=muscle_stimulation, load=load) # Plotting plt.figure('Isotonic muscle experiment') plt.plot(result.time, result.v_ce) plt.title('Isotonic muscle experiment') plt.xlabel('Time [s]') plt.ylabel('Muscle contracticle velocity [lopts/s]') plt.grid() ###################################################################### ###################################################################### ###################################################################### ###################################################################### ###################################################################### ###################################################################### ### code for 1d pylog.info( "1d. relationship between muscle contractile velocity and external load" ) load_start = 1 load_stop = 501 load_step = 10 load_range = np.arange(load_start, load_stop, load_step) muscle_stimulation = 1.0 vels = [] tendon_forces = [] active_forces = [] passive_forces = [] total_forces = [] for temp_load in load_range: temp_result = sys.integrate(x0=x0, time=time, time_step=time_step, time_stabilize=time_stabilize, stimulation=muscle_stimulation, load=temp_load) temp_tendon_force = temp_result.tendon_force[-1] temp_active_force = temp_result.active_force[-1] temp_passive_force = temp_result.passive_force[-1] temp_total_force = temp_active_force + temp_passive_force tendon_forces = tendon_forces + [temp_tendon_force] active_forces = active_forces + [temp_active_force] passive_forces = passive_forces + [temp_passive_force] total_forces = total_forces + [temp_total_force] temp_l_mtu = temp_result.l_mtu[-1] if temp_l_mtu < sys.muscle.l_opt + sys.muscle.l_slack: vels = vels + [np.min(temp_result.v_ce)] else: vels = vels + [np.max(temp_result.v_ce)] plt.figure( '1d. Isotonic muscle experiment for tension and contractile velocities' ) plt.plot(vels, tendon_forces) plt.plot(vels, load_range) plt.plot(vels, active_forces) plt.plot(vels, passive_forces) plt.plot(vels, total_forces) plt.title( 'Isotonic muscle experiment for tension and contractile velocities') plt.xlabel('Muscle contracticle velocity [lopts/s]') plt.ylabel('Tension [N]') plt.legend(("Tendon Force", "Load", "Active Force", "Passive Force", "Total force")) plt.grid() plt.show() ###################################################################### ###################################################################### ###################################################################### ###################################################################### ###################################################################### ###################################################################### ### code for 1f pylog.info( "1f. relationship between muscle contractile velocity and external load with different stimulations" ) muscle_stimulations = np.arange(0, muscle_stimulation + 0.1, 0.1) load_start = 1 load_stop = 501 load_step = 10 load_range = np.arange(load_start, load_stop, load_step) all_vels = [] all_tendon_forces = [] for temp_muscle_stimulation in muscle_stimulations: temp_vels = [] temp_tendon_forces = [] for temp_load in load_range: temp_result = sys.integrate(x0=x0, time=time, time_step=time_step, time_stabilize=time_stabilize, stimulation=temp_muscle_stimulation, load=temp_load) temp_tendon_force = temp_result.tendon_force[-1] temp_tendon_forces = temp_tendon_forces + [temp_tendon_force] temp_l_mtu = temp_result.l_mtu[-1] if temp_l_mtu < sys.muscle.l_opt + sys.muscle.l_slack: temp_vels = temp_vels + [np.min(temp_result.v_ce)] else: temp_vels = temp_vels + [np.max(temp_result.v_ce)] all_vels = all_vels + [temp_vels] all_tendon_forces = all_tendon_forces + [temp_tendon_forces] plt.figure( '1f. Isotonic muscle experiment for loads and contractile velocities with different stimulations' ) for i in range(len(muscle_stimulations)): plt.plot(all_vels[i], load_range) plt.title( 'Isotonic muscle experiment for loads and contractile velocities with different stimulations' ) plt.xlabel('Muscle contracticle velocity [lopts/s]') plt.ylabel('Tension [N]') temp_legends = [ 'stimulation = ' + format((temp_stimulation), '.1f') for temp_stimulation in muscle_stimulations ] plt.legend(temp_legends) plt.grid() plt.show() plt.figure( '1f. Isotonic muscle experiment for tendon forces and contractile velocities with different stimulations' ) for i in range(len(muscle_stimulations)): plt.plot(all_vels[i], all_tendon_forces[i]) plt.title( 'Isotonic muscle experiment for tendon forces and contractile velocities with different stimulations' ) plt.xlabel('Muscle contracticle velocity [lopts/s]') plt.ylabel('Tension [N]') temp_legends = [ 'stimulation = ' + format((temp_stimulation), '.1f') for temp_stimulation in muscle_stimulations ] plt.legend(temp_legends) plt.grid() plt.show()
def exercise1f(): """ Exercise 1f What happens to the force-velocity relationship when the stimulation is varied between [0 - 1]?""" # Defination of muscles muscle_parameters = MuscleParameters() print(muscle_parameters.showParameters()) mass_parameters = MassParameters() print(mass_parameters.showParameters()) # Create muscle object muscle = Muscle(muscle_parameters) # Create mass object mass = Mass(mass_parameters) # Instantiate isotonic muscle system sys = IsotonicMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) # Add the mass to the system sys.add_mass(mass) # You can still access the muscle inside the system by doing # >>> sys.muscle.L_OPT # To get the muscle optimal length # Evaluate for a single load load = 100. # Set the initial condition x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0] # x0[0] - -> activation # x0[1] - -> contractile length(l_ce) # x0[2] - -> position of the mass/load # x0[3] - -> velocity of the mass/load # Set the time for integration t_start = 0.0 t_stop = 1.25 time_step = 0.001 time_stabilize = 0.2 time = np.arange(t_start, t_stop, time_step) # --------------------------------------------- # maximum force over stimulation # --------------------------------------------- # Evaluate for different muscle stimulation muscle_stimulation = np.arange(0, 1.1, 0.1) max_active_force = [] max_passive_force = [] max_sum_force = [] # Begin plotting for s in muscle_stimulation: # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, time_stabilize=time_stabilize, stimulation=s, load=load) if abs(min(result.active_force)) > max(result.active_force): max_active_force.append(min(result.active_force)) else: max_active_force.append(max(result.active_force)) if abs(min(result.passive_force)) > max(result.passive_force): max_passive_force.append(min(result.passive_force)) else: max_passive_force.append(max(result.passive_force)) max_sum_force.append(max_active_force[-1] + max_passive_force[-1]) plt.figure('Isotonic muscle active force - stimulation [0, 1]') plt.plot(muscle_stimulation, max_active_force, label='maximum active force') plt.plot(muscle_stimulation, max_passive_force, label='maximum passive force') plt.plot(muscle_stimulation, max_sum_force, label='maximum sum force') plt.xlabel('Stimulation [-]') plt.ylabel('Muscle sum forces [N]') plt.legend(loc='upper right') plt.grid() # --------------------------------------------- # force - velocity over stimulation # --------------------------------------------- muscle_stimulation = np.arange(0, 1.1, 0.1) # Begin plotting for s in muscle_stimulation: # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, time_stabilize=time_stabilize, stimulation=s, load=load) plt.figure('Isotonic muscle active force - velocity') plt.plot(result.v_ce[200:-1], result.active_force[200:-1], label='stimulation {:0.1f}'.format(s)) plt.figure('Isotonic muscle passive force - velocity') plt.plot(result.v_ce[200:-1], result.passive_force[200:-1], label='stimulation {:0.1f}'.format(s)) plt.figure('Isotonic muscle sum forces - velocity') plt.plot(result.v_ce[200:-1], result.active_force[200:-1] + result.passive_force[200:-1], label='stimulation {:0.1f}'.format(s)) plt.figure('Isotonic muscle active force - velocity') plt.xlabel('Velocity contractile element [m/s]') plt.ylabel('Active force [N]') plt.legend(loc='upper right') plt.grid() plt.figure('Isotonic muscle passive force - velocity') plt.xlabel('Velocity contractile element [m/s]') plt.ylabel('Passive force [N]') plt.legend(loc='upper right') plt.grid() plt.figure('Isotonic muscle sum forces - velocity') plt.xlabel('Velocity contractile element [m/s]') plt.ylabel('Sum forces [N]') plt.legend(loc='upper right') plt.grid() # --------------------------------------------- # Plot velocity - tension relation # --------------------------------------------- muscle_stimulation = np.arange(0, 1.1, 0.25) load = np.arange(5, 1500, 20) plt.figure('Velocity - Tension') # Begin plotting for s in muscle_stimulation: (max_vce, active_force) = ex1d_for(sys, x0, time, time_step, time_stabilize, s, load, False) plt.plot(load, max_vce, label="stimulation {:0.1f}".format(s)) plt.title('Velocity [m/s] - Load [N]') plt.xlabel('Load [N]') plt.ylabel('Velocity [m/s]') plt.legend(loc='lower right') plt.grid()
def exercise1d(): """ Exercise 1d Under isotonic conditions external load is kept constant. A constant stimulation is applied and then suddenly the muscle is allowed contract. The instantaneous velocity at which the muscle contracts is of our interest.""" # Defination of muscles muscle_parameters = MuscleParameters() print(muscle_parameters.showParameters()) mass_parameters = MassParameters() print(mass_parameters.showParameters()) # Create muscle object muscle = Muscle(muscle_parameters) # Create mass object mass = Mass(mass_parameters) pylog.warning("Isotonic muscle contraction to be implemented") # Instatiate isotonic muscle system sys = IsotonicMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) # Add the mass to the system sys.add_mass(mass) # You can still access the muscle inside the system by doing # >>> sys.muscle.L_OPT # To get the muscle optimal length # Evalute for a single load load = 100. # Evalute for a single muscle stimulation muscle_stimulation = 1. # Set the initial condition x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0] # x0[0] - -> activation # x0[1] - -> contractile length(l_ce) # x0[2] - -> position of the mass/load # x0[3] - -> velocity of the mass/load # Set the time for integration t_start = 0.0 t_stop = 0.5 time_step = 0.001 time_stabilize = 0.2 time = np.arange(t_start, t_stop, time_step) loads = np.arange(20, 351, 10) velocities = [] for index, load in enumerate(loads): # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, time_stabilize=time_stabilize, stimulation=muscle_stimulation, load=load) if (result.l_mtc[-1] < sys.muscle.L_OPT + sys.muscle.L_SLACK): velocities.append(np.max(result.v_ce)) print('max') else: velocities.append(np.min(result.v_ce)) print('min') #Muscle contracile Velocity - Tension (load) relationship plt.figure('Isotonic muscle experiment') plt.title('Isotonic muscle experiment') plt.xlabel('Muscle Contractile Velocity [m/s]') plt.ylabel('Tension (load) [N]') plt.plot(velocities, loads) plt.grid() #For different stimulations 1.f muscle_stimulation = np.arange(0, 1.1, 0.2) plt.figure('Isotonic muscle exp with different stimulations') plt.title('Isotonic muscle experiment with different stimulations') for stim in muscle_stimulation: velocities = [] for index, load in enumerate(loads): # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, time_stabilize=time_stabilize, stimulation=stim, load=load) if (result.l_mtc[-1] < sys.muscle.L_OPT + sys.muscle.L_SLACK): velocities.append(np.max(result.v_ce)) else: velocities.append(np.min(result.v_ce)) plt.xlabel('Muscle Contractile Velocity [m/s]') plt.ylabel('Tension (load) [N]') plt.plot(velocities, loads) plt.legend(('0', '0.2', '0.4', '0.6', '0.8', '1.0')) plt.grid()
def exercise2c(): """ Main function to run for Exercise 2c. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 15 # Maximum simulation time time = np.arange(0., t_max, 0.005) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([np.pi / 4, 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions sim = SystemSimulation(sys) # Instantiate Simulation object plt.figure('Pendulum with different stimulation frequencies') frequencies = [0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0, 5.0] for freq in frequencies: act1 = np.array([np.sin(freq * time)]).T act2 = np.array([-np.sin(freq * time)]).T activations = np.hstack((act1, act2)) # Method to add the muscle activations to the simulation sim.add_muscle_activations(activations) # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # Plotting the results plt.plot(res[:, 1], res[:, 2]) plt.title('Pendulum Phase') plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.legend(( '0.25', '0.5', '0.75', '1.0', '2.0', '3.0', '4.0', '5.0', )) plt.grid() plt.figure('Pendulum with different stimulation amplitudes') amplitudes = [0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0, 5.0] for amp in amplitudes: act1 = np.array([amp * np.sin(time)]).T act2 = np.array([amp * (-np.sin(time))]).T activations = np.hstack((act1, act2)) # Method to add the muscle activations to the simulation sim.add_muscle_activations(activations) # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # Plotting the results plt.plot(res[:, 1], res[:, 2]) plt.title('Pendulum Phase') plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.legend(( '0.25', '0.5', '0.75', '1.0', '2.0', '3.0', '4.0', '5.0', )) plt.grid()
def exercise1d(): """ Exercise 1d Under isotonic conditions external load is kept constant. A constant stimulation is applied and then suddenly the muscle is allowed contract. The instantaneous velocity at which the muscle contracts is of our interest.""" # Defination of muscles muscle_parameters = MuscleParameters() print(muscle_parameters.showParameters()) mass_parameters = MassParameters() print(mass_parameters.showParameters()) # Create muscle object muscle = Muscle(muscle_parameters) # Create mass object mass = Mass(mass_parameters) pylog.warning("Isotonic muscle contraction to be implemented") # Instatiate isotonic muscle system sys = IsotonicMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) # Add the mass to the system sys.add_mass(mass) # You can still access the muscle inside the system by doing # >>> sys.muscle.L_OPT # To get the muscle optimal length # Evalute for a single load load = 100. # Evalute for a single muscle stimulation muscle_stimulation = 1. # Set the initial condition x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0] # x0[0] - -> activation # x0[1] - -> contractile length(l_ce) # x0[2] - -> position of the mass/load # x0[3] - -> velocity of the mass/load # Set the time for integration t_start = 0.0 t_stop = 0.3 time_step = 0.001 time_stabilize = 0.2 time = np.arange(t_start, t_stop, time_step) # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, time_stabilize=time_stabilize, stimulation=muscle_stimulation, load=load) # Plotting plt.figure('Isotonic muscle experiment') plt.plot(result.time, result.v_ce) plt.title('Isotonic muscle experiment') plt.xlabel('Time [s]') plt.ylabel('Muscle contractilve velocity') plt.grid() # Run 1.d load = np.arange(0,1000,20) plotVceLoad(load,[0.1,0.5,1])
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check PendulumSystem.py for more details on Pendulum class pendulum_params = PendulumParameters() # Instantiate pendulum parameters pendulum_params.L = 0.5 # To change the default length of the pendulum pendulum_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(pendulum_params) # Instantiate Pendulum object #### CHECK OUT PendulumSystem.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ##### Time ##### t_max = 2.5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([np.pi / 6, 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent sin_freq = 1 #hz ampl_sin = 1 phase_difference_1_2 = np.pi act1 = np.ones((len(time), 1)) act2 = np.ones((len(time), 1)) for i in range(len(time)): act1[i, 0] = ampl_sin * (1 + np.sin(2 * np.pi * sin_freq * time[i])) act2[i, 0] = ampl_sin * ( 1 + np.sin(2 * np.pi * sin_freq * time[i] + phase_difference_1_2)) activations = np.hstack((act1, act2)) # Method to add the muscle activations to the simulation sim.add_muscle_activations(activations) # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() plt.figure('Activations') plt.title('Sine wave activations for both muscles') plt.plot(time, act1) plt.plot(time, act2) plt.legend(("activation muscle1", "activation muscle2")) # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, pendulum, muscles) # To start the animation if DEFAULT["save_figures"] is False: simulation.animate() if not DEFAULT["save_figures"]: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def exercise1a(): """ Exercise 1a The goal of this exercise is to understand the relationship between muscle length and tension. Here you will re-create the isometric muscle contraction experiment. To do so, you will have to keep the muscle at a constant length and observe the force while stimulating the muscle at a constant activation.""" # Defination of muscles parameters = MuscleParameters() pylog.warning("Loading default muscle parameters") pylog.info(parameters.showParameters()) pylog.info("Use the parameters object to change the muscle parameters") # Create muscle object muscle = Muscle(parameters) pylog.warning("Isometric muscle contraction to be completed") # Instatiate isometric muscle system sys = IsometricMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) # You can still access the muscle inside the system by doing # >>> sys.muscle.L_OPT # To get the muscle optimal length # Evalute for a single muscle stretch muscle_stretch = 0.2 # Evalute for a single muscle stimulation muscle_stimulation = 1. # Set the initial condition x0 = [0.0, sys.muscle.L_OPT] # x0[0] --> muscle stimulation intial value # x0[1] --> muscle contracticle length initial value # Set the time for integration t_start = 0.0 t_stop = 0.2 time_step = 0.001 time = np.arange(t_start, t_stop, time_step) # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=muscle_stimulation, muscle_length=muscle_stretch) # Plotting plt.figure('Isometric muscle experiment') plt.plot(result.time, result.tendon_force,label='tendon force') plt.plot(result.time, result.passive_force,label='passive force') plt.plot(result.time, result.active_force,label='active force') plt.plot(result.time, result.l_ce,label='l_ce') plt.legend() plt.title('Isometric muscle experiment') plt.xlabel('Time [s]') plt.ylabel('Muscle Force') plt.grid() # Run 1.a and 1.b - relation between l_ce and active/oassive forces ms=np.arange(start=0.0,stop=0.32,step=0.005) plotRelationLceAPForces(muscle_stretch=ms,muscle_stimulation=0.1) plotRelationLceAPForces(muscle_stretch=ms,muscle_stimulation=0.5) plotRelationLceAPForces(muscle_stretch=ms,muscle_stimulation=1.) # Run 1.c plotRelationLceAPForces(ms,l_opt=0.09) plotRelationLceAPForces(ms,l_opt=0.13)
def exercise1a(): """ Exercise 1a The goal of this exercise is to understand the relationship between muscle length and tension. Here you will re-create the isometric muscle contraction experiment. To do so, you will have to keep the muscle at a constant length and observe the force while stimulating the muscle at a constant activation.""" # Defination of muscles parameters = MuscleParameters() pylog.warning("Loading default muscle parameters") pylog.info(parameters.showParameters()) pylog.info("Use the parameters object to change the muscle parameters") # Create muscle object muscle = Muscle(parameters) # Instatiate isometric muscle system sys = IsometricMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) # Set the initial condition x0 = [0.0, sys.muscle.L_OPT] # x0[0] --> muscle stimulation intial value # x0[1] --> muscle contracticle length initial value # Set the time for integration t_start = 0.0 t_stop = 0.5 time_step = 0.001 time = np.arange(t_start, t_stop, time_step) # Evalute for a single muscle stimulation muscle_stimulation = np.arange(0, 1., 0.2) # Several muscle stretch muscle_stretches = np.arange(0, 0.3, 0.01) active_active = [] for stim in muscle_stimulation: active_forces = [] passive_forces = [] total = [] lengths = [] for stretch in muscle_stretches: # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=stim, muscle_length=stretch) active_forces.append(result.active_force[-1]) passive_forces.append(result.passive_force[-1]) total.append(result.active_force[-1] + result.passive_force[-1]) lengths.append(result.l_ce[-1]) active_active.append(active_forces) # Plotting plt.figure('Isometric muscle experiment 1') plt.plot(lengths, active_forces) plt.plot(lengths, passive_forces) plt.plot(lengths, total) plt.title('Isometric muscle experiment stimulation') plt.xlabel('Muscle stretch') plt.ylabel('Muscle force') plt.legend(('Active', 'Passive', 'Total')) plt.grid() plt.show() # Plotting plt.figure('Isometric muscle experiment 2') for i in range(len(muscle_stimulation)): plt.plot(lengths, active_active[i]) plt.title('Isometric muscle experiment') plt.xlabel('Muscle stretch') plt.ylabel('Muscle force') plt.legend(muscle_stimulation) plt.grid() plt.show() # Plotting #plt.figure('Isotonic muscle experiment') #plt.plot(result.time, result.v_ce) #plt.title('Isotonic muscle experiment') #plt.xlabel('Time [s]') #plt.ylabel('Muscle contractilve velocity') #plt.grid() #muscle with longer l_opt muscle.L_OPT = 0.5 muscle_stimulation = 1. lce = [] totalF = [] activeF = [] passiveF = [] for stretch in muscle_stretches: # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=muscle_stimulation, muscle_length=stretch) activeF.append(result.active_force[-1]) passiveF.append(result.passive_force[-1]) lce.append(result.l_ce[-1]) totalF.append(result.active_force[-1] + result.passive_force[-1]) plt.figure('muscle with l_opt=0.5') plt.title('muscle with l_opt=0.5') plt.plot(lce, activeF) plt.plot(lce, passiveF) plt.plot(lce, totalF) plt.xlabel('Muscle Stretch') plt.ylabel('Force') plt.ylim((0, 4000)) plt.legend(('Active Force', 'Passive Force', 'Total Force')) plt.grid() #muscle with shorter l_opt t_start = 0.0 t_stop = 1 time_step = 0.005 time = np.arange(t_start, t_stop, time_step) muscle_stretches = np.arange(0, 0.3, 0.01) muscle.L_OPT = 0.075 muscle_stimulation = 1. lce = [] totalF = [] activeF = [] passiveF = [] plt.figure('muscle with l_opt=0.075') for stretch in muscle_stretches: # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=muscle_stimulation, muscle_length=stretch) activeF.append(result.active_force[-1]) passiveF.append(result.passive_force[-1]) lce.append(result.l_ce[-1]) totalF.append(result.active_force[-1] + result.passive_force[-1]) plt.title('muscle with l_opt=0.075') plt.plot(lce, activeF) plt.plot(lce, passiveF) plt.plot(lce, totalF) plt.xlabel('Muscle Stretch') plt.ylabel('Force') plt.ylim((0, 4000)) plt.legend(('Active Force', 'Passive Force', 'Total Force')) plt.grid()
def exercise1a(): """ Exercise 1a The goal of this exercise is to understand the relationship between muscle length and tension. Here you will re-create the isometric muscle contraction experiment. To do so, you will have to keep the muscle at a constant length and observe the force while stimulating the muscle at a constant activation.""" # Defination of muscles parameters = MuscleParameters() pylog.warning("Loading default muscle parameters") pylog.info(parameters.showParameters()) pylog.info("Use the parameters object to change the muscle parameters") # Create muscle object muscle = Muscle(parameters) pylog.warning("Isometric muscle contraction to be completed") # Instatiate isometric muscle system sys = IsometricMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) # You can still access the muscle inside the system by doing # >>> sys.muscle.L_OPT # To get the muscle optimal length # Evalute for a single muscle stretch muscle_stretch = 0.2 # Evalute for a single muscle stimulation muscle_stimulation = 1. # Set the initial condition x0 = [0.0, sys.muscle.L_OPT] # x0[0] --> muscle stimulation intial value # x0[1] --> muscle contracticle length initial value # Set the time for integration t_start = 0.0 t_stop = 0.2 time_step = 0.001 time = np.arange(t_start, t_stop, time_step) # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=muscle_stimulation, muscle_length=muscle_stretch) # muscle_length=np.arange(0,0.4,0.001) F_active=[] F_passive=[] F_total=[] F_length=[] # Exercice 1 a pylog.info("Ex 1a") for length in muscle_length: result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=muscle_stimulation, muscle_length=length) F_active.append(result.active_force[-1]) F_passive.append(result.passive_force[-1]) F_total.append(result.active_force[-1]+result.passive_force[-1]) F_length.append(result.l_ce[-1]) if length==0.2: plt.figure('Single integration experiment') plt.title("Single Integration Experiment for Muscle length = 0.11") plt.plot(result.time,result.active_force) plt.plot(result.time,result.passive_force) plt.xlabel('Time [s]') plt.ylabel('Muscle force [N]') plt.legend(("Active Force","Passive Force")) plt.grid() plt.show() plt.figure("Isometric muscle experiment") plt.title("Isometric Muscle Experiments for Different Lengths") plt.plot(F_length,F_active) plt.plot(F_length,F_passive) plt.plot(F_length,F_total) plt.title('Isometric muscle experiment') plt.xlabel('Contractile Element Length [m]') plt.ylabel('Muscle force [N]') plt.legend(("Active","Passive","Total force")) plt.grid() plt.show() pylog.info("Ex 1b") # Exercise 1. b plt.figure("Isometric muscle experiment by changing the stimulation") different_stimulation=np.arange(0,1.2,0.2) # for stimulation in different_stimulation: for stimulation in different_stimulation: F_total=[] F_length=[] pylog.info("stimulation is {}".format(stimulation)) for length in muscle_length: result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=stimulation, muscle_length=length) F_total.append(result.active_force[-1]+result.passive_force[-1]) F_length.append(result.l_ce[-1]) plt.plot(F_length,F_total) plt.title("Isometric Muscle Experiments with different Stimulation values") plt.xlabel('Length [m]') plt.ylabel('Total muscle force [N]') plt.legend(("stimulation = 0","stimulation = 0.2","stimulation = 0.4","stimulation = 0.6","stimulation = 0.8","stimulation = 1")) plt.grid() plt.show() # 1/c fiber_opt_small=0.07 fiber_opt_medium=0.11 fiber_opt_long=0.16 lopt_list=[fiber_opt_small,fiber_opt_medium,fiber_opt_long] muscle_stimulation = 1 for lopt in lopt_list: print("RUNNING lopt=",lopt) parameters = MuscleParameters(l_opt=lopt) muscle = Muscle(parameters) sys = IsometricMuscleSystem() sys.add_muscle(muscle) F_active=[] F_passive=[] F_total=[] F_length=[] for length in muscle_length: result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=muscle_stimulation, muscle_length=length) F_active.append(result.active_force[-1]) F_passive.append(result.passive_force[-1]) F_total.append(result.active_force[-1]+result.passive_force[-1]) F_length.append(result.l_ce[-2]) plt.figure("Isometric muscle experiment with length {}".format(lopt)) plt.plot(F_length,F_active) plt.plot(F_length,F_passive) plt.plot(F_length,F_total) plt.xlabel('Contractile Element Length [m]') plt.ylabel('Total Muscle Force [N]') plt.title("Isometric muscle experiment with length {}".format(lopt)) plt.legend(("Active","Passive","Total force")) plt.grid() plt.show()
def plotVceLoad(load,ms=[1.]): # Defination of muscles muscle_parameters = MuscleParameters() mass_parameters = MassParameters() # Create muscle object muscle = Muscle(muscle_parameters) # Create mass object mass = Mass(mass_parameters) # Instatiate isotonic muscle system sys = IsotonicMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) # Add the mass to the system sys.add_mass(mass) # Evalute for a single load #load = 100. # Set the initial condition x0 = [0.0, sys.muscle.L_OPT, sys.muscle.L_OPT + sys.muscle.L_SLACK, 0.0] # x0[0] - -> activation # x0[1] - -> contractile length(l_ce) # x0[2] - -> position of the mass/load # x0[3] - -> velocity of the mass/load # Set the time for integration t_start = 0.0 t_stop = 0.3 time_step = 0.001 time_stabilize = 0.2 time = np.arange(t_start, t_stop, time_step) plt.figure('Max Velocity-Tension curve') for s in ms: muscle_stimulation = s v = [] for l in load: # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, time_stabilize=time_stabilize, stimulation=muscle_stimulation, load=l) # Find the max or min speed achieved i = np.argmax(np.abs(result.v_ce)) v.append(-result.v_ce[i]) #if result[i].l_mtc < sys.muscle.L_OPT + sys.muscle.L_SLACK: for i in range(len(v)): if i >= 1 and v[i]*v[i-1] <=0: plt.plot(load[i],v[i],color='green', marker='x', linestyle='dashed', linewidth=2, markersize=12) plt.plot(load, v,label='maximal speed\nMuscle stimulation: {}'.format(s)) plt.legend() plt.title('Isotonic muscle experiment\nMax Velocity-Tension curve') plt.xlabel('load [kg]') plt.ylabel('CE speed [m/s]') #axes = plt.gca() #axes.set_xlim([0.05,0.2]) #axes.set_ylim([0,1700]) plt.grid()
def exercise3a(): """ Main function to run for Exercise 3. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check Pendulum.py for more details on Pendulum class P_params = PendulumParameters() # Instantiate pendulum parameters P_params.L = 0.5 # To change the default length of the pendulum P_params.m = 1. # To change the default mass of the pendulum P_params.PERTURBATION = True pendulum = PendulumSystem(P_params) # Instantiate Pendulum object #### CHECK OUT Pendulum.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) ##### Neural Network ##### # The network consists of four neurons N_params = NetworkParameters() # Instantiate default network parameters N_params.tau = [0.02, 0.02, 0.1, 0.1] N_params.b = [3.0, 3.0, -3.0, -3.0] N_params.D = 1.0 # To change a network parameter N_params.w = np.asarray([[0.0, -5.0, -5.0, 0.0], [-5.0, 0.0, 0.0, -5.0], [5.0, -5.0, 0.0, 0.0], [-5.0, 5.0, 0.0, 0.0]]) # Similarly to change w -> N_params.w = (4x4) array print(N_params.w) ############################# Exercise 3A ###################### N_params.w = np.transpose( np.asarray([[0, -1, 1, -1], [-1, 0, -1, 1], [-1, 0, 0, 0], [0, -1, 0, 0]])) * 5 print(N_params.w, N_params.D, N_params.tau, N_params.b, N_params.exp) # Create a new neural network with above parameters neural_network = NeuralSystem(N_params) pylog.info('Neural system initialized \n {}'.format( N_params.showParameters())) # Create system of Pendulum, Muscles and neural network using SystemClass # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system sys.add_neural_system( neural_network) # Add the neural network to the system ##### Time ##### t_max = 2. # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([[-0.5, 0], [-0.25, -0.25], [0., 0.], [0.5, 0]]) # Pendulum initial condition for i in x0_P: # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0_N = np.array([-1.5, 1, 2.5, 1]) # Neural Network Initial Conditions x0 = np.concatenate((i, x0_M, x0_N)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # sim.add_external_inputs_to_network(np.ones((len(time), 4))) # wave_h1 = np.sin(time*3)*2 #makes a sinusoidal wave from 'time' # wave_h2 = np.sin(time*3 + np.pi)*1 #makes a sinusoidal wave from 'time' # # wave_h1[wave_h1<0] = 0 #formality of passing negative values to zero # wave_h2[wave_h2<0] = 0 #formality of passing negative values to zero # # act1 = wave_h1.reshape(len(time), 1) #makes a vertical array like act1 # act2 = wave_h2.reshape(len(time), 1) #makes a vertical array like act1 # column = np.ones((len(time), 1)) # ext_in = np.hstack((act1, column, act2, column)) # sim.add_external_inputs_to_network(ext_in) sim.initalize_system(x0, time) # Initialize the system state sim.sys.pendulum_sys.parameters.PERTURBATION = False # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the results: Position(phase) vs time plt.figure('Pendulum Phase') plt.title('Pendulum Phase') plt.plot(res[:, 0], res[:, 1]) #to plot pendulum Position (phase) # plt.plot(res[:, 0], time) #to plot position # plt.plot(res[:, 0], res[:, -5:-1]) # to Plot neurons' states plt.xlabel('time [s]') plt.ylabel('Position [rad]') plt.grid() # Plotting the results: Velocity vs Position (phase) plt.figure('Pendulum Vel v.s. Phase') plt.title('Pendulum Vel v.s. Phase') plt.plot(res[:, 1], res[:, 2]) #to plot Velocity vs Position (phase) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() # Plotting the results: Velocity vs time plt.figure('Pendulum Velocity') plt.title('Pendulum Velocity') plt.plot(res[:, 0], res[:, 2]) #to plot Velocity vs Position plt.xlabel('time [s]') plt.ylabel('Velocity [rad.s]') plt.grid() # Plotting the results: Output of the network plt.figure('Network output') plt.title('Network output') plt.plot(res[:, 0], res[:, -1], label='neuron1') #to plot Velocity vs Position plt.plot(res[:, 0], res[:, -2], label='neuron2') plt.plot(res[:, 0], res[:, -3], label='neuron3') plt.plot(res[:, 0], res[:, -4], label='neuron4') plt.xlabel('time [s]') plt.ylabel('Stimulation ') plt.legend(loc='upper right') plt.grid() if DEFAULT["save_figures"] is False: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig) # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, sim.sys.pendulum_sys, sim.sys.muscle_sys, sim.sys.neural_sys) # To start the animation simulation.animate()
def exercise3(): """ Main function to run for Exercise 3. Parameters ---------- None Returns ------- None """ # Define and Setup your pendulum model here # Check Pendulum.py for more details on Pendulum class P_params = PendulumParameters() # Instantiate pendulum parameters P_params.L = 0.5 # To change the default length of the pendulum P_params.m = 1. # To change the default mass of the pendulum pendulum = PendulumSystem(P_params) # Instantiate Pendulum object #### CHECK OUT Pendulum.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) # Define and Setup your pendulum model here # Check MuscleSytem.py for more details on MuscleSytem class M1_param = MuscleParameters() # Instantiate Muscle 1 parameters M1_param.f_max = 1500 # To change Muscle 1 max force M2_param = MuscleParameters() # Instantiate Muscle 2 parameters M2_param.f_max = 1500 # To change Muscle 2 max force M1 = Muscle(M1_param) # Instantiate Muscle 1 object M2 = Muscle(M2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system muscles = MuscleSytem(M1, M2) # Instantiate Muscle System with two muscles pylog.info('Muscle system initialized \n {} \n {}'.format( M1.parameters.showParameters(), M2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.array([-0.17, 0.0]) # Origin of Muscle 1 m1_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 1 m2_origin = np.array([0.17, 0.0]) # Origin of Muscle 2 m2_insertion = np.array([0.0, -0.17]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.array([m1_origin, m1_insertion]), np.array([m2_origin, m2_insertion])) ##### Neural Network ##### # The network consists of four neurons N_params = NetworkParameters() # Instantiate default network parameters N_params.D = 2. # To change a network parameter # Similarly to change w -> N_params.w = (4x4) array # Create a new neural network with above parameters neural_network = NeuralSystem(N_params) pylog.info('Neural system initialized \n {}'.format( N_params.showParameters())) # Create system of Pendulum, Muscles and neural network using SystemClass # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system # Add the neural network to the system sys.add_neural_system(neural_network) ##### Time ##### t_max = 2.5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.array([0., 0.]) # Pendulum initial condition # Muscle Model initial condition x0_M = np.array([0., M1.L_OPT, 0., M2.L_OPT]) x0_N = np.array([-0.5, 1, 0.5, 1]) # Neural Network Initial Conditions x0 = np.concatenate((x0_P, x0_M, x0_N)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object # Add external inputs to neural network # sim.add_external_inputs_to_network(np.ones((len(time), 4))) # sim.add_external_inputs_to_network(ext_in) sim.initalize_system(x0, time) # Initialize the system state # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # Obtain the states of the system after integration # res is np.array [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle1_results = sim.sys.muscle_sys.Muscle1.results muscle2_results = sim.sys.muscle_sys.Muscle2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 0], res[:, :2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() if DEFAULT["save_figures"] is False: plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig) # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, sim.sys.pendulum_sys, sim.sys.muscle_sys, sim.sys.neural_sys) # To start the animation simulation.animate()
def exercise1b(): """ Exercise 1a The goal of this exercise is to understand the relationship between muscle length and tension. Here you will re-create the isometric muscle contraction experiment. To do so, you will have to keep the muscle at a constant length and observe the force while stimulating the muscle at a constant activation.""" # Defination of muscles parameters = MuscleParameters() pylog.warning("Loading default muscle parameters") pylog.info(parameters.showParameters()) pylog.info("Use the parameters object to change the muscle parameters") # Create muscle object muscle = Muscle(parameters) pylog.warning("Isometric muscle contraction to be completed") # Instatiate isometric muscle system sys = IsometricMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) # You can still access the muscle inside the system by doing # >>> sys.muscle.L_OPT # To get the muscle optimal length stimulations = np.arange(.0, 1.0, .02) stretches = np.arange(.12, .36, .05) #default length is 0.24 allStretches = [] allStims = [] allActForces = [] allPassForces = [] allNetForces = [] for stretch in stretches: # Evalute for a single muscle stretch muscle_active_forces = [] muscle_passive_forces = [] total_force = [] l_ce = [] for stimulation in stimulations: # Evalute for a single muscle stimulation muscle_stimulation = stimulation # Set the initial condition x0 = [0.0, sys.muscle.L_OPT] # x0[0] --> muscle stimulation intial value # x0[1] --> muscle contracticle length initial value # Set the time for integration t_start = 0.0 t_stop = 0.3 time_step = 0.001 time = np.arange(t_start, t_stop, time_step) # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=muscle_stimulation, muscle_length=stretch) muscle_active_forces.append(result.active_force[-1]) muscle_passive_forces.append(result.passive_force[-1]) total_force.append(result.active_force[-1] + result.passive_force[-1]) l_ce.append(result.l_ce[-1]) allStretches.append(stretch) allStims.append(stimulation) allActForces.append(result.active_force[-1]) allPassForces.append(result.passive_force[-1]) allNetForces.append(total_force[-1]) # # Plotting results of individual trials to verify steady state assumption # plt.figure('Force over time with different stimulations and lengths %.2f' %stretch) # plt.plot(time, result.active_force, label='Active: Stim = %.2f'%stimulation + ' L = %.2f'%stretch) # plt.plot(time, result.passive_force, label='Passive: Stim = %.2f'%stimulation + ' L = %.2f'%stretch) # plt.plot(time, result.active_force+result.passive_force, label='Net: Stim = %.2f'%stimulation + ' L = %.2f'%stretch) # plt.title('Force over time with different stimulations and lengths') # plt.xlabel('Time [s]') # plt.ylabel('Active Muscle Force [N]') # plt.legend(loc='upper right') # plt.grid() # Plotting plt.figure('Isometric Muscle: Stimulation vs Force') plt.subplot(3, 1, 1) plt.plot(stimulations, muscle_active_forces, label='L_mtu = %.2f' % stretch) plt.title('Isometric Muscle: Stimulation vs Force') plt.xlabel('Stimulation') plt.ylabel('Active Force [N]') plt.legend(loc='upper right') plt.grid() plt.subplot(3, 1, 2) plt.plot(stimulations, muscle_passive_forces, label='L_mtu = %.2f' % stretch) plt.xlabel('Stimulation') plt.ylabel('Passive Force [N]') plt.legend(loc='upper right') plt.grid() plt.subplot(3, 1, 3) plt.plot(stimulations, total_force, label='L_mtu = %.2f' % stretch) plt.xlabel('Stimulation') plt.ylabel('Total Force [N]') plt.legend(loc='upper right') plt.grid() allActForces = np.array(allActForces).reshape( (stretches.size, stimulations.size)) allPassForces = np.array(allPassForces).reshape( (stretches.size, stimulations.size)) allNetForces = np.array(allNetForces).reshape( (stretches.size, stimulations.size)) stimulations, stretches = np.meshgrid(stimulations, stretches) fig1b = plt.figure('1b. Stim vs Active Force Surface Plot') ax = fig1b.gca(projection='3d') ax = fig1b.add_subplot(111, projection='3d') ax.plot_surface(stimulations, stretches, allActForces, cmap=cm.coolwarm, linewidth=0.5, antialiased=False) ax.set_xlabel('Stimulation') ax.set_ylabel('Muscle Length (m)') ax.set_zlabel('Active Force (N)') plt.title('Stimulation vs Active Force') fig1b = plt.figure('1b. Stim vs Passive Force Surface Plot') ax = fig1b.gca(projection='3d') ax = fig1b.add_subplot(111, projection='3d') ax.plot_surface(stimulations, stretches, allPassForces, cmap=cm.coolwarm, linewidth=0.5, antialiased=False) ax.set_xlabel('Stimulation') ax.set_ylabel('Muscle Length (m)') ax.set_zlabel('Passive Force (N)') plt.title('Stimulation vs Passive Force') fig1b = plt.figure('1b. Stim vs Total Force Surface Plot') ax = fig1b.gca(projection='3d') ax = fig1b.add_subplot(111, projection='3d') ax.plot_surface(stimulations, stretches, allNetForces, cmap=cm.coolwarm, linewidth=0.5, antialiased=False) ax.set_xlabel('Stimulation') ax.set_ylabel('Muscle Length (m)') ax.set_zlabel('Net Force (N)') plt.title('Stimulation vs Total Force')