def G_minus_false_messy_soma_filter(G=None):
    """
    Current will reduce the graph from (nodes,edges)
    (68001, 2149378) -- > (62013, 2124962)
    """
    if G is None:
        import system_utils as su
        G = su.decompress_pickle("/platinum_graph/Data/G_query_v6.pbz2")
        
    sg,sp_idx = neurons_minus_false_messy_soma_filter().fetch("segment_id","split_index")
    n_names = [pv.node_name(k,v) for k,v in zip(sg,sp_idx)]
    
    G_restricted = G.subgraph(n_names)
    return G_restricted
def G_minus_false_and_multi_soma(G=None,
                                filter_away_baylor_allen_cell_type_mismatch = True,
                                verbose = True):
    """
    Current will reduce the graph from (nodes,edges)
    (68001, 2149378) -- > (62013, 2124962)
    """
    if G is None:
        import system_utils as su
        G = su.decompress_pickle("/platinum_graph/Data/G_query_v6.pbz2")
        
    sg,sp_idx = neurons_minus_false_and_multi_soma_mergers().fetch("segment_id","split_index")
    n_names = [pv.node_name(k,v) for k,v in zip(sg,sp_idx)]
    
    G_restricted = G.subgraph(n_names)
    
    if filter_away_baylor_allen_cell_type_mismatch:
        G_restricted = xu.subgraph_from_node_query(G_restricted,"allen_e_i == baylor_e_i")
    return G_restricted
예제 #3
0
from tqdm.notebook import tqdm
from pathlib import Path

from os import sys
sys.path.append("/meshAfterParty/")

import datajoint_utils as du
from importlib import reload
import soma_extraction_utils as sm

# # debugging

# In[2]:

import system_utils as su
new_submesh = su.decompress_pickle("./new_submesh")

# In[3]:

new_submesh.split(only_watertight=False, repair=False)

# In[4]:

import minfig
du.set_minnie65_config_segmentation(minfig)
du.print_minnie65_config_paths(minfig)

# In[5]:

minnie = minfig.configure_minnie(return_virtual_module=True)
예제 #4
0
def load_G_with_attrs(filepath):
    return su.decompress_pickle(filepath)
def load_node_df(filepath = None):
    if filepath is None:
        filepath = default_node_df_path
        
    return su.decompress_pickle(filepath)
def load_model(path):
    return su.decompress_pickle(path)