def a(tableau, star=0): r""" The row projection operator corresponding to the Young tableau ``tableau`` (which is supposed to contain every integer from `1` to its size precisely once, but may and may not be standard). This is the sum (in the group algebra of the relevant symmetric group over `\QQ`) of all the permutations which preserve the rows of ``tableau``. It is called `a_{\text{tableau}}` in [EtRT]_, Section 4.2. REFERENCES: .. [EtRT] Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, Elena Yudovina, "Introduction to representation theory", :arXiv:`0901.0827v5`. EXAMPLES:: sage: from sage.combinat.symmetric_group_algebra import a sage: a([[1,2]]) [1, 2] + [2, 1] sage: a([[1],[2]]) [1, 2] sage: a([]) [] sage: a([[1, 5], [2, 3], [4]]) [1, 2, 3, 4, 5] + [1, 3, 2, 4, 5] + [5, 2, 3, 4, 1] + [5, 3, 2, 4, 1] """ t = Tableau(tableau) if star: t = t.restrict(t.size() - star) rs = t.row_stabilizer().list() n = t.size() # This all should be over ZZ, not over QQ, but symmetric group # algebras don't seem to preserve coercion (the one over ZZ # doesn't coerce into the one over QQ even for the same n), # and the QQ version of this method is more important, so let # me stay with QQ. # TODO: Fix this. sgalg = SymmetricGroupAlgebra(QQ, n) one = QQ.one() P = permutation.Permutation # Ugly hack for the case of an empty tableau, due to the # annoyance of Permutation(Tableau([]).row_stabilizer()[0]) # being [1] rather than [] (which seems to have its origins in # permutation group code). # TODO: Fix this. if len(tableau) == 0: return sgalg.one() rd = dict((P(h), one) for h in rs) return sgalg._from_dict(rd)
def a(tableau, star=0): r""" The row projection operator corresponding to the Young tableau ``tableau`` (which is supposed to contain every integer from `1` to its size precisely once, but may and may not be standard). This is the sum (in the group algebra of the relevant symmetric group over `\QQ`) of all the permutations which preserve the rows of ``tableau``. It is called `a_{\text{tableau}}` in [EtRT]_, Section 4.2. REFERENCES: .. [EtRT] Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, Elena Yudovina, "Introduction to representation theory", :arXiv:`0901.0827v5`. EXAMPLES:: sage: from sage.combinat.symmetric_group_algebra import a sage: a([[1,2]]) [1, 2] + [2, 1] sage: a([[1],[2]]) [1, 2] sage: a([]) [] sage: a([[1, 5], [2, 3], [4]]) [1, 2, 3, 4, 5] + [1, 3, 2, 4, 5] + [5, 2, 3, 4, 1] + [5, 3, 2, 4, 1] """ t = Tableau(tableau) if star: t = t.restrict(t.size()-star) rs = t.row_stabilizer().list() n = t.size() # This all should be over ZZ, not over QQ, but symmetric group # algebras don't seem to preserve coercion (the one over ZZ # doesn't coerce into the one over QQ even for the same n), # and the QQ version of this method is more important, so let # me stay with QQ. # TODO: Fix this. sgalg = SymmetricGroupAlgebra(QQ, n) one = QQ.one() P = permutation.Permutation # Ugly hack for the case of an empty tableau, due to the # annoyance of Permutation(Tableau([]).row_stabilizer()[0]) # being [1] rather than [] (which seems to have its origins in # permutation group code). # TODO: Fix this. if len(tableau) == 0: return sgalg.one() rd = dict((P(h), one) for h in rs) return sgalg._from_dict(rd)
def e(tableau, star=0): """ The unnormalized Young projection operator. EXAMPLES:: sage: from sage.combinat.symmetric_group_algebra import e sage: e([[1,2]]) [1, 2] + [2, 1] sage: e([[1],[2]]) [1, 2] - [2, 1] There are differing conventions for the order of the symmetrizers and antisymmetrizers. This example illustrates our conventions:: sage: e([[1,2],[3]]) [1, 2, 3] + [2, 1, 3] - [3, 1, 2] - [3, 2, 1] """ t = Tableau(tableau) if star: t = t.restrict(t.size()-star) mult = permutation_options['mult'] permutation_options['mult'] = 'l2r' if t in e_cache: res = e_cache[t] else: rs = t.row_stabilizer().list() cs = t.column_stabilizer().list() n = t.size() QSn = SymmetricGroupAlgebra(QQ, n) one = QQ(1) P = permutation.Permutation rd = dict((P(h), one) for h in rs) sym = QSn._from_dict(rd) cd = dict((P(v), v.sign()*one) for v in cs) antisym = QSn._from_dict(cd) res = antisym*sym e_cache[t] = res permutation_options['mult'] = mult return res
def e(tableau, star=0): """ The unnormalized Young projection operator corresponding to the Young tableau ``tableau`` (which is supposed to contain every integer from `1` to its size precisely once, but may and may not be standard). EXAMPLES:: sage: from sage.combinat.symmetric_group_algebra import e sage: e([[1,2]]) [1, 2] + [2, 1] sage: e([[1],[2]]) [1, 2] - [2, 1] sage: e([]) [] There are differing conventions for the order of the symmetrizers and antisymmetrizers. This example illustrates our conventions:: sage: e([[1,2],[3]]) [1, 2, 3] + [2, 1, 3] - [3, 1, 2] - [3, 2, 1] """ t = Tableau(tableau) if star: t = t.restrict(t.size() - star) mult = permutation_options['mult'] permutation_options['mult'] = 'l2r' if t in e_cache: res = e_cache[t] else: rs = t.row_stabilizer().list() cs = t.column_stabilizer().list() n = t.size() QSn = SymmetricGroupAlgebra(QQ, n) one = QQ.one() P = permutation.Permutation rd = dict((P(h), one) for h in rs) sym = QSn._from_dict(rd) cd = dict((P(v), v.sign() * one) for v in cs) antisym = QSn._from_dict(cd) res = antisym * sym # Ugly hack for the case of an empty tableau, due to the # annoyance of Permutation(Tableau([]).row_stabilizer()[0]) # being [1] rather than [] (which seems to have its origins in # permutation group code). # TODO: Fix this. if len(tableau) == 0: res = QSn.one() e_cache[t] = res permutation_options['mult'] = mult return res
def e(tableau, star=0): """ The unnormalized Young projection operator corresponding to the Young tableau ``tableau`` (which is supposed to contain every integer from `1` to its size precisely once, but may and may not be standard). EXAMPLES:: sage: from sage.combinat.symmetric_group_algebra import e sage: e([[1,2]]) [1, 2] + [2, 1] sage: e([[1],[2]]) [1, 2] - [2, 1] sage: e([]) [] There are differing conventions for the order of the symmetrizers and antisymmetrizers. This example illustrates our conventions:: sage: e([[1,2],[3]]) [1, 2, 3] + [2, 1, 3] - [3, 1, 2] - [3, 2, 1] """ t = Tableau(tableau) if star: t = t.restrict(t.size()-star) mult = permutation_options['mult'] permutation_options['mult'] = 'l2r' if t in e_cache: res = e_cache[t] else: rs = t.row_stabilizer().list() cs = t.column_stabilizer().list() n = t.size() QSn = SymmetricGroupAlgebra(QQ, n) one = QQ.one() P = permutation.Permutation rd = dict((P(h), one) for h in rs) sym = QSn._from_dict(rd) cd = dict((P(v), v.sign()*one) for v in cs) antisym = QSn._from_dict(cd) res = antisym*sym # Ugly hack for the case of an empty tableau, due to the # annoyance of Permutation(Tableau([]).row_stabilizer()[0]) # being [1] rather than [] (which seems to have its origins in # permutation group code). # TODO: Fix this. if len(tableau) == 0: res = QSn.one() e_cache[t] = res permutation_options['mult'] = mult return res