ax.plot(TT, RRd, label='Rd') ax.plot(TT, RRo, label='Ropt') ax.legend(shadow=True, loc=2) plt.xlabel('time (days)') plt.ylabel('recovered count') plt.title('comparison between methods: number of recovered people') plt.savefig('mcm2015files/output/R_cmp_%s.png' % TT[-1]) if __name__ == "__main__": fields = ['S', 'E', 'I', 'R', 'rD', 'rV' ] + ['from%s' % i for i in xrange(1, 11)] abbr = ['CO', 'FR', 'MO', 'LA', 'KA', 'GR', 'KI', 'MA', 'VA', 'KO'] Y = np.array( tabular.tbarr('mcm2015files/Pop_Transfer.csv', fields, {field: 'float' for field in fields}, {})) t = 0 dt = .1 final_t = 200 idx = 0 YY = [Y] YYd = [Y] YYo = [Y] TT = [t] aborted = False playing = True playdir = 1 tlen = 1 idx = 0 distributor = drug_distributor(YYd, nD, nV, days, dt)
fig,ax = plt.subplots() ax.plot(TT,RR,label='R') ax.plot(TT,RRd,label='Rd') ax.plot(TT,RRo,label='Ropt') ax.legend(shadow=True,loc=2) plt.xlabel('time (days)') plt.ylabel('recovered count') plt.title('comparison between methods: number of recovered people') plt.savefig('mcm2015files/output/R_cmp_%s.png'%TT[-1]) if __name__ == "__main__": fields = ['S','E','I','R','rD','rV'] + ['from%s'%i for i in xrange(1,11)] abbr = ['CO','FR','MO','LA','KA','GR','KI','MA','VA','KO'] Y = np.array(tabular.tbarr('mcm2015files/Pop_Transfer.csv',fields,{field:'float' for field in fields},{})) t = 0 dt = .1 final_t = 200 idx = 0 YY = [Y] YYd = [Y] YYo = [Y] TT = [t] aborted = False playing = True playdir = 1 tlen = 1 idx = 0 distributor = drug_distributor(YYd,nD,nV,days,dt) distributor_opt = drug_distributor_opt(YYo,nD,nV,days,dt)
S, E, I, R, D, I_c = tuple(Y) N = sum(Y[0:4]) return np.array([ br * N - beta * S * I / N - mu * S, beta * S * I / N - (eps + mu) * E, eps * E - (gamma + ddr) * I, (1. / 10 - ddr) * I - mu * R, ddr * I, eps * E ]) return f if __name__ == "__main__": rfields = ['t', 'C'] realdata = np.array( tabular.tbarr('mcm2015files/betatest.csv', rfields, {field: 'float' for field in rfields}, {})) initState = np.array([22e6, 0, 86, 0, 0, 86]) lobound, hibound = 0.0, 1.0 guess = lobound * 0.5 + hibound * 0.5 T, Y = odeint(ebola_kernel(guess), initState, 0, 317) ret = Y[-1][5] print guess, ret while abs(ret - 22460) > 0.1: if ret - 22460 < 0: lobound = guess else: hibound = guess guess = lobound * 0.5 + hibound * 0.5 T, Y = odeint(ebola_kernel(guess), initState, 0, 317) ret = Y[-1][5]
S,E,I,R,D, I_c = tuple(Y) N = sum(Y[0:4]) return np.array([ br*N-beta*S*I/N-mu*S, beta*S*I/N - (eps+mu)*E, eps*E - (gamma+ddr)*I, (1./10 -ddr)*I- mu*R, ddr*I, eps*E ]) return f if __name__ == "__main__": rfields = ['t','C'] realdata = np.array(tabular.tbarr('mcm2015files/betatest.csv',rfields,{field:'float' for field in rfields},{})) initState = np.array([22e6,0,86,0,0,86]) lobound,hibound = 0.0, 1.0 guess = lobound*0.5+hibound*0.5 T,Y = odeint(ebola_kernel(guess),initState,0,317) ret = Y[-1][5] print guess, ret while abs(ret-22460) > 0.1: if ret-22460 < 0: lobound = guess else: hibound = guess guess = lobound*0.5 + hibound*0.5 T,Y = odeint(ebola_kernel(guess),initState,0,317) ret = Y[-1][5] print guess, ret