class TestFCNetParkinsonsTelemonitoring(unittest.TestCase): def setUp(self): self.b = FCNetParkinsonsTelemonitoringBenchmark( data_dir="./fcnet_tabular_benchmarks/") def test_random_sampling(self): config = self.b.get_configuration_space().sample_configuration() self.b.objective_function(config)
def _get_benchmark(dataset_name, data_dir): benchmarks = dict( protein=FCNetProteinStructureBenchmark(data_dir=data_dir), slice=FCNetSliceLocalizationBenchmark(data_dir=data_dir), naval=FCNetNavalPropulsionBenchmark(data_dir=data_dir), parkinsons=FCNetParkinsonsTelemonitoringBenchmark(data_dir=data_dir)) return benchmarks.get(dataset_name)
def __init__(self, data_path: Union[Path, str, None] = './fcnet_tabular_benchmarks/', rng: Union[np.random.RandomState, int, None] = None, **kwargs): from tabular_benchmarks import FCNetParkinsonsTelemonitoringBenchmark benchmark = FCNetParkinsonsTelemonitoringBenchmark( data_dir=str(data_path)) super(ParkinsonsTelemonitoringBenchmark, self).__init__(benchmark=benchmark, data_path=data_path, rng=rng, **kwargs)
def __init__(self, data_path: Union[Path, str, None] = None, rng: Union[np.random.RandomState, int, None] = None, **kwargs): from hpobench import config_file data_path = Path( data_path ) if data_path is not None else config_file.data_dir / 'fcnet_tabular_benchmarks' from tabular_benchmarks import FCNetParkinsonsTelemonitoringBenchmark benchmark = FCNetParkinsonsTelemonitoringBenchmark( data_dir=str(data_path)) super(ParkinsonsTelemonitoringBenchmark, self).__init__(benchmark=benchmark, data_path=data_path, rng=rng, **kwargs)
def get_tabular_bm_with_budget(benchmark: str): nas_full_path = f'{TABULAR_ROOT}' fcnet_path = f'{TABULAR_ROOT}/fcnet_tabular_benchmarks' if benchmark == "nas_cifar10a": min_budget = 12 max_budget = 108 b = NASCifar10A(data_dir=nas_full_path) elif benchmark == "nas_cifar10b": b = NASCifar10B(data_dir=nas_full_path) min_budget = 12 max_budget = 108 elif benchmark == "nas_cifar10c": b = NASCifar10C(data_dir=nas_full_path) min_budget = 12 max_budget = 108 elif benchmark == "protein_structure": b = FCNetProteinStructureBenchmark(data_dir=fcnet_path) min_budget = 3 max_budget = 100 elif benchmark == "slice_localization": b = FCNetSliceLocalizationBenchmark(data_dir=fcnet_path) min_budget = 3 max_budget = 100 elif benchmark == "naval_propulsion": b = FCNetNavalPropulsionBenchmark(data_dir=fcnet_path) min_budget = 3 max_budget = 100 elif benchmark == "parkinsons_telemonitoring": b = FCNetParkinsonsTelemonitoringBenchmark(data_dir=fcnet_path) min_budget = 3 max_budget = 100 else: raise ValueError(f'benchmark {benchmark} not recognized') return b, min_budget, max_budget
b = NASCifar10B(data_dir=data_dir, multi_fidelity=True) elif benchmark_type == "nas_cifar10c": # NAS-Bench-101 max_budget = 108 b = NASCifar10C(data_dir=data_dir, multi_fidelity=True) elif benchmark_type == "protein_structure": # NAS-HPO-Bench max_budget = 100 b = FCNetProteinStructureBenchmark(data_dir=data_dir) elif benchmark_type == "slice_localization": # NAS-HPO-Bench max_budget = 100 b = FCNetSliceLocalizationBenchmark(data_dir=data_dir) elif benchmark_type == "naval_propulsion": # NAS-HPO-Bench max_budget = 100 b = FCNetNavalPropulsionBenchmark(data_dir=data_dir) else: # benchmark_type == "parkinsons_telemonitoring": # NAS-HPO-Bench max_budget = 100 b = FCNetParkinsonsTelemonitoringBenchmark(data_dir=data_dir) def f(config, budget=None): if budget is not None: fitness, cost = b.objective_function(config, budget=int(budget)) else: fitness, cost = b.objective_function(config) return fitness, cost cs = b.get_configuration_space() dimensions = len(cs.get_hyperparameters()) elif benchmark == '1shot1': assert benchmark_type in ['1', '2', '3'] sys.path.append(os.path.join(os.getcwd(), '../nasbench/'))
def setUp(self): self.b = FCNetParkinsonsTelemonitoringBenchmark( data_dir="./fcnet_tabular_benchmarks/")