def collect_params(all_params, params): collected = utils.HParams() for k in six.iterkeys(params.values()): collected.add_hparam(k, getattr(all_params, k)) return collected
def default_params(): params = utils.HParams( input="", output="", model="transformer", vocab=["", ""], pad="<pad>", bos="<eos>", eos="<eos>", unk="<unk>", # Dataset batch_size=4096, fixed_batch_size=False, min_length=1, max_length=256, buffer_size=10000, # Initialization initializer_gain=1.0, initializer="uniform_unit_scaling", # Regularization scale_l1=0.0, scale_l2=0.0, # Training script="", warmup_steps=4000, train_steps=100000, update_cycle=1, optimizer="Adam", adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-8, adadelta_rho=0.95, adadelta_epsilon=1e-6, clipping="global_norm", clip_grad_norm=5.0, learning_rate=1.0, learning_rate_schedule="linear_warmup_rsqrt_decay", learning_rate_boundaries=[0], learning_rate_values=[0.0], device_list=[0], embedding="", # Validation keep_top_k=50, frequency=10, # Checkpoint Saving keep_checkpoint_max=20, keep_top_checkpoint_max=5, save_summary=True, save_checkpoint_secs=0, save_checkpoint_steps=1000, ) return params
def default_params(): params = utils.HParams( input=None, output=None, vocabulary=None, embedding="", # vocabulary specific pad="<pad>", bos="<bos>", eos="<eos>", unk="<unk>", device=0, decode_batch_size=128) return params
def merge_params(params1, params2): params = utils.HParams() for (k, v) in six.iteritems(params1.values()): params.add_hparam(k, v) params_dict = params.values() for (k, v) in six.iteritems(params2.values()): if k in params_dict: # Override setattr(params, k, v) else: params.add_hparam(k, v) return params
def base_params(): params = utils.HParams(pad="<pad>", bos="<eos>", eos="<eos>", unk="<unk>", feature_size=100, hidden_size=200, filter_size=800, num_heads=8, num_hidden_layers=10, attention_dropout=0.0, residual_dropout=0.1, relu_dropout=0.0, label_smoothing=0.1, clip_grad_norm=0.0) return params