import numpy as np import pandas as pd from tagifai import config, data, main, utils from tagifai.config import logger # Set experiment and start run args_fp = Path(config.CONFIG_DIR, "args.json") args = Namespace(**utils.load_dict(filepath=args_fp)) # 1. Set seed utils.set_seed(seed=args.seed) # 2. Set device device = utils.set_device(cuda=args.cuda) # 3. Load data projects_fp = Path(config.DATA_DIR, "projects.json") tags_fp = Path(config.DATA_DIR, "tags.json") projects = utils.load_dict(filepath=projects_fp) tags_dict = utils.list_to_dict(utils.load_dict(filepath=tags_fp), key="tag") df = pd.DataFrame(projects) if args.shuffle: df = df.sample(frac=1).reset_index(drop=True) df = df[:args.num_samples] # None = all samples # 4. Clean data df, tags_above_frequency = data.clean( df=df,
def run(params: Namespace, trial: optuna.trial._trial.Trial = None) -> Dict: """Operations for training. Args: params (Namespace): Input parameters for operations. trial (optuna.trial._trial.Trail, optional): Optuna optimization trial. Defaults to None. Returns: Artifacts to save and load for later. """ # 1. Set seed utils.set_seed(seed=params.seed) # 2. Set device device = utils.set_device(cuda=params.cuda) # 3. Load data projects_fp = Path(config.DATA_DIR, "projects.json") tags_fp = Path(config.DATA_DIR, "tags.json") projects = utils.load_dict(filepath=projects_fp) tags_dict = utils.list_to_dict(utils.load_dict(filepath=tags_fp), key="tag") df = pd.DataFrame(projects) if params.shuffle: df = df.sample(frac=1).reset_index(drop=True) df = df[:params.subset] # None = all samples # 4. Prepare data (feature engineering, filter, clean) df, tags_above_freq, tags_below_freq = data.prepare( df=df, include=list(tags_dict.keys()), exclude=config.EXCLUDED_TAGS, min_tag_freq=params.min_tag_freq, ) params.num_samples = len(df) # 5. Preprocess data df.text = df.text.apply(data.preprocess, lower=params.lower, stem=params.stem) # 6. Encode labels labels = df.tags label_encoder = data.MultiLabelLabelEncoder() label_encoder.fit(labels) y = label_encoder.encode(labels) # Class weights all_tags = list(itertools.chain.from_iterable(labels.values)) counts = np.bincount( [label_encoder.class_to_index[class_] for class_ in all_tags]) class_weights = {i: 1.0 / count for i, count in enumerate(counts)} # 7. Split data utils.set_seed(seed=params.seed) # needed for skmultilearn X = df.text.to_numpy() X_train, X_, y_train, y_ = data.iterative_train_test_split( X=X, y=y, train_size=params.train_size) X_val, X_test, y_val, y_test = data.iterative_train_test_split( X=X_, y=y_, train_size=0.5) test_df = pd.DataFrame({ "text": X_test, "tags": label_encoder.decode(y_test) }) # 8. Tokenize inputs tokenizer = data.Tokenizer(char_level=params.char_level) tokenizer.fit_on_texts(texts=X_train) X_train = np.array(tokenizer.texts_to_sequences(X_train), dtype=object) X_val = np.array(tokenizer.texts_to_sequences(X_val), dtype=object) X_test = np.array(tokenizer.texts_to_sequences(X_test), dtype=object) # 9. Create dataloaders train_dataset = data.CNNTextDataset(X=X_train, y=y_train, max_filter_size=params.max_filter_size) val_dataset = data.CNNTextDataset(X=X_val, y=y_val, max_filter_size=params.max_filter_size) train_dataloader = train_dataset.create_dataloader( batch_size=params.batch_size) val_dataloader = val_dataset.create_dataloader( batch_size=params.batch_size) # 10. Initialize model model = models.initialize_model( params=params, vocab_size=len(tokenizer), num_classes=len(label_encoder), device=device, ) # 11. Train model logger.info( f"Parameters: {json.dumps(params.__dict__, indent=2, cls=NumpyEncoder)}" ) params, model, loss = train.train( params=params, train_dataloader=train_dataloader, val_dataloader=val_dataloader, model=model, device=device, class_weights=class_weights, trial=trial, ) # 12. Evaluate model artifacts = { "params": params, "label_encoder": label_encoder, "tokenizer": tokenizer, "model": model, "loss": loss, } device = torch.device("cpu") y_true, y_pred, performance = eval.evaluate(df=test_df, artifacts=artifacts) artifacts["performance"] = performance return artifacts
def run(args: Namespace, trial: optuna.trial._trial.Trial = None) -> Dict: """Operations for training. 1. Set seed 2. Set device 3. Load data 4. Clean data 5. Preprocess data 6. Encode labels 7. Split data 8. Tokenize inputs 9. Create dataloaders 10. Initialize model 11. Train model 12. Evaluate model Args: args (Namespace): Input arguments for operations. trial (optuna.trial._trial.Trail, optional): Optuna optimization trial. Defaults to None. Returns: Artifacts to save and load for later. """ # 1. Set seed utils.set_seed(seed=args.seed) # 2. Set device device = utils.set_device(cuda=args.cuda) # 3. Load data df, projects_dict, tags_dict = data.load( shuffle=args.shuffle, num_samples=args.num_samples ) # 4. Clean data df, tags_dict, tags_above_frequency = data.clean( df=df, tags_dict=tags_dict, min_tag_freq=args.min_tag_freq ) # 5. Preprocess data df.text = df.text.apply(data.preprocess, lower=args.lower, stem=args.stem) # 6. Encode labels y, class_weights, label_encoder = data.encode_labels(labels=df.tags) # 7. Split data utils.set_seed(seed=args.seed) # needed for skmultilearn X_train, X_val, X_test, y_train, y_val, y_test = data.split( X=df.text.to_numpy(), y=y, train_size=args.train_size ) # 8. Tokenize inputs X_train, tokenizer = data.tokenize_text( X=X_train, char_level=args.char_level ) X_val, _ = data.tokenize_text( X=X_val, char_level=args.char_level, tokenizer=tokenizer ) X_test, _ = data.tokenize_text( X=X_test, char_level=args.char_level, tokenizer=tokenizer ) # 9. Create dataloaders train_dataloader = data.get_dataloader( data=[X_train, y_train], max_filter_size=args.max_filter_size, batch_size=args.batch_size, ) val_dataloader = data.get_dataloader( data=[X_val, y_val], max_filter_size=args.max_filter_size, batch_size=args.batch_size, ) test_dataloader = data.get_dataloader( data=[X_test, y_test], max_filter_size=args.max_filter_size, batch_size=args.batch_size, ) # 10. Initialize model model = models.initialize_model( args=args, vocab_size=len(tokenizer), num_classes=len(label_encoder), device=device, ) # 11. Train model logger.info( f"Arguments: {json.dumps(args.__dict__, indent=2, cls=NumpyEncoder)}" ) args, model, loss = train( args=args, train_dataloader=train_dataloader, val_dataloader=val_dataloader, model=model, device=device, class_weights=class_weights, trial=trial, ) # 12. Evaluate model device = torch.device("cpu") performance = evaluate( dataloader=test_dataloader, model=model.to(device), device=device, threshold=args.threshold, classes=label_encoder.classes, ) return { "args": args, "label_encoder": label_encoder, "tokenizer": tokenizer, "model": model, "loss": loss, "performance": performance, }
def train(params: Namespace, trial: optuna.trial._trial.Trial = None) -> Dict: """Operations for training. Args: params (Namespace): Input parameters for operations. trial (optuna.trial._trial.Trail, optional): Optuna optimization trial. Defaults to None. Returns: Artifacts to save and load for later. """ # Set up utils.set_seed(seed=params.seed) device = utils.set_device(cuda=params.cuda) # Load features features_fp = Path(config.DATA_DIR, "features.json") tags_fp = Path(config.DATA_DIR, "tags.json") features = utils.load_dict(filepath=features_fp) tags_dict = utils.list_to_dict(utils.load_dict(filepath=tags_fp), key="tag") df = pd.DataFrame(features) if params.shuffle: df = df.sample(frac=1).reset_index(drop=True) df = df[:params.subset] # None = all samples # Prepare data (filter, clean, etc.) df, tags_above_freq, tags_below_freq = data.prepare( df=df, include=list(tags_dict.keys()), exclude=config.EXCLUDED_TAGS, min_tag_freq=params.min_tag_freq, ) params.num_samples = len(df) # Preprocess data df.text = df.text.apply(data.preprocess, lower=params.lower, stem=params.stem) # Encode labels labels = df.tags label_encoder = data.MultiLabelLabelEncoder() label_encoder.fit(labels) y = label_encoder.encode(labels) # Class weights all_tags = list(itertools.chain.from_iterable(labels.values)) counts = np.bincount( [label_encoder.class_to_index[class_] for class_ in all_tags]) class_weights = {i: 1.0 / count for i, count in enumerate(counts)} # Split data utils.set_seed(seed=params.seed) # needed for skmultilearn X = df.text.to_numpy() X_train, X_, y_train, y_ = data.iterative_train_test_split( X=X, y=y, train_size=params.train_size) X_val, X_test, y_val, y_test = data.iterative_train_test_split( X=X_, y=y_, train_size=0.5) test_df = pd.DataFrame({ "text": X_test, "tags": label_encoder.decode(y_test) }) # Tokenize inputs tokenizer = data.Tokenizer(char_level=params.char_level) tokenizer.fit_on_texts(texts=X_train) X_train = np.array(tokenizer.texts_to_sequences(X_train), dtype=object) X_val = np.array(tokenizer.texts_to_sequences(X_val), dtype=object) X_test = np.array(tokenizer.texts_to_sequences(X_test), dtype=object) # Create dataloaders train_dataset = data.CNNTextDataset(X=X_train, y=y_train, max_filter_size=params.max_filter_size) val_dataset = data.CNNTextDataset(X=X_val, y=y_val, max_filter_size=params.max_filter_size) train_dataloader = train_dataset.create_dataloader( batch_size=params.batch_size) val_dataloader = val_dataset.create_dataloader( batch_size=params.batch_size) # Initialize model model = models.initialize_model( params=params, vocab_size=len(tokenizer), num_classes=len(label_encoder), device=device, ) # Train model logger.info( f"Parameters: {json.dumps(params.__dict__, indent=2, cls=NumpyEncoder)}" ) class_weights_tensor = torch.Tensor(np.array(list(class_weights.values()))) loss_fn = nn.BCEWithLogitsLoss(weight=class_weights_tensor) optimizer = torch.optim.Adam(model.parameters(), lr=params.lr) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="min", factor=0.05, patience=5) # Trainer module trainer = Trainer( model=model, device=device, loss_fn=loss_fn, optimizer=optimizer, scheduler=scheduler, trial=trial, ) # Train best_val_loss, best_model = trainer.train(params.num_epochs, params.patience, train_dataloader, val_dataloader) # Find best threshold _, y_true, y_prob = trainer.eval_step(dataloader=train_dataloader) params.threshold = find_best_threshold(y_true=y_true, y_prob=y_prob) # Evaluate model artifacts = { "params": params, "label_encoder": label_encoder, "tokenizer": tokenizer, "model": best_model, "loss": best_val_loss, } device = torch.device("cpu") y_true, y_pred, performance = eval.evaluate(df=test_df, artifacts=artifacts) artifacts["performance"] = performance return artifacts