def materialize_root_fb(self, first): if (not root.finalized and not root.empty) or first: root.finalize() if root.finalized: global _root_fb _root_fb = FieldsBuilder()
def materialize_root_fb(self, first): if not root.finalized and not root.empty: root.finalize() elif first: root.finalize(raise_warning=False) if root.finalized: global _root_fb _root_fb = FieldsBuilder()
def materialize_root_fb(is_first_call): if root.finalized: return if not is_first_call and root.empty: # We have to forcefully finalize when `is_first_call` is True (even # if the root itself is empty), so that there is a valid struct # llvm::Module, if no field has been declared before the first kernel # invocation. Example case: # https://github.com/taichi-dev/taichi/blob/27bb1dc3227d9273a79fcb318fdb06fd053068f5/tests/python/test_ad_basics.py#L260-L266 return root.finalize(raise_warning=not is_first_call) global _root_fb _root_fb = FieldsBuilder()
def clear_all_gradients(): impl.get_runtime().materialize() def visit(node): places = [] for i in range(node.ptr.get_num_ch()): ch = node.ptr.get_ch(i) if not ch.is_place(): visit(SNode(ch)) else: if not ch.is_primal(): places.append(ch.get_expr()) places = tuple(places) if places: from taichi.lang.meta import clear_gradients clear_gradients(places) for root_fb in FieldsBuilder.finalized_roots(): visit(root_fb)
def clear_all_gradients(): """Set all fields' gradients to 0.""" impl.get_runtime().materialize() def visit(node): places = [] for _i in range(node.ptr.get_num_ch()): ch = node.ptr.get_ch(_i) if not ch.is_place(): visit(SNode(ch)) else: if not ch.is_primal(): places.append(ch.get_expr()) places = tuple(places) if places: from taichi._kernels import \ clear_gradients # pylint: disable=C0415 clear_gradients(places) for root_fb in FieldsBuilder.finalized_roots(): visit(root_fb)
def init(arch=None, default_fp=None, default_ip=None, _test_mode=False, **kwargs): # Make a deepcopy in case these args reference to items from ti.cfg, which are # actually references. If no copy is made and the args are indeed references, # ti.reset() could override the args to their default values. default_fp = _deepcopy(default_fp) default_ip = _deepcopy(default_ip) kwargs = _deepcopy(kwargs) ti.reset() spec_cfg = _SpecialConfig() env_comp = _EnvironmentConfigurator(kwargs, ti.cfg) env_spec = _EnvironmentConfigurator(kwargs, spec_cfg) # configure default_fp/ip: # TODO: move these stuff to _SpecialConfig too: env_default_fp = os.environ.get("TI_DEFAULT_FP") if env_default_fp: if default_fp is not None: _ti_core.warn( f'ti.init argument "default_fp" overridden by environment variable TI_DEFAULT_FP={env_default_fp}' ) if env_default_fp == '32': default_fp = ti.f32 elif env_default_fp == '64': default_fp = ti.f64 elif env_default_fp is not None: raise ValueError( f'Invalid TI_DEFAULT_FP={env_default_fp}, should be 32 or 64') env_default_ip = os.environ.get("TI_DEFAULT_IP") if env_default_ip: if default_ip is not None: _ti_core.warn( f'ti.init argument "default_ip" overridden by environment variable TI_DEFAULT_IP={env_default_ip}' ) if env_default_ip == '32': default_ip = ti.i32 elif env_default_ip == '64': default_ip = ti.i64 elif env_default_ip is not None: raise ValueError( f'Invalid TI_DEFAULT_IP={env_default_ip}, should be 32 or 64') if default_fp is not None: impl.get_runtime().set_default_fp(default_fp) if default_ip is not None: impl.get_runtime().set_default_ip(default_ip) # submodule configurations (spec_cfg): env_spec.add('print_preprocessed') env_spec.add('log_level', str) env_spec.add('gdb_trigger') env_spec.add('excepthook') env_spec.add('experimental_real_function') # compiler configurations (ti.cfg): for key in dir(ti.cfg): if key in ['arch', 'default_fp', 'default_ip']: continue cast = type(getattr(ti.cfg, key)) if cast is bool: cast = None env_comp.add(key, cast) unexpected_keys = kwargs.keys() if len(unexpected_keys): raise KeyError( f'Unrecognized keyword argument(s) for ti.init: {", ".join(unexpected_keys)}' ) # dispatch configurations that are not in ti.cfg: if not _test_mode: ti.set_gdb_trigger(spec_cfg.gdb_trigger) impl.get_runtime().print_preprocessed = spec_cfg.print_preprocessed impl.get_runtime().experimental_real_function = \ spec_cfg.experimental_real_function ti.set_logging_level(spec_cfg.log_level.lower()) if spec_cfg.excepthook: # TODO(#1405): add a way to restore old excepthook ti.enable_excepthook() # select arch (backend): env_arch = os.environ.get('TI_ARCH') if env_arch is not None: ti.info(f'Following TI_ARCH setting up for arch={env_arch}') arch = _ti_core.arch_from_name(env_arch) ti.cfg.arch = adaptive_arch_select(arch) print(f'[Taichi] Starting on arch={_ti_core.arch_name(ti.cfg.arch)}') if _test_mode: return spec_cfg # create a new program: impl.get_runtime().create_program() impl._root_fb = FieldsBuilder()
def deactivate_all_snodes(): """Recursively deactivate all SNodes.""" for root_fb in FieldsBuilder.finalized_roots(): root_fb.deactivate_all()
def init(arch=None, default_fp=None, default_ip=None, _test_mode=False, enable_fallback=True, **kwargs): """Initializes the Taichi runtime. This should always be the entry point of your Taichi program. Most importantly, it sets the backend used throughout the program. Args: arch: Backend to use. This is usually :const:`~taichi.lang.cpu` or :const:`~taichi.lang.gpu`. default_fp (Optional[type]): Default floating-point type. default_ip (Optional[type]): Default integral type. **kwargs: Taichi provides highly customizable compilation through ``kwargs``, which allows for fine grained control of Taichi compiler behavior. Below we list some of the most frequently used ones. For a complete list, please check out https://github.com/taichi-dev/taichi/blob/master/taichi/program/compile_config.h. * ``cpu_max_num_threads`` (int): Sets the number of threads used by the CPU thread pool. * ``debug`` (bool): Enables the debug mode, under which Taichi does a few more things like boundary checks. * ``print_ir`` (bool): Prints the CHI IR of the Taichi kernels. * ``packed`` (bool): Enables the packed memory layout. See https://docs.taichi.graphics/lang/articles/advanced/layout. """ # Check version for users every 7 days if not disabled by users. skip = os.environ.get("TI_SKIP_VERSION_CHECK") if skip != 'ON': try_check_version() # Make a deepcopy in case these args reference to items from ti.cfg, which are # actually references. If no copy is made and the args are indeed references, # ti.reset() could override the args to their default values. default_fp = _deepcopy(default_fp) default_ip = _deepcopy(default_ip) kwargs = _deepcopy(kwargs) ti.reset() spec_cfg = _SpecialConfig() env_comp = _EnvironmentConfigurator(kwargs, ti.cfg) env_spec = _EnvironmentConfigurator(kwargs, spec_cfg) # configure default_fp/ip: # TODO: move these stuff to _SpecialConfig too: env_default_fp = os.environ.get("TI_DEFAULT_FP") if env_default_fp: if default_fp is not None: _ti_core.warn( f'ti.init argument "default_fp" overridden by environment variable TI_DEFAULT_FP={env_default_fp}' ) if env_default_fp == '32': default_fp = ti.f32 elif env_default_fp == '64': default_fp = ti.f64 elif env_default_fp is not None: raise ValueError( f'Invalid TI_DEFAULT_FP={env_default_fp}, should be 32 or 64') env_default_ip = os.environ.get("TI_DEFAULT_IP") if env_default_ip: if default_ip is not None: _ti_core.warn( f'ti.init argument "default_ip" overridden by environment variable TI_DEFAULT_IP={env_default_ip}' ) if env_default_ip == '32': default_ip = ti.i32 elif env_default_ip == '64': default_ip = ti.i64 elif env_default_ip is not None: raise ValueError( f'Invalid TI_DEFAULT_IP={env_default_ip}, should be 32 or 64') if default_fp is not None: impl.get_runtime().set_default_fp(default_fp) if default_ip is not None: impl.get_runtime().set_default_ip(default_ip) # submodule configurations (spec_cfg): env_spec.add('print_preprocessed') env_spec.add('log_level', str) env_spec.add('gdb_trigger') env_spec.add('excepthook') env_spec.add('experimental_real_function') env_spec.add('short_circuit_operators') # compiler configurations (ti.cfg): for key in dir(ti.cfg): if key in ['arch', 'default_fp', 'default_ip']: continue _cast = type(getattr(ti.cfg, key)) if _cast is bool: _cast = None env_comp.add(key, _cast) unexpected_keys = kwargs.keys() if len(unexpected_keys): raise KeyError( f'Unrecognized keyword argument(s) for ti.init: {", ".join(unexpected_keys)}' ) # dispatch configurations that are not in ti.cfg: if not _test_mode: ti.set_gdb_trigger(spec_cfg.gdb_trigger) impl.get_runtime().print_preprocessed = spec_cfg.print_preprocessed impl.get_runtime().experimental_real_function = \ spec_cfg.experimental_real_function impl.get_runtime().short_circuit_operators = \ spec_cfg.short_circuit_operators ti.set_logging_level(spec_cfg.log_level.lower()) if spec_cfg.excepthook: # TODO(#1405): add a way to restore old excepthook ti.enable_excepthook() # select arch (backend): env_arch = os.environ.get('TI_ARCH') if env_arch is not None: ti.info(f'Following TI_ARCH setting up for arch={env_arch}') arch = _ti_core.arch_from_name(env_arch) ti.cfg.arch = adaptive_arch_select(arch, enable_fallback, ti.cfg.use_gles) if ti.cfg.arch == cc: _ti_core.set_tmp_dir(locale_encode(prepare_sandbox())) print(f'[Taichi] Starting on arch={_ti_core.arch_name(ti.cfg.arch)}') # Torch based ndarray on opengl backend allocates memory on host instead of opengl backend. # So it won't work. if ti.cfg.arch == opengl and ti.cfg.ndarray_use_torch: ti.warn( 'Opengl backend doesn\'t support torch based ndarray. Setting ndarray_use_torch to False.' ) ti.cfg.ndarray_use_torch = False if _test_mode: return spec_cfg get_default_kernel_profiler().set_kernel_profiler_mode( ti.cfg.kernel_profiler) # create a new program: impl.get_runtime().create_program() ti.trace('Materializing runtime...') impl.get_runtime().prog.materialize_runtime() impl._root_fb = FieldsBuilder() if not os.environ.get("TI_DISABLE_SIGNAL_HANDLERS", False): impl.get_runtime()._register_signal_handlers() return None