def test_HT_PHASOR(self): class MyHT_PHASOR(OperatorHT_PHASOR): def __init__(self, name, **kwargs): super(MyHT_PHASOR, self).__init__(100, name, **kwargs) self.env.add_operator('ht_phasor', { 'operator': MyHT_PHASOR, }) string = 'ht_phasor(2, open)' gene = self.env.parse_string(string) self.assertFalse(gene.validate()) string = 'ht_phasor(0, open)' gene = self.env.parse_string(string) self.assertRaises(IndexError, gene.eval, self.env, self.dates[98], self.dates[-1]) ser = gene.eval(self.env, self.dates[99], self.dates[99]).iloc[0] data = self.env.get_data_value('open') res = [] for i, val in ser.iteritems(): res.append(talib.HT_PHASOR(data[i].values[:100])[0][-1] == val) self.assertTrue(all(res)) string = 'ht_phasor(1, open)' gene = self.env.parse_string(string) ser = gene.eval(self.env, self.dates[99], self.dates[99]).iloc[0] res = [] for i, val in ser.iteritems(): res.append(talib.HT_PHASOR(data[i].values[:100])[1][-1] == val) self.assertTrue(all(res))
def HT_phasor(close_ts): import talib close_np = close_ts.cpu().detach().numpy() close_df = pd.DataFrame(close_np) inphase = close_df.apply(lambda x: talib.HT_PHASOR(x)[0]) quadrature = close_df.apply(lambda x: talib.HT_PHASOR(x)[1]) inphase_ts = torch.tensor(inphase.values, dtype=close_ts.dtype, device=close_ts.device) quadrature_ts = torch.tensor(quadrature.values, dtype=close_ts.dtype, device=close_ts.device) return inphase_ts, quadrature_ts
def Cylcle_Indicators(dataframe): """ Cycle Indicators HT_DCPERIOD Hilbert Transform - Dominant Cycle Period HT_DCPHASE Hilbert Transform - Dominant Cycle Phase HT_PHASOR Hilbert Transform - Phasor Components HT_SINE Hilbert Transform - SineWave HT_TRENDMODE Hilbert Transform - Trend vs Cycle Mode """ #Cycle Indicator Functions #HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period df[f'{ratio}_HT_DCPERIOD'] = talib.HT_DCPERIOD(Close) #HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase df[f'{ratio}_HT_DCPHASE'] = talib.HT_DCPHASE(Close) #HT_PHASOR - Hilbert Transform - Phasor Components inphase, quadrature = talib.HT_PHASOR(Close) #HT_SINE - Hilbert Transform - SineWave sine, leadsine = talib.HT_SINE(Close) #HT_TRENDMODE - Hilbert Transform - Trend vs Cycle Mode integer = talib.HT_TRENDMODE(Close) return
def cycle_process(event): print(event.widget.get()) cycle = event.widget.get() upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) fig, axes = plt.subplots(2, 1, sharex=True) ax1, ax2 = axes[0], axes[1] axes[0].plot(close, 'rd-', markersize=3) axes[0].plot(upperband, 'y-') axes[0].plot(middleband, 'b-') axes[0].plot(lowerband, 'y-') axes[0].set_title(cycle, fontproperties="SimHei") if cycle == '希尔伯特变换——主要的循环周期': real = ta.HT_DCPERIOD(close) axes[1].plot(real, 'r-') elif cycle == '希尔伯特变换,占主导地位的周期阶段': real = ta.HT_DCPHASE(close) axes[1].plot(real, 'r-') elif cycle == '希尔伯特变换——相量组件': inphase, quadrature = ta.HT_PHASOR(close) axes[1].plot(inphase, 'r-') axes[1].plot(quadrature, 'g-') elif cycle == '希尔伯特变换——正弦曲线': sine, leadsine = ta.HT_SINE(close) axes[1].plot(sine, 'r-') axes[1].plot(leadsine, 'g-') elif cycle == '希尔伯特变换——趋势和周期模式': integer = ta.HT_TRENDMODE(close) axes[1].plot(integer, 'r-') plt.show()
def get_ht_phasor(ohlc): inphase, quadrature = ta.HT_PHASOR(ohlc['4_close']) ohlc['ht_phasor_inphase'] = inphase ohlc['ht_phasor_quadrature'] = quadrature return ohlc
def add_cycle_indicators(data_list): for data in data_list: #HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period real = talib.HT_DCPERIOD(data.Close) data['HT_DCPERIOD'] = real #HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase real = talib.HT_DCPHASE(data.Close) data['HT_DCPHASE'] = real #HT_PHASOR - Hilbert Transform - Phasor Components inphase, quadrature = talib.HT_PHASOR(data.Close) data['HT_PHASOR_inphase'] = inphase data['HT_PHASOR_quadrature'] = quadrature #HT_SINE - Hilbert Transform - SineWave sine, leadsine = talib.HT_SINE(data.Close) data['HT_SINE_sine'] = sine data['HT_SINE_leadsine'] = leadsine #HT_TRENDMODE - Hilbert Transform - Trend vs Cycle Mode integer = talib.HT_TRENDMODE(data.Close) data['HT_TRENDMODE'] = integer return data_list
def hilbert_transform_phasor_components(close): try: inphase_data, quadrature_data = talib.HT_PHASOR(close) df = pd.DataFrame() df['inphase'] = inphase_data df['quadrature'] = quadrature_data return df except Exception as e: raise (e)
def HT_PHASOR(close): ''' Hilbert Transform - Phasor Components 希尔伯特变换-希尔伯特变换相量分量 分组: Cycle Indicators 周期指标 简介: inphase, quadrature = HT_PHASOR(close) ''' return talib.HT_PHASOR(close)
def _get_indicators(security, open_name, close_name, high_name, low_name, volume_name): """ expand the features of the data through technical analysis across 26 different signals :param security: data which features are going to be expanded :param open_name: open price column name :param close_name: close price column name :param high_name: high price column name :param low_name: low price column name :param volume_name: traded volumn column name :return: expanded and extracted data """ open_price = security[open_name].values close_price = security[close_name].values low_price = security[low_name].values high_price = security[high_name].values volume = security[volume_name].values if volume_name else None security['MOM'] = talib.MOM(close_price) security['HT_DCPERIOD'] = talib.HT_DCPERIOD(close_price) security['HT_DCPHASE'] = talib.HT_DCPHASE(close_price) security['SINE'], security['LEADSINE'] = talib.HT_SINE(close_price) security['INPHASE'], security['QUADRATURE'] = talib.HT_PHASOR( close_price) security['ADXR'] = talib.ADXR(high_price, low_price, close_price) security['APO'] = talib.APO(close_price) security['AROON_UP'], _ = talib.AROON(high_price, low_price) security['CCI'] = talib.CCI(high_price, low_price, close_price) security['PLUS_DI'] = talib.PLUS_DI(high_price, low_price, close_price) security['PPO'] = talib.PPO(close_price) security['MACD'], security['MACD_SIG'], security[ 'MACD_HIST'] = talib.MACD(close_price) security['CMO'] = talib.CMO(close_price) security['ROCP'] = talib.ROCP(close_price) security['FASTK'], security['FASTD'] = talib.STOCHF( high_price, low_price, close_price) security['TRIX'] = talib.TRIX(close_price) security['ULTOSC'] = talib.ULTOSC(high_price, low_price, close_price) security['WILLR'] = talib.WILLR(high_price, low_price, close_price) security['NATR'] = talib.NATR(high_price, low_price, close_price) security['RSI'] = talib.RSI(close_price) security['EMA'] = talib.EMA(close_price) security['SAREXT'] = talib.SAREXT(high_price, low_price) # security['TEMA'] = talib.EMA(close_price) security['RR'] = security[close_name] / security[close_name].shift( 1).fillna(1) security['LOG_RR'] = np.log(security['RR']) if volume_name: security['MFI'] = talib.MFI(high_price, low_price, close_price, volume) # security['AD'] = talib.AD(high_price, low_price, close_price, volume) # security['OBV'] = talib.OBV(close_price, volume) security[volume_name] = np.log(security[volume_name]) security.drop([open_name, close_name, high_name, low_name], axis=1) security = security.dropna().astype(np.float32) return security
def eval(self, environment, gene, date1, date2): return_type = int(gene.next_value(environment, date1, date2)) date1_ = environment.shift_date(date1, -(self.window - 1), -1) df = gene.next_value(environment, date1_, date2) res = pd.DataFrame(np.nan, index=df.ix[date1:date2].index, columns=df.columns) for i, j in product(range(res.shape[0]), range(res.shape[1])): res.iloc[i, j] = talib.HT_PHASOR(df.values[i:i + self.window, j])[return_type][-1] return res
def getCycleIndicators(df): high = df['High'] low = df['Low'] close = df['Close'] open = df['Open'] volume = df['Volume'] df['DCPERIOD'] = ta.HT_DCPERIOD(close) df['DCPHASE'] = ta.HT_DCPHASE(close) df['INPHASE'], df['QUADRATURE'] = ta.HT_PHASOR(close) df['SINE'], df['LEADSINE'] = ta.HT_SINE(close) df['TRENDMODE'] = ta.HT_TRENDMODE(close)
def sexy(k): if len(k) > 3: vm = wrap(k) print("--talib--") print(list(talib.HT_DCPERIOD(vm))) print(list(talib.HT_DCPHASE(vm))) print(list(talib.HT_PHASOR(vm))) print(list(talib.HT_SINE(vm))) print(list(talib.HT_TRENDMODE(vm))) print("--talib--") else: pass
def computeHilbertTransformSignals(ticker, pd): closeField = config.ticker2ReturnFieldMap[ticker] close = numpy.array(pd[closeField]) pd['Hilbert.DCPeriod'] = talib.HT_DCPERIOD(close) pd['Hilbert.DCPhase'] = talib.HT_DCPHASE(close) pd['Hilbert.inphase'], pd['Hilbert.quadrature'] = talib.HT_PHASOR(close) pd['Hilbert.sine'], pd['Hilbert.leadsine'] = talib.HT_SINE(close) pd['Hilbert.TrendMode'] = talib.HT_TRENDMODE(close) fields = [ 'Hilbert.DCPeriod', 'Hilbert.DCPhase', 'Hilbert.inphase', 'Hilbert.quadrature', 'Hilbert.sine', 'Hilbert.leadsine', 'Hilbert.TrendMode' ] return pd, fields
def generate_tech_data_default(stock, open_name, close_name, high_name, low_name, volume_name='vol'): open_price = stock[open_name].values close_price = stock[close_name].values low_price = stock[low_name].values high_price = stock[high_name].values volume = stock[volume_name].values data = stock.copy() data['MOM'] = talib.MOM(close_price) data['HT_DCPERIOD'] = talib.HT_DCPERIOD(close_price) data['HT_DCPHASE'] = talib.HT_DCPHASE(close_price) data['sine'], data['leadsine'] = talib.HT_SINE(close_price) data['inphase'], data['quadrature'] = talib.HT_PHASOR(close_price) data['ADXR'] = talib.ADXR(high_price, low_price, close_price) data['APO'] = talib.APO(close_price) data['AROON_UP'], _ = talib.AROON(high_price, low_price) data['CCI'] = talib.CCI(high_price, low_price, close_price) data['PLUS_DI'] = talib.PLUS_DI(high_price, low_price, close_price) data['PPO'] = talib.PPO(close_price) data['macd'], data['macd_sig'], data['macd_hist'] = talib.MACD(close_price) data['CMO'] = talib.CMO(close_price) data['ROCP'] = talib.ROCP(close_price) data['fastk'], data['fastd'] = talib.STOCHF(high_price, low_price, close_price) data['TRIX'] = talib.TRIX(close_price) data['ULTOSC'] = talib.ULTOSC(high_price, low_price, close_price) data['WILLR'] = talib.WILLR(high_price, low_price, close_price) data['NATR'] = talib.NATR(high_price, low_price, close_price) data['MFI'] = talib.MFI(high_price, low_price, close_price, volume) data['RSI'] = talib.RSI(close_price) data['AD'] = talib.AD(high_price, low_price, close_price, volume) data['OBV'] = talib.OBV(close_price, volume) data['EMA'] = talib.EMA(close_price) data['SAREXT'] = talib.SAREXT(high_price, low_price) data['TEMA'] = talib.EMA(close_price) #data = data.drop([open_name, close_name, high_name, low_name, volume_name, 'amount', 'count'], axis=1) data = drop_columns(data, [ open_name, close_name, high_name, low_name, volume_name, 'amount', 'count' ]) data = data.dropna().astype(np.float32) return data
def ht_phasor(client, symbol, timeframe="6m", col="close"): """This will return a dataframe of Hilbert Transform - Phasor Components for the given symbol across the given timeframe Args: client (pyEX.Client); Client symbol (string); Ticker timeframe (string); timeframe to use, for pyEX.chart col (string); column to use to calculate Returns: DataFrame: result """ df = client.chartDF(symbol, timeframe) x, y = t.HT_PHASOR(df[col].values) return pd.DataFrame({col: df[col].values, "inphase": x, "quadrature": y})
def get_cycle_indicators(df_price): df_local = df_price.copy() df_nonna_idxs = df_local[~df_local.Close.isna()].Close.index np_adj_close = df_local.Adj_Close.values np_close = df_local.Close.values np_open = df_local.Open.values np_high = df_local.High.values np_low = df_local.Low.values np_volume = df_local.Volume.values np_nan_indices = np.isnan(np_close) #HT_DCPERIOD-Hilbert Transform - Dominant Cycle Period HT_DCPERIOD = pd.Series(ta.HT_DCPERIOD(np_adj_close[~np_nan_indices]), index=df_nonna_idxs) df_local['HT_DCPERIOD'] = HT_DCPERIOD #HT_DCPHASE-Hilbert Transform - Dominant Cycle Phase HT_DCPHASE = pd.Series(ta.HT_DCPHASE(np_adj_close[~np_nan_indices]), index=df_nonna_idxs) df_local['HT_DCPHASE'] = HT_DCPHASE #HT_PHASOR-Hilbert Transform - Phasor Components HT_PHASOR = ta.HT_PHASOR(np_adj_close[~np_nan_indices]) df_local['HT_PHASOR_INPHASE'] = pd.Series(HT_PHASOR[0], index=df_nonna_idxs) df_local['HT_PHASOR_QUADRATURE'] = pd.Series(HT_PHASOR[1], index=df_nonna_idxs) #HT_SINE - Hilbert Transform - SineWave HT_SINE = ta.HT_SINE(np_adj_close[~np_nan_indices]) df_local['HT_SINE_SINE'] = pd.Series(HT_SINE[0], index=df_nonna_idxs) df_local['HT_SINE_LEADSINE'] = pd.Series(HT_SINE[1], index=df_nonna_idxs) #HT_TRENDMODE-Hilbert Transform - Trend vs Cycle Mode HT_TRENDMODE = pd.Series(ta.HT_TRENDMODE(np_adj_close[~np_nan_indices]), index=df_nonna_idxs) df_local['HT_TRENDMODE'] = HT_TRENDMODE return df_local
def ht_phasor(candles: np.ndarray, source_type: str = "close", sequential: bool = False) -> IQ: """ HT_PHASOR - Hilbert Transform - Phasor Components :param candles: np.ndarray :param source_type: str - default: "close" :param sequential: bool - default: False :return: IQ(inphase, quadrature) """ candles = slice_candles(candles, sequential) source = get_candle_source(candles, source_type=source_type) inphase, quadrature = talib.HT_PHASOR(source) if sequential: return IQ(inphase, quadrature) else: return IQ(inphase[-1], quadrature[-1])
def _get_indicators(security, open_name, close_name, high_name, low_name, volume_name): open_price = security[open_name].values close_price = security[close_name].values low_price = security[low_name].values high_price = security[high_name].values volume = security[volume_name].values if volume_name else None security['MOM'] = talib.MOM(close_price) security['HT_DCPERIOD'] = talib.HT_DCPERIOD(close_price) security['HT_DCPHASE'] = talib.HT_DCPHASE(close_price) security['SINE'], security['LEADSINE'] = talib.HT_SINE(close_price) security['INPHASE'], security['QUADRATURE'] = talib.HT_PHASOR( close_price) security['ADXR'] = talib.ADXR(high_price, low_price, close_price) security['APO'] = talib.APO(close_price) security['AROON_UP'], _ = talib.AROON(high_price, low_price) security['CCI'] = talib.CCI(high_price, low_price, close_price) security['PLUS_DI'] = talib.PLUS_DI(high_price, low_price, close_price) security['PPO'] = talib.PPO(close_price) security['MACD'], security['MACD_SIG'], security[ 'MACD_HIST'] = talib.MACD(close_price) security['CMO'] = talib.CMO(close_price) security['ROCP'] = talib.ROCP(close_price) security['FASTK'], security['FASTD'] = talib.STOCHF( high_price, low_price, close_price) security['TRIX'] = talib.TRIX(close_price) security['ULTOSC'] = talib.ULTOSC(high_price, low_price, close_price) security['WILLR'] = talib.WILLR(high_price, low_price, close_price) security['NATR'] = talib.NATR(high_price, low_price, close_price) security['RSI'] = talib.RSI(close_price) security['EMA'] = talib.EMA(close_price) security['SAREXT'] = talib.SAREXT(high_price, low_price) security['RR'] = security[close_name] / security[close_name].shift( 1).fillna(1) security['LOG_RR'] = np.log(security['RR']) if volume_name: security['MFI'] = talib.MFI(high_price, low_price, close_price, volume) security[volume_name] = np.log(security[volume_name]) security.drop([open_name, close_name, high_name, low_name], axis=1) security = security.dropna().astype(np.float32) return security
def handle_cycle_indicators(args, axes, i, klines_df, close_times, display_count): # talib if args.HT_DCPERIOD: name = 'HT_DCPERIOD' real = talib.HT_DCPERIOD(klines_df["close"]) i += 1 axes[i].set_ylabel(name) axes[i].grid(True) axes[i].plot(close_times, real[-display_count:], "y:", label=name) if args.HT_DCPHASE: name = 'HT_DCPHASE' real = talib.HT_DCPHASE(klines_df["close"]) i += 1 axes[i].set_ylabel(name) axes[i].grid(True) axes[i].plot(close_times, real[-display_count:], "y:", label=name) if args.HT_PHASOR: name = 'HT_PHASOR' real = talib.HT_PHASOR(klines_df["close"]) i += 1 axes[i].set_ylabel(name) axes[i].grid(True) axes[i].plot(close_times, real[-display_count:], "y:", label=name) if args.HT_SINE: name = 'HT_SINE' real = talib.HT_SINE(klines_df["close"]) i += 1 axes[i].set_ylabel(name) axes[i].grid(True) axes[i].plot(close_times, real[-display_count:], "y:", label=name) if args.HT_TRENDMODE: name = 'HT_TRENDMODE' real = talib.HT_TRENDMODE(klines_df["close"]) i += 1 axes[i].set_ylabel(name) axes[i].grid(True) axes[i].plot(close_times, real[-display_count:], "y:", label=name)
def generate_tech_data(stock, open_name, close_name, high_name, low_name): open_price = stock[open_name].values close_price = stock[close_name].values low_price = stock[low_name].values high_price = stock[high_name].values data = pd.DataFrame(stock) data['MOM'] = talib.MOM(close_price) data['SMA'] = talib.SMA(close_price) data['HT_DCPERIOD'] = talib.HT_DCPERIOD(close_price) data['HT_DCPHASE'] = talib.HT_DCPHASE(close_price) data['sine'], data['leadsine'] = talib.HT_SINE(close_price) data['inphase'], data['quadrature'] = talib.HT_PHASOR(close_price) data['HT_TRENDMODE'] = talib.HT_TRENDMODE(close_price) data['SAREXT'] = talib.SAREXT(high_price, low_price) data['ADX'] = talib.ADX(high_price, low_price, close_price) data['ADXR'] = talib.ADX(high_price, low_price, close_price) data['APO'] = talib.APO(close_price) data['AROON_UP'], data['AROON_DOWN'] = talib.AROON(high_price, low_price) data['AROONOSC'] = talib.AROONOSC(high_price, low_price) data['BOP'] = talib.BOP(open_price, high_price, low_price, close_price) data['CCI'] = talib.CCI(high_price, low_price, close_price) data['PLUS_DI'] = talib.PLUS_DI(high_price, low_price, close_price) data['PLUS_DM'] = talib.PLUS_DM(high_price, low_price) data['PPO'] = talib.PPO(close_price) data['macd'], data['macd_sig'], data['macd_hist'] = talib.MACD(close_price) data['RSI'] = talib.RSI(close_price) data['CMO'] = talib.CMO(close_price) data['ROC'] = talib.ROC(close_price) data['ROCP'] = talib.ROCP(close_price) data['ROCR'] = talib.ROCR(close_price) data['slowk'], data['slowd'] = talib.STOCH(high_price, low_price, close_price) data['fastk'], data['fastd'] = talib.STOCHF(high_price, low_price, close_price) data['TRIX'] = talib.TRIX(close_price) data['ULTOSC'] = talib.ULTOSC(high_price, low_price, close_price) data['WILLR'] = talib.WILLR(high_price, low_price, close_price) data['NATR'] = talib.NATR(high_price, low_price, close_price) data['TRANGE'] = talib.TRANGE(high_price, low_price, close_price) data = data.drop([open_name, close_name, high_name, low_name], axis=1) data = data.dropna() return data
def generate_tech_data(stock, open_name, close_name, high_name, low_name, max_time_window=10): open_price = stock[open_name].values close_price = stock[close_name].values low_price = stock[low_name].values high_price = stock[high_name].values data = pd.DataFrame(stock) data['MOM'] = talib.MOM(close_price, timeperiod=max_time_window) # data['_SMA'] = talib.SMA(close_price) data['HT_DCPERIOD'] = talib.HT_DCPERIOD(close_price) data['HT_DCPHASE'] = talib.HT_DCPHASE(close_price) data['sine'], data['leadsine'] = talib.HT_SINE(close_price) data['inphase'], data['quadrature'] = talib.HT_PHASOR(close_price) # data['_HT_TRENDMODE'] = talib.HT_TRENDMODE(close_price) # data['_SAREXT'] = talib.SAREXT(high_price, low_price) # data['_ADX'] = talib.ADX(high_price, low_price, close_price) data['ADXR'] = talib.ADXR(high_price, low_price, close_price, timeperiod=max_time_window) data['APO'] = talib.APO(close_price, fastperiod=max_time_window // 2, slowperiod=max_time_window) data['AROON_UP'], _ = talib.AROON(high_price, low_price, timeperiod=max_time_window) # data['_BOP'] = talib.BOP(open_price, high_price, low_price, close_price) data['CCI'] = talib.CCI(high_price, low_price, close_price, timeperiod=max_time_window) data['PLUS_DI'] = talib.PLUS_DI(high_price, low_price, close_price, timeperiod=max_time_window) # data['_PLUS_DM'] = talib.PLUS_DM(high_price, low_price) data['PPO'] = talib.PPO(close_price, fastperiod=max_time_window // 2, slowperiod=max_time_window) data['macd'], data['macd_sig'], data['macd_hist'] = talib.MACD(close_price, fastperiod=max_time_window // 2, slowperiod=max_time_window, signalperiod=max_time_window // 2) data['CMO'] = talib.CMO(close_price, timeperiod=max_time_window) # data['ROC'] = talib.ROC(close_price) data['ROCP'] = talib.ROCP(close_price, timeperiod=max_time_window) # data['ROCR'] = talib.ROCR(close_price) # data['slowk'], data['slowd'] = talib.STOCH(high_price, low_price, close_price) data['fastk'], data['fastd'] = talib.STOCHF(high_price, low_price, close_price) data['TRIX'] = talib.TRIX(close_price, timeperiod=max_time_window) data['ULTOSC'] = talib.ULTOSC(high_price, low_price, close_price, timeperiod1=max_time_window // 2, timeperiod2=max_time_window, timeperiod3=max_time_window * 2) data['WILLR'] = talib.WILLR(high_price, low_price, close_price, timeperiod=max_time_window) data['NATR'] = talib.NATR(high_price, low_price, close_price, timeperiod=max_time_window) # data['_TRANGE'] = talib.TRANGE(high_price, low_price, close_price) data = data.drop([open_name, close_name, high_name, low_name], axis=1) # data.columns=data.columns.map(lambda x:x[1:]) data = data.dropna().astype(np.float32) return data
def get_df(filename): tech = pd.read_csv(filename,index_col=0) dclose = np.array(tech.close) volume = np.array(tech.volume) tech['RSI'] = ta.RSI(np.array(tech.close)) tech['OBV'] = ta.OBV(np.array(tech.close),np.array(tech.volume)) tech['NATR'] = ta.NATR(np.array(tech.high),np.array(tech.low),np.array(tech.close)) tech['upper'],tech['middle'],tech['lower'] = ta.BBANDS(np.array(tech.close), timeperiod=10, nbdevup=2, nbdevdn=2, matype=0) tech['DEMA'] = ta.DEMA(dclose, timeperiod=30) tech['EMA'] = ta.EMA(dclose, timeperiod=30) tech['HT_TRENDLINE'] = ta.HT_TRENDLINE(dclose) tech['KAMA'] = ta.KAMA(dclose, timeperiod=30) tech['MA'] = ta.MA(dclose, timeperiod=30, matype=0) # tech['mama'], tech['fama'] = ta.MAMA(dclose, fastlimit=0, slowlimit=0) tech['MIDPOINT'] = ta.MIDPOINT(dclose, timeperiod=14) tech['SMA'] = ta.SMA(dclose, timeperiod=30) tech['T3'] = ta.T3(dclose, timeperiod=5, vfactor=0) tech['TEMA'] = ta.TEMA(dclose, timeperiod=30) tech['TRIMA'] = ta.TRIMA(dclose, timeperiod=30) tech['WMA'] = ta.WMA(dclose, timeperiod=30) tech['APO'] = ta.APO(dclose, fastperiod=12, slowperiod=26, matype=0) tech['CMO'] = ta.CMO(dclose, timeperiod=14) tech['macd'], tech['macdsignal'], tech['macdhist'] = ta.MACD(dclose, fastperiod=12, slowperiod=26, signalperiod=9) tech['MOM'] = ta.MOM(dclose, timeperiod=10) tech['PPO'] = ta.PPO(dclose, fastperiod=12, slowperiod=26, matype=0) tech['ROC'] = ta.ROC(dclose, timeperiod=10) tech['ROCR'] = ta.ROCR(dclose, timeperiod=10) tech['ROCP'] = ta.ROCP(dclose, timeperiod=10) tech['ROCR100'] = ta.ROCR100(dclose, timeperiod=10) tech['RSI'] = ta.RSI(dclose, timeperiod=14) tech['fastk'], tech['fastd'] = ta.STOCHRSI(dclose, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0) tech['TRIX'] = ta.TRIX(dclose, timeperiod=30) tech['OBV'] = ta.OBV(dclose,volume) tech['HT_DCPHASE'] = ta.HT_DCPHASE(dclose) tech['inphase'], tech['quadrature'] = ta.HT_PHASOR(dclose) tech['sine'], tech['leadsine'] = ta.HT_SINE(dclose) tech['HT_TRENDMODE'] = ta.HT_TRENDMODE(dclose) df = tech.fillna(method='bfill') return df
def ht_phasor(candles: np.ndarray, source_type: str = "close", sequential: bool = False) -> IQ: """ HT_PHASOR - Hilbert Transform - Phasor Components :param candles: np.ndarray :param source_type: str - default: "close" :param sequential: bool - default=False :return: IQ(inphase, quadrature) """ warmup_candles_num = get_config('env.data.warmup_candles_num', 240) if not sequential and len(candles) > warmup_candles_num: candles = candles[-warmup_candles_num:] source = get_candle_source(candles, source_type=source_type) inphase, quadrature = talib.HT_PHASOR(source) if sequential: return IQ(inphase, quadrature) else: return IQ(inphase[-1], quadrature[-1])
def calc_features(df): open = df['op'] high = df['hi'] low = df['lo'] close = df['cl'] volume = df['volume'] orig_columns = df.columns hilo = (df['hi'] + df['lo']) / 2 df['BBANDS_upperband'], df['BBANDS_middleband'], df[ 'BBANDS_lowerband'] = talib.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) df['BBANDS_upperband'] -= hilo df['BBANDS_middleband'] -= hilo df['BBANDS_lowerband'] -= hilo df['DEMA'] = talib.DEMA(close, timeperiod=30) - hilo df['EMA'] = talib.EMA(close, timeperiod=30) - hilo df['HT_TRENDLINE'] = talib.HT_TRENDLINE(close) - hilo df['KAMA'] = talib.KAMA(close, timeperiod=30) - hilo df['MA'] = talib.MA(close, timeperiod=30, matype=0) - hilo df['MIDPOINT'] = talib.MIDPOINT(close, timeperiod=14) - hilo df['SMA'] = talib.SMA(close, timeperiod=30) - hilo df['T3'] = talib.T3(close, timeperiod=5, vfactor=0) - hilo df['TEMA'] = talib.TEMA(close, timeperiod=30) - hilo df['TRIMA'] = talib.TRIMA(close, timeperiod=30) - hilo df['WMA'] = talib.WMA(close, timeperiod=30) - hilo df['ADX'] = talib.ADX(high, low, close, timeperiod=14) df['ADXR'] = talib.ADXR(high, low, close, timeperiod=14) df['APO'] = talib.APO(close, fastperiod=12, slowperiod=26, matype=0) df['AROON_aroondown'], df['AROON_aroonup'] = talib.AROON(high, low, timeperiod=14) df['AROONOSC'] = talib.AROONOSC(high, low, timeperiod=14) df['BOP'] = talib.BOP(open, high, low, close) df['CCI'] = talib.CCI(high, low, close, timeperiod=14) df['DX'] = talib.DX(high, low, close, timeperiod=14) df['MACD_macd'], df['MACD_macdsignal'], df['MACD_macdhist'] = talib.MACD( close, fastperiod=12, slowperiod=26, signalperiod=9) # skip MACDEXT MACDFIX たぶん同じなので df['MFI'] = talib.MFI(high, low, close, volume, timeperiod=14) df['MINUS_DI'] = talib.MINUS_DI(high, low, close, timeperiod=14) df['MINUS_DM'] = talib.MINUS_DM(high, low, timeperiod=14) df['MOM'] = talib.MOM(close, timeperiod=10) df['PLUS_DI'] = talib.PLUS_DI(high, low, close, timeperiod=14) df['PLUS_DM'] = talib.PLUS_DM(high, low, timeperiod=14) df['RSI'] = talib.RSI(close, timeperiod=14) df['STOCH_slowk'], df['STOCH_slowd'] = talib.STOCH(high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) df['STOCHF_fastk'], df['STOCHF_fastd'] = talib.STOCHF(high, low, close, fastk_period=5, fastd_period=3, fastd_matype=0) df['STOCHRSI_fastk'], df['STOCHRSI_fastd'] = talib.STOCHRSI(close, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0) df['TRIX'] = talib.TRIX(close, timeperiod=30) df['ULTOSC'] = talib.ULTOSC(high, low, close, timeperiod1=7, timeperiod2=14, timeperiod3=28) df['WILLR'] = talib.WILLR(high, low, close, timeperiod=14) df['AD'] = talib.AD(high, low, close, volume) df['ADOSC'] = talib.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10) df['OBV'] = talib.OBV(close, volume) df['ATR'] = talib.ATR(high, low, close, timeperiod=14) df['NATR'] = talib.NATR(high, low, close, timeperiod=14) df['TRANGE'] = talib.TRANGE(high, low, close) df['HT_DCPERIOD'] = talib.HT_DCPERIOD(close) df['HT_DCPHASE'] = talib.HT_DCPHASE(close) df['HT_PHASOR_inphase'], df['HT_PHASOR_quadrature'] = talib.HT_PHASOR( close) df['HT_SINE_sine'], df['HT_SINE_leadsine'] = talib.HT_SINE(close) df['HT_TRENDMODE'] = talib.HT_TRENDMODE(close) df['BETA'] = talib.BETA(high, low, timeperiod=5) df['CORREL'] = talib.CORREL(high, low, timeperiod=30) df['LINEARREG'] = talib.LINEARREG(close, timeperiod=14) - close df['LINEARREG_ANGLE'] = talib.LINEARREG_ANGLE(close, timeperiod=14) df['LINEARREG_INTERCEPT'] = talib.LINEARREG_INTERCEPT( close, timeperiod=14) - close df['LINEARREG_SLOPE'] = talib.LINEARREG_SLOPE(close, timeperiod=14) df['STDDEV'] = talib.STDDEV(close, timeperiod=5, nbdev=1) return df
def generate_tech_data(stock, open_name, close_name, high_name, low_name, max_time_window=10): open_price = stock[open_name].values close_price = stock[close_name].values low_price = stock[low_name].values high_price = stock[high_name].values data = stock.copy() data['MOM'] = talib.MOM(close_price, timeperiod=max_time_window) data['HT_DCPERIOD'] = talib.HT_DCPERIOD(close_price) data['HT_DCPHASE'] = talib.HT_DCPHASE(close_price) data['sine'], data['leadsine'] = talib.HT_SINE(close_price) data['inphase'], data['quadrature'] = talib.HT_PHASOR(close_price) data['ADXR'] = talib.ADXR(high_price, low_price, close_price, timeperiod=max_time_window) data['APO'] = talib.APO(close_price, fastperiod=max_time_window // 2, slowperiod=max_time_window) data['AROON_UP'], _ = talib.AROON(high_price, low_price, timeperiod=max_time_window) data['CCI'] = talib.CCI(high_price, low_price, close_price, timeperiod=max_time_window) data['PLUS_DI'] = talib.PLUS_DI(high_price, low_price, close_price, timeperiod=max_time_window) data['PPO'] = talib.PPO(close_price, fastperiod=max_time_window // 2, slowperiod=max_time_window) data['macd'], data['macd_sig'], data['macd_hist'] = talib.MACD( close_price, fastperiod=max_time_window // 2, slowperiod=max_time_window, signalperiod=max_time_window // 2) data['CMO'] = talib.CMO(close_price, timeperiod=max_time_window) data['ROCP'] = talib.ROCP(close_price, timeperiod=max_time_window) data['fastk'], data['fastd'] = talib.STOCHF(high_price, low_price, close_price) data['TRIX'] = talib.TRIX(close_price, timeperiod=max_time_window) data['ULTOSC'] = talib.ULTOSC(high_price, low_price, close_price, timeperiod1=max_time_window // 2, timeperiod2=max_time_window, timeperiod3=max_time_window * 2) data['WILLR'] = talib.WILLR(high_price, low_price, close_price, timeperiod=max_time_window) data['NATR'] = talib.NATR(high_price, low_price, close_price, timeperiod=max_time_window) data = data.drop([open_name, close_name, high_name, low_name], axis=1) data = data.dropna().astype(np.float32) return data
def HT_PHASOR(Series): res = talib.HT_PHASOR(Series.values) return pd.Series(res, index=Series.index)
def calculate(self, para): self.t = self.inputdata[:, 0] self.op = self.inputdata[:, 1] self.high = self.inputdata[:, 2] self.low = self.inputdata[:, 3] self.close = self.inputdata[:, 4] #adjusted close self.close1 = self.inputdata[:, 5] self.volume = self.inputdata[:, 6] #Overlap study #Overlap Studies #Overlap Studies if para is 'BBANDS': #Bollinger Bands upperband, middleband, lowerband = ta.BBANDS(self.close, timeperiod=self.tp, nbdevup=2, nbdevdn=2, matype=0) self.output = [upperband, middleband, lowerband] elif para is 'DEMA': #Double Exponential Moving Average self.output = ta.DEMA(self.close, timeperiod=self.tp) elif para is 'EMA': #Exponential Moving Average self.output = ta.EMA(self.close, timeperiod=self.tp) elif para is 'HT_TRENDLINE': #Hilbert Transform - Instantaneous Trendline self.output = ta.HT_TRENDLINE(self.close) elif para is 'KAMA': #Kaufman Adaptive Moving Average self.output = ta.KAMA(self.close, timeperiod=self.tp) elif para is 'MA': #Moving average self.output = ta.MA(self.close, timeperiod=self.tp, matype=0) elif para is 'MAMA': #MESA Adaptive Moving Average mama, fama = ta.MAMA(self.close, fastlimit=0, slowlimit=0) elif para is 'MAVP': #Moving average with variable period self.output = ta.MAVP(self.close, periods=10, minperiod=self.tp, maxperiod=self.tp1, matype=0) elif para is 'MIDPOINT': #MidPoint over period self.output = ta.MIDPOINT(self.close, timeperiod=self.tp) elif para is 'MIDPRICE': #Midpoint Price over period self.output = ta.MIDPRICE(self.high, self.low, timeperiod=self.tp) elif para is 'SAR': #Parabolic SAR self.output = ta.SAR(self.high, self.low, acceleration=0, maximum=0) elif para is 'SAREXT': #Parabolic SAR - Extended self.output = ta.SAREXT(self.high, self.low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) elif para is 'SMA': #Simple Moving Average self.output = ta.SMA(self.close, timeperiod=self.tp) elif para is 'T3': #Triple Exponential Moving Average (T3) self.output = ta.T3(self.close, timeperiod=self.tp, vfactor=0) elif para is 'TEMA': #Triple Exponential Moving Average self.output = ta.TEMA(self.close, timeperiod=self.tp) elif para is 'TRIMA': #Triangular Moving Average self.output = ta.TRIMA(self.close, timeperiod=self.tp) elif para is 'WMA': #Weighted Moving Average self.output = ta.WMA(self.close, timeperiod=self.tp) #Momentum Indicators elif para is 'ADX': #Average Directional Movement Index self.output = ta.ADX(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'ADXR': #Average Directional Movement Index Rating self.output = ta.ADXR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'APO': #Absolute Price Oscillator self.output = ta.APO(self.close, fastperiod=12, slowperiod=26, matype=0) elif para is 'AROON': #Aroon aroondown, aroonup = ta.AROON(self.high, self.low, timeperiod=self.tp) self.output = [aroondown, aroonup] elif para is 'AROONOSC': #Aroon Oscillator self.output = ta.AROONOSC(self.high, self.low, timeperiod=self.tp) elif para is 'BOP': #Balance Of Power self.output = ta.BOP(self.op, self.high, self.low, self.close) elif para is 'CCI': #Commodity Channel Index self.output = ta.CCI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'CMO': #Chande Momentum Oscillator self.output = ta.CMO(self.close, timeperiod=self.tp) elif para is 'DX': #Directional Movement Index self.output = ta.DX(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'MACD': #Moving Average Convergence/Divergence macd, macdsignal, macdhist = ta.MACD(self.close, fastperiod=12, slowperiod=26, signalperiod=9) self.output = [macd, macdsignal, macdhist] elif para is 'MACDEXT': #MACD with controllable MA type macd, macdsignal, macdhist = ta.MACDEXT(self.close, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0) self.output = [macd, macdsignal, macdhist] elif para is 'MACDFIX': #Moving Average Convergence/Divergence Fix 12/26 macd, macdsignal, macdhist = ta.MACDFIX(self.close, signalperiod=9) self.output = [macd, macdsignal, macdhist] elif para is 'MFI': #Money Flow Index self.output = ta.MFI(self.high, self.low, self.close, self.volume, timeperiod=self.tp) elif para is 'MINUS_DI': #Minus Directional Indicator self.output = ta.MINUS_DI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'MINUS_DM': #Minus Directional Movement self.output = ta.MINUS_DM(self.high, self.low, timeperiod=self.tp) elif para is 'MOM': #Momentum self.output = ta.MOM(self.close, timeperiod=10) elif para is 'PLUS_DI': #Plus Directional Indicator self.output = ta.PLUS_DI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'PLUS_DM': #Plus Directional Movement self.output = ta.PLUS_DM(self.high, self.low, timeperiod=self.tp) elif para is 'PPO': #Percentage Price Oscillator self.output = ta.PPO(self.close, fastperiod=12, slowperiod=26, matype=0) elif para is 'ROC': #Rate of change : ((price/prevPrice)-1)*100 self.output = ta.ROC(self.close, timeperiod=10) elif para is 'ROCP': #Rate of change Percentage: (price-prevPrice)/prevPrice self.output = ta.ROCP(self.close, timeperiod=10) elif para is 'ROCR': #Rate of change ratio: (price/prevPrice) self.output = ta.ROCR(self.close, timeperiod=10) elif para is 'ROCR100': #Rate of change ratio 100 scale: (price/prevPrice)*100 self.output = ta.ROCR100(self.close, timeperiod=10) elif para is 'RSI': #Relative Strength Index self.output = ta.RSI(self.close, timeperiod=self.tp) elif para is 'STOCH': #Stochastic slowk, slowd = ta.STOCH(self.high, self.low, self.close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) self.output = [slowk, slowd] elif para is 'STOCHF': #Stochastic Fast fastk, fastd = ta.STOCHF(self.high, self.low, self.close, fastk_period=5, fastd_period=3, fastd_matype=0) self.output = [fastk, fastd] elif para is 'STOCHRSI': #Stochastic Relative Strength Index fastk, fastd = ta.STOCHRSI(self.close, timeperiod=self.tp, fastk_period=5, fastd_period=3, fastd_matype=0) self.output = [fastk, fastd] elif para is 'TRIX': #1-day Rate-Of-Change (ROC) of a Triple Smooth EMA self.output = ta.TRIX(self.close, timeperiod=self.tp) elif para is 'ULTOSC': #Ultimate Oscillator self.output = ta.ULTOSC(self.high, self.low, self.close, timeperiod1=self.tp, timeperiod2=self.tp1, timeperiod3=self.tp2) elif para is 'WILLR': #Williams' %R self.output = ta.WILLR(self.high, self.low, self.close, timeperiod=self.tp) # Volume Indicators : # elif para is 'AD': #Chaikin A/D Line self.output = ta.AD(self.high, self.low, self.close, self.volume) elif para is 'ADOSC': #Chaikin A/D Oscillator self.output = ta.ADOSC(self.high, self.low, self.close, self.volume, fastperiod=3, slowperiod=10) elif para is 'OBV': #On Balance Volume self.output = ta.OBV(self.close, self.volume) # Volatility Indicators: # elif para is 'ATR': #Average True Range self.output = ta.ATR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'NATR': #Normalized Average True Range self.output = ta.NATR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'TRANGE': #True Range self.output = ta.TRANGE(self.high, self.low, self.close) #Price Transform : # elif para is 'AVGPRICE': #Average Price self.output = ta.AVGPRICE(self.op, self.high, self.low, self.close) elif para is 'MEDPRICE': #Median Price self.output = ta.MEDPRICE(self.high, self.low) elif para is 'TYPPRICE': #Typical Price self.output = ta.TYPPRICE(self.high, self.low, self.close) elif para is 'WCLPRICE': #Weighted Close Price self.output = ta.WCLPRICE(self.high, self.low, self.close) #Cycle Indicators : # elif para is 'HT_DCPERIOD': #Hilbert Transform - Dominant Cycle Period self.output = ta.HT_DCPERIOD(self.close) elif para is 'HT_DCPHASE': #Hilbert Transform - Dominant Cycle Phase self.output = ta.HT_DCPHASE(self.close) elif para is 'HT_PHASOR': #Hilbert Transform - Phasor Components inphase, quadrature = ta.HT_PHASOR(self.close) self.output = [inphase, quadrature] elif para is 'HT_SINE': #Hilbert Transform - SineWave #2 sine, leadsine = ta.HT_SINE(self.close) self.output = [sine, leadsine] elif para is 'HT_TRENDMODE': #Hilbert Transform - Trend vs Cycle Mode self.integer = ta.HT_TRENDMODE(self.close) #Pattern Recognition : # elif para is 'CDL2CROWS': #Two Crows self.integer = ta.CDL2CROWS(self.op, self.high, self.low, self.close) elif para is 'CDL3BLACKCROWS': #Three Black Crows self.integer = ta.CDL3BLACKCROWS(self.op, self.high, self.low, self.close) elif para is 'CDL3INSIDE': #Three Inside Up/Down self.integer = ta.CDL3INSIDE(self.op, self.high, self.low, self.close) elif para is 'CDL3LINESTRIKE': #Three-Line Strike self.integer = ta.CDL3LINESTRIKE(self.op, self.high, self.low, self.close) elif para is 'CDL3OUTSIDE': #Three Outside Up/Down self.integer = ta.CDL3OUTSIDE(self.op, self.high, self.low, self.close) elif para is 'CDL3STARSINSOUTH': #Three Stars In The South self.integer = ta.CDL3STARSINSOUTH(self.op, self.high, self.low, self.close) elif para is 'CDL3WHITESOLDIERS': #Three Advancing White Soldiers self.integer = ta.CDL3WHITESOLDIERS(self.op, self.high, self.low, self.close) elif para is 'CDLABANDONEDBABY': #Abandoned Baby self.integer = ta.CDLABANDONEDBABY(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLBELTHOLD': #Belt-hold self.integer = ta.CDLBELTHOLD(self.op, self.high, self.low, self.close) elif para is 'CDLBREAKAWAY': #Breakaway self.integer = ta.CDLBREAKAWAY(self.op, self.high, self.low, self.close) elif para is 'CDLCLOSINGMARUBOZU': #Closing Marubozu self.integer = ta.CDLCLOSINGMARUBOZU(self.op, self.high, self.low, self.close) elif para is 'CDLCONCEALBABYSWALL': #Concealing Baby Swallow self.integer = ta.CDLCONCEALBABYSWALL(self.op, self.high, self.low, self.close) elif para is 'CDLCOUNTERATTACK': #Counterattack self.integer = ta.CDLCOUNTERATTACK(self.op, self.high, self.low, self.close) elif para is 'CDLDARKCLOUDCOVER': #Dark Cloud Cover self.integer = ta.CDLDARKCLOUDCOVER(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLDOJI': #Doji self.integer = ta.CDLDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLDOJISTAR': #Doji Star self.integer = ta.CDLDOJISTAR(self.op, self.high, self.low, self.close) elif para is 'CDLDRAGONFLYDOJI': #Dragonfly Doji self.integer = ta.CDLDRAGONFLYDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLENGULFING': #Engulfing Pattern self.integer = ta.CDLENGULFING(self.op, self.high, self.low, self.close) elif para is 'CDLEVENINGDOJISTAR': #Evening Doji Star self.integer = ta.CDLEVENINGDOJISTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLEVENINGSTAR': #Evening Star self.integer = ta.CDLEVENINGSTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLGAPSIDESIDEWHITE': #Up/Down-gap side-by-side white lines self.integer = ta.CDLGAPSIDESIDEWHITE(self.op, self.high, self.low, self.close) elif para is 'CDLGRAVESTONEDOJI': #Gravestone Doji self.integer = ta.CDLGRAVESTONEDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLHAMMER': #Hammer self.integer = ta.CDLHAMMER(self.op, self.high, self.low, self.close) elif para is 'CDLHANGINGMAN': #Hanging Man self.integer = ta.CDLHANGINGMAN(self.op, self.high, self.low, self.close) elif para is 'CDLHARAMI': #Harami Pattern self.integer = ta.CDLHARAMI(self.op, self.high, self.low, self.close) elif para is 'CDLHARAMICROSS': #Harami Cross Pattern self.integer = ta.CDLHARAMICROSS(self.op, self.high, self.low, self.close) elif para is 'CDLHIGHWAVE': #High-Wave Candle self.integer = ta.CDLHIGHWAVE(self.op, self.high, self.low, self.close) elif para is 'CDLHIKKAKE': #Hikkake Pattern self.integer = ta.CDLHIKKAKE(self.op, self.high, self.low, self.close) elif para is 'CDLHIKKAKEMOD': #Modified Hikkake Pattern self.integer = ta.CDLHIKKAKEMOD(self.op, self.high, self.low, self.close) elif para is 'CDLHOMINGPIGEON': #Homing Pigeon self.integer = ta.CDLHOMINGPIGEON(self.op, self.high, self.low, self.close) elif para is 'CDLIDENTICAL3CROWS': #Identical Three Crows self.integer = ta.CDLIDENTICAL3CROWS(self.op, self.high, self.low, self.close) elif para is 'CDLINNECK': #In-Neck Pattern self.integer = ta.CDLINNECK(self.op, self.high, self.low, self.close) elif para is 'CDLINVERTEDHAMMER': #Inverted Hammer self.integer = ta.CDLINVERTEDHAMMER(self.op, self.high, self.low, self.close) elif para is 'CDLKICKING': #Kicking self.integer = ta.CDLKICKING(self.op, self.high, self.low, self.close) elif para is 'CDLKICKINGBYLENGTH': #Kicking - bull/bear determined by the longer marubozu self.integer = ta.CDLKICKINGBYLENGTH(self.op, self.high, self.low, self.close) elif para is 'CDLLADDERBOTTOM': #Ladder Bottom self.integer = ta.CDLLADDERBOTTOM(self.op, self.high, self.low, self.close) elif para is 'CDLLONGLEGGEDDOJI': #Long Legged Doji self.integer = ta.CDLLONGLEGGEDDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLLONGLINE': #Long Line Candle self.integer = ta.CDLLONGLINE(self.op, self.high, self.low, self.close) elif para is 'CDLMARUBOZU': #Marubozu self.integer = ta.CDLMARUBOZU(self.op, self.high, self.low, self.close) elif para is 'CDLMATCHINGLOW': #Matching Low self.integer = ta.CDLMATCHINGLOW(self.op, self.high, self.low, self.close) elif para is 'CDLMATHOLD': #Mat Hold self.integer = ta.CDLMATHOLD(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLMORNINGDOJISTAR': #Morning Doji Star self.integer = ta.CDLMORNINGDOJISTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLMORNINGSTAR': #Morning Star self.integer = ta.CDLMORNINGSTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLONNECK': #On-Neck Pattern self.integer = ta.CDLONNECK(self.op, self.high, self.low, self.close) elif para is 'CDLPIERCING': #Piercing Pattern self.integer = ta.CDLPIERCING(self.op, self.high, self.low, self.close) elif para is 'CDLRICKSHAWMAN': #Rickshaw Man self.integer = ta.CDLRICKSHAWMAN(self.op, self.high, self.low, self.close) elif para is 'CDLRISEFALL3METHODS': #Rising/Falling Three Methods self.integer = ta.CDLRISEFALL3METHODS(self.op, self.high, self.low, self.close) elif para is 'CDLSEPARATINGLINES': #Separating Lines self.integer = ta.CDLSEPARATINGLINES(self.op, self.high, self.low, self.close) elif para is 'CDLSHOOTINGSTAR': #Shooting Star self.integer = ta.CDLSHOOTINGSTAR(self.op, self.high, self.low, self.close) elif para is 'CDLSHORTLINE': #Short Line Candle self.integer = ta.CDLSHORTLINE(self.op, self.high, self.low, self.close) elif para is 'CDLSPINNINGTOP': #Spinning Top self.integer = ta.CDLSPINNINGTOP(self.op, self.high, self.low, self.close) elif para is 'CDLSTALLEDPATTERN': #Stalled Pattern self.integer = ta.CDLSTALLEDPATTERN(self.op, self.high, self.low, self.close) elif para is 'CDLSTICKSANDWICH': #Stick Sandwich self.integer = ta.CDLSTICKSANDWICH(self.op, self.high, self.low, self.close) elif para is 'CDLTAKURI': #Takuri (Dragonfly Doji with very long lower shadow) self.integer = ta.CDLTAKURI(self.op, self.high, self.low, self.close) elif para is 'CDLTASUKIGAP': #Tasuki Gap self.integer = ta.CDLTASUKIGAP(self.op, self.high, self.low, self.close) elif para is 'CDLTHRUSTING': #Thrusting Pattern self.integer = ta.CDLTHRUSTING(self.op, self.high, self.low, self.close) elif para is 'CDLTRISTAR': #Tristar Pattern self.integer = ta.CDLTRISTAR(self.op, self.high, self.low, self.close) elif para is 'CDLUNIQUE3RIVER': #Unique 3 River self.integer = ta.CDLUNIQUE3RIVER(self.op, self.high, self.low, self.close) elif para is 'CDLUPSIDEGAP2CROWS': #Upside Gap Two Crows self.integer = ta.CDLUPSIDEGAP2CROWS(self.op, self.high, self.low, self.close) elif para is 'CDLXSIDEGAP3METHODS': #Upside/Downside Gap Three Methods self.integer = ta.CDLXSIDEGAP3METHODS(self.op, self.high, self.low, self.close) #Statistic Functions : # elif para is 'BETA': #Beta self.output = ta.BETA(self.high, self.low, timeperiod=5) elif para is 'CORREL': #Pearson's Correlation Coefficient (r) self.output = ta.CORREL(self.high, self.low, timeperiod=self.tp) elif para is 'LINEARREG': #Linear Regression self.output = ta.LINEARREG(self.close, timeperiod=self.tp) elif para is 'LINEARREG_ANGLE': #Linear Regression Angle self.output = ta.LINEARREG_ANGLE(self.close, timeperiod=self.tp) elif para is 'LINEARREG_INTERCEPT': #Linear Regression Intercept self.output = ta.LINEARREG_INTERCEPT(self.close, timeperiod=self.tp) elif para is 'LINEARREG_SLOPE': #Linear Regression Slope self.output = ta.LINEARREG_SLOPE(self.close, timeperiod=self.tp) elif para is 'STDDEV': #Standard Deviation self.output = ta.STDDEV(self.close, timeperiod=5, nbdev=1) elif para is 'TSF': #Time Series Forecast self.output = ta.TSF(self.close, timeperiod=self.tp) elif para is 'VAR': #Variance self.output = ta.VAR(self.close, timeperiod=5, nbdev=1) else: print('You issued command:' + para)
def get_datasets(asset, currency, granularity, datapoints): """Fetch the API and precess the desired pair Arguments: asset {str} -- First pair currency {str} -- Second pair granularity {str ['day', 'hour']} -- Granularity datapoints {int [100 - 2000]} -- [description] Returns: pandas.Dataframe -- The OHLCV and indicators dataframe """ df_train_path = 'datasets/bot_train_{}_{}_{}.csv'.format( asset + currency, datapoints, granularity) df_rollout_path = 'datasets/bot_rollout_{}_{}_{}.csv'.format( asset + currency, datapoints, granularity) emojis = [ ':moneybag:', ':yen:', ':dollar:', ':pound:', ':euro:', ':credit_card:', ':money_with_wings:', ':gem:' ] if not os.path.exists(df_rollout_path): headers = { 'User-Agent': 'Mozilla/5.0', 'authorization': 'Apikey 3d7d3e9e6006669ac00584978342451c95c3c78421268ff7aeef69995f9a09ce' } # OHLC # url = 'https://min-api.cryptocompare.com/data/histo{}?fsym={}&tsym={}&e=Binance&limit={}'.format(granularity, asset, currency, datapoints) url = 'https://min-api.cryptocompare.com/data/histo{}?fsym={}&tsym={}&limit={}'.format( granularity, asset, currency, datapoints) # print(emoji.emojize(':dizzy: :large_blue_diamond: :gem: :bar_chart: :crystal_ball: :chart_with_downwards_trend: :chart_with_upwards_trend: :large_orange_diamond: loading...', use_aliases=True)) print( colored( emoji.emojize('> ' + random.choice(emojis) + ' downloading ' + asset + '/' + currency, use_aliases=True), 'green')) # print(colored('> downloading ' + asset + '/' + currency, 'green')) response = requests.get(url, headers=headers) json_response = response.json() status = json_response['Response'] if status == "Error": print(colored('=== {} ==='.format(json_response['Message']), 'red')) raise AssertionError() result = json_response['Data'] df = pd.DataFrame(result) print(df.tail()) df['Date'] = pd.to_datetime(df['time'], utc=True, unit='s') df.drop('time', axis=1, inplace=True) # indicators # https://github.com/mrjbq7/ta-lib/blob/master/docs/func.md open_price, high, low, close = np.array(df['open']), np.array( df['high']), np.array(df['low']), np.array(df['close']) volume = np.array(df['volumefrom']) # cycle indicators df.loc[:, 'HT_DCPERIOD'] = talib.HT_DCPERIOD(close) df.loc[:, 'HT_DCPHASE'] = talib.HT_DCPHASE(close) df.loc[:, 'HT_PHASOR_inphase'], df.loc[:, 'HT_PHASOR_quadrature'] = talib.HT_PHASOR( close) df.loc[:, 'HT_SINE_sine'], df.loc[:, 'HT_SINE_leadsine'] = talib.HT_SINE( close) df.loc[:, 'HT_TRENDMODE'] = talib.HT_TRENDMODE(close) # momemtum indicators df.loc[:, 'ADX'] = talib.ADX(high, low, close, timeperiod=12) df.loc[:, 'ADXR'] = talib.ADXR(high, low, close, timeperiod=13) df.loc[:, 'APO'] = talib.APO(close, fastperiod=5, slowperiod=10, matype=0) df.loc[:, 'AROON_down'], df.loc[:, 'AROON_up'] = talib.AROON(high, low, timeperiod=15) df.loc[:, 'AROONOSC'] = talib.AROONOSC(high, low, timeperiod=13) df.loc[:, 'BOP'] = talib.BOP(open_price, high, low, close) df.loc[:, 'CCI'] = talib.CCI(high, low, close, timeperiod=13) df.loc[:, 'CMO'] = talib.CMO(close, timeperiod=14) df.loc[:, 'DX'] = talib.DX(high, low, close, timeperiod=10) df['MACD'], df['MACD_signal'], df['MACD_hist'] = talib.MACD( close, fastperiod=5, slowperiod=10, signalperiod=20) df.loc[:, 'MFI'] = talib.MFI(high, low, close, volume, timeperiod=12) df.loc[:, 'MINUS_DI'] = talib.MINUS_DI(high, low, close, timeperiod=10) df.loc[:, 'MINUS_DM'] = talib.MINUS_DM(high, low, timeperiod=14) df.loc[:, 'MOM'] = talib.MOM(close, timeperiod=20) df.loc[:, 'PPO'] = talib.PPO(close, fastperiod=17, slowperiod=35, matype=2) df.loc[:, 'ROC'] = talib.ROC(close, timeperiod=12) df.loc[:, 'RSI'] = talib.RSI(close, timeperiod=25) df.loc[:, 'STOCH_k'], df.loc[:, 'STOCH_d'] = talib.STOCH(high, low, close, fastk_period=35, slowk_period=12, slowk_matype=0, slowd_period=7, slowd_matype=0) df.loc[:, 'STOCHF_k'], df.loc[:, 'STOCHF_d'] = talib.STOCHF(high, low, close, fastk_period=28, fastd_period=14, fastd_matype=0) df.loc[:, 'STOCHRSI_K'], df.loc[:, 'STOCHRSI_D'] = talib.STOCHRSI( close, timeperiod=35, fastk_period=12, fastd_period=10, fastd_matype=1) df.loc[:, 'TRIX'] = talib.TRIX(close, timeperiod=30) df.loc[:, 'ULTOSC'] = talib.ULTOSC(high, low, close, timeperiod1=14, timeperiod2=28, timeperiod3=35) df.loc[:, 'WILLR'] = talib.WILLR(high, low, close, timeperiod=35) # overlap studies df.loc[:, 'BBANDS_upper'], df.loc[:, 'BBANDS_middle'], df.loc[:, 'BBANDS_lower'] = talib.BBANDS( close, timeperiod= 12, nbdevup=2, nbdevdn=2, matype=0) df.loc[:, 'DEMA'] = talib.DEMA(close, timeperiod=30) df.loc[:, 'EMA'] = talib.EMA(close, timeperiod=7) df.loc[:, 'HT_TRENDLINE'] = talib.HT_TRENDLINE(close) df.loc[:, 'KAMA'] = talib.KAMA(close, timeperiod=5) df.loc[:, 'MA'] = talib.MA(close, timeperiod=5, matype=0) df.loc[:, 'MIDPOINT'] = talib.MIDPOINT(close, timeperiod=20) df.loc[:, 'WMA'] = talib.WMA(close, timeperiod=15) df.loc[:, 'SMA'] = talib.SMA(close) # pattern recoginition df.loc[:, 'CDL2CROWS'] = talib.CDL2CROWS(open_price, high, low, close) df.loc[:, 'CDL3BLACKCROWS'] = talib.CDL3BLACKCROWS( open_price, high, low, close) df.loc[:, 'CDL3INSIDE'] = talib.CDL3INSIDE(open_price, high, low, close) df.loc[:, 'CDL3LINESTRIKE'] = talib.CDL3LINESTRIKE( open_price, high, low, close) # price transform df.loc[:, 'WCLPRICE'] = talib.WCLPRICE(high, low, close) # statistic funcitons df.loc[:, 'BETA'] = talib.BETA(high, low, timeperiod=20) df.loc[:, 'CORREL'] = talib.CORREL(high, low, timeperiod=20) df.loc[:, 'STDDEV'] = talib.STDDEV(close, timeperiod=20, nbdev=1) df.loc[:, 'TSF'] = talib.TSF(close, timeperiod=20) df.loc[:, 'VAR'] = talib.VAR(close, timeperiod=20, nbdev=1) # volatility indicators df.loc[:, 'ATR'] = talib.ATR(high, low, close, timeperiod=7) df.loc[:, 'NATR'] = talib.NATR(high, low, close, timeperiod=20) df.loc[:, 'TRANGE'] = talib.TRANGE(high, low, close) # volume indicators df.loc[:, 'AD'] = talib.AD(high, low, close, volume) df.loc[:, 'ADOSC'] = talib.ADOSC(high, low, close, volume, fastperiod=10, slowperiod=20) df.loc[:, 'OBV'] = talib.OBV(close, volume) # df.fillna(df.mean(), inplace=True) df.dropna(inplace=True) df.set_index('Date', inplace=True) print(colored('> caching' + asset + '/' + currency + ':)', 'cyan')) train_size = round( len(df) * DF_TRAIN_SIZE) # 75% to train -> test with different value df_train = df[:train_size] df_rollout = df[train_size:] df_train.to_csv(df_train_path) df_rollout.to_csv(df_rollout_path) df_train = pd.read_csv( df_train_path) # re-read to avoid indexing issue w/ Ray df_rollout = pd.read_csv(df_rollout_path) else: print( colored( emoji.emojize('> ' + random.choice(emojis) + ' feching ' + asset + '/' + currency + ' from cache', use_aliases=True), 'magenta')) # print(colored('> feching ' + asset + '/' + currency + ' from cache :)', 'magenta')) df_train = pd.read_csv(df_train_path) df_rollout = pd.read_csv(df_rollout_path) # df_train.set_index('Date', inplace=True) # df_rollout.set_index('Date', inplace=True) return df_train, df_rollout
def TALIB_HT_PHASOR(close): '''00343,1,2''' return talib.HT_PHASOR(close)
df['Unique_3_River'] = ta.CDLUNIQUE3RIVER(np.array(df['Open']), np.array(df['High']), np.array(df['Low']), np.array(df['Adj Close'])) df['Upside_Gap_Two_Crows'] = ta.CDLUPSIDEGAP2CROWS(np.array(df['Open']), np.array(df['High']), np.array(df['Low']), np.array(df['Adj Close'])) df['Upside_Downside_Gap_Three_Methods'] = ta.CDLXSIDEGAP3METHODS( np.array(df['Open']), np.array(df['High']), np.array(df['Low']), np.array(df['Adj Close'])) # Cycle Indicator Functions df['HT_DCPERIOD'] = ta.HT_DCPERIOD(np.array(df['Adj Close'].shift(1))) df['HT_DCPHASE'] = ta.HT_DCPHASE(np.array(df['Adj Close'].shift(1))) df['inphase'], df['quadrature'] = ta.HT_PHASOR( np.array(df['Adj Close'].shift(1))) df['sine'], df['leadsine'] = ta.HT_SINE(np.array(df['Adj Close'].shift(1))) df['HT_TRENDMODE'] = ta.HT_TRENDMODE(np.array(df['Adj Close'].shift(1))) df['ATR1'] = abs(np.array(df['High'].shift(1)) - np.array(df['Low'].shift(1))) df['ATR2'] = abs( np.array(df['High'].shift(1)) - np.array(df['Adj Close'].shift(1))) df['ATR3'] = abs( np.array(df['Low'].shift(1)) - np.array(df['Adj Close'].shift(1))) df['AverageTrueRange'] = df[['ATR1', 'ATR2', 'ATR3']].max(axis=1) # df['EMA']=pd.Series(pd.ewma(df['Adj Close'], span = n, min_periods = n - 1)) # Statistic Functions df['Beta'] = ta.BETA(np.array(df['High'].shift(1)), np.array(df['Low'].shift(1)),