예제 #1
0
def plot_quick_camera(image, ax=None):
    ax = ax if ax is not None else plt.gca()

    cameraconfig = Config()
    pos = cameraconfig.pixel_pos * u.m
    foclen = cameraconfig.optical_foclen * u.m
    geom = CameraGeometry.guess(*pos, foclen)
    camera = CameraDisplay(geom, ax=ax, image=image, cmap='viridis')
    return camera
예제 #2
0
from targetpipe.calib.camera.filter_wheel import FWCalibrator
from targetpipe.io.camera import Config
Config('checm')

from tqdm import tqdm, trange
from traitlets import Dict, List
import numpy as np
import pandas as pd
import matplotlib.lines as mlines
from matplotlib.ticker import MultipleLocator, FormatStrFormatter, \
    ScalarFormatter, FuncFormatter
import seaborn as sns
from os.path import realpath, join, dirname

from ctapipe.calib.camera.dl0 import CameraDL0Reducer
from ctapipe.calib.camera.dl1 import CameraDL1Calibrator
from ctapipe.core import Tool
from ctapipe.image.charge_extractors import AverageWfPeakIntegrator
from ctapipe.image.waveform_cleaning import CHECMWaveformCleanerAverage
from targetpipe.io.eventfilereader import TargetioFileReader
from targetpipe.calib.camera.r1 import TargetioR1Calibrator
from targetpipe.fitting.chec import CHECMSPEFitter
from targetpipe.io.pixels import Dead
from targetpipe.calib.camera.adc2pe import TargetioADC2PECalibrator
from targetpipe.plots.official import ChecmPaperPlotter

from IPython import embed


class Scatter(ChecmPaperPlotter):
    name = 'Scatter'
예제 #3
0
    def setup(self):
        self.log_format = "%(levelname)s: %(message)s [%(name)s.%(funcName)s]"

        data_config = self.config.copy()
        data_config['WaveformCleanerFactory'] = Config(cleaner='CHECMWaveformCleanerLocal')
        mc_config = self.config.copy()

        data_kwargs = dict(config=data_config, tool=self)
        mc_kwargs = dict(config=mc_config, tool=self)

        filepath = '/Volumes/gct-jason/data/170330/onsky-mrk501/Run05477_r1.tio'
        reader = TargetioFileReader(input_path=filepath, **data_kwargs)
        filepath = '/Users/Jason/Software/outputs/sim_telarray/meudon_cr/simtel_proton_nsb50_thrs30_1petal_rndm015_heide.gz'
        # filepath = '/Users/Jason/Software/outputs/sim_telarray/meudon_cr/simtel_proton_nsb50_thrs30.gz'
        reader_mc = HessioFileReader(input_path=filepath, **mc_kwargs)

        calibrator = CameraCalibrator(origin=reader.origin,
                                      **data_kwargs)
        calibrator_mc = CameraCalibrator(origin=reader_mc.origin,
                                         **mc_kwargs)

        first_event = reader.get_event(0)
        telid = list(first_event.r0.tels_with_data)[0]
        pos = first_event.inst.pixel_pos[telid]
        foclen = first_event.inst.optical_foclen[telid]
        geom = CameraGeometry.guess(*pos, foclen)

        first_event = reader_mc.get_event(0)
        telid = list(first_event.r0.tels_with_data)[0]
        pos_mc = first_event.inst.pixel_pos[telid]
        foclen = first_event.inst.optical_foclen[telid]
        geom_mc = CameraGeometry.guess(*pos_mc, foclen)

        d1 = dict(type='Data', reader=reader, calibrator=calibrator,
                  pos=pos, geom=geom, t1=20, t2=10)
        d2 = dict(type='MC', reader=reader_mc, calibrator=calibrator_mc,
                  pos=pos_mc, geom=geom_mc, t1=20, t2=10)
        self.reader_df = pd.DataFrame([d1, d2])

        p_kwargs = data_kwargs
        p_kwargs['script'] = "checm_paper_hillas"
        p_kwargs['figure_name'] = "all_images"
        self.p_allimage = AllImagePlotter(**p_kwargs)
        p_kwargs['figure_name'] = "all_peak_time_images"
        self.p_alltimeimage = PeakTimePlotter(**p_kwargs)
        p_kwargs['figure_name'] = "all_mc_images"
        self.p_allmcimage = AllImagePlotter(**p_kwargs)
        p_kwargs['figure_name'] = "zero_width_images"
        self.p_zwimage = ZeroWidthImagePlotter(**p_kwargs)
        p_kwargs['figure_name'] = "zero_width_mc_images"
        self.p_zwmcimage = ZeroWidthImagePlotter(**p_kwargs)
        p_kwargs['figure_name'] = "muon_images"
        self.p_muonimage = MuonImagePlotter(**p_kwargs)
        p_kwargs['figure_name'] = "bright_images"
        self.p_brightimage = BrightImagePlotter(**p_kwargs)
        p_kwargs['figure_name'] = "count_image"
        self.p_countimage = CountPlotter(**p_kwargs)
        p_kwargs['figure_name'] = "whole_distribution"
        self.p_whole_dist = WholeDist(**p_kwargs, shape='wide')
        p_kwargs['figure_name'] = "width_vs_length"
        self.p_widthvslength = WidthVsLength(**p_kwargs, shape='wide')
        p_kwargs['figure_name'] = "size_vs_length"
        self.p_sizevslength = SizeVsLength(**p_kwargs, shape='wide')
        p_kwargs['figure_name'] = "width_div_length"
        self.p_widthdivlength = WidthDivLength(**p_kwargs, shape='wide')
        p_kwargs['figure_name'] = "length_div_size"
        self.p_lengthdivsize = LengthDivSize(**p_kwargs, shape='wide')
        p_kwargs['figure_name'] = "pair_plot"
        self.p_pair = PairPlotter(**p_kwargs, shape='wide')
        p_kwargs['figure_name'] = "pair_mc_plot"
        self.p_mc_pair = PairPlotter(**p_kwargs, shape='wide')
        p_kwargs['figure_name'] = "length"
        self.p_length = LengthPlotter(**p_kwargs, shape='wide')
        p_kwargs['figure_name'] = "width"
        self.p_width = WidthPlotter(**p_kwargs, shape='wide')
예제 #4
0
 def __init__(self):
     cameraconfig = Config()
     self.dead_pixels = cameraconfig.dead_pixels
     self.n_pix = cameraconfig.n_pix
예제 #5
0
def get_geometry():
    cameraconfig = Config()
    pixel_pos = cameraconfig.pixel_pos
    optical_foclen = cameraconfig.optical_foclen
    return CameraGeometry.guess(*pixel_pos * u.m, optical_foclen * u.m)
예제 #6
0
def toyio_event_source(url,
                       max_events=None,
                       allowed_tels=None,
                       requested_event=None,
                       use_event_id=False):
    """A generator that streams data from an EventIO/HESSIO MC data file
    (e.g. a standard CTA data file.)

    Parameters
    ----------
    url : str
        path to file to open
    max_events : int, optional
        maximum number of events to read
    allowed_tels : list[int]
        select only a subset of telescope, if None, all are read. This can
        be used for example emulate the final CTA data format, where there
        would be 1 telescope per file (whereas in current monte-carlo,
        they are all interleaved into one file)
    requested_event : int
        Seek to a paricular waveforms index
    use_event_id : bool
        If True ,'requested_event' now seeks for a particular waveforms id
        instead of index
    """

    waveforms_cells = np.load(url)
    waveforms = waveforms_cells[:, :, 1, :]
    cells = waveforms_cells[:, :, 0, :]
    n_events, n_pix, _, n_samples = waveforms_cells.shape
    chec_tel = 0
    run_id = 0
    cameraconfig = Config()
    pix_pos = cameraconfig.pixel_pos

    counter = 0
    if allowed_tels is not None:
        allowed_tels = set(allowed_tels)
    data = DataContainer()
    data.meta['source'] = "toyio"

    # some hessio_event_source specific parameters
    data.meta['input'] = url
    data.meta['max_events'] = max_events
    data.meta['num_events'] = n_events

    for event_id in range(n_events):

        # Seek to requested waveforms
        if requested_event is not None:
            current = counter
            if use_event_id:
                current = event_id
            if not current == requested_event:
                counter += 1
                continue

        data.r0.run_id = run_id
        data.r0.event_id = event_id
        data.r0.tels_with_data = {chec_tel}
        data.r1.run_id = run_id
        data.r1.event_id = event_id
        data.r1.tels_with_data = {chec_tel}
        data.dl0.run_id = run_id
        data.dl0.event_id = event_id
        data.dl0.tels_with_data = {chec_tel}

        # handle telescope filtering by taking the intersection of
        # tels_with_data and allowed_tels
        if allowed_tels is not None:
            selected = data.dl0.tels_with_data & allowed_tels
            if len(selected) == 0:
                continue  # skip waveforms
            data.dl0.tels_with_data = selected

        data.trig.tels_with_trigger = [chec_tel]
        time_ns = counter
        data.trig.gps_time = Time(time_ns * u.ns, format='gps', scale='utc')

        data.count = counter

        # this should be done in a nicer way to not re-allocate the
        # data each time (right now it's just deleted and garbage
        # collected)

        data.r0.tel.clear()
        data.r1.tel.clear()
        data.dl0.tel.clear()
        data.dl1.tel.clear()

        data.inst.pixel_pos[chec_tel] = pix_pos
        data.inst.optical_foclen[chec_tel] = 2.283 * u.m
        data.inst.num_channels[chec_tel] = 1
        data.inst.num_pixels[chec_tel] = n_pix
        # data.inst.num_samples[chec_tel] = n_samples

        # waveforms.mc.tel[tel_id] = MCCameraContainer()

        # load the data per telescope/chan
        data.r0.tel[chec_tel].adc_samples = \
            waveforms[event_id, :, :][None, ...]
        # data.r0.tel[chec_tel].adc_sums = \
        #     targetio_extractor.waveforms.sum(axis=1)[None, ...]
        data.r1.tel[chec_tel].pe_samples = \
            np.zeros(waveforms[0].shape)[None, ...]
        data.r0.tel[chec_tel].first_cell_ids = \
            cells[event_id, :, 0]

        yield data
        counter += 1

        if max_events is not None and counter >= max_events:
            break
예제 #7
0
class TargetioFileReader(EventFileReader):
    name = 'TargetioFileReader'
    origin = 'targetio'

    input_path = Unicode(None,
                         allow_none=True,
                         help='Path to the input file containing '
                         'events.').tag(config=True)
    cameraconfig = Config()
    camera_id = CaselessStrEnum(list(cameraconfig.options.keys()) + [''],
                                '',
                                help='Camera configuration').tag(config=True)

    def __init__(self, config, tool, **kwargs):
        """
        Class to handle targetio input files. Enables obtaining the "source"
        generator.

        Parameters
        ----------
        config : traitlets.loader.Config
            Configuration specified by config file or cmdline arguments.
            Used to set traitlet values.
            Set to None if no configuration to pass.
        tool : ctapipe.core.Tool
            Tool executable that is calling this component.
            Passes the correct logger to the component.
            Set to None if no Tool to pass.
        kwargs
        """
        if self.camera_id:
            self.cameraconfig.id = self.camera_id
        super().__init__(config=config, tool=tool, **kwargs)
        self.extractor = TargetioExtractor(self.input_path, self.max_events)

    @observe('input_path')
    def on_input_path_changed(self, change):
        new = change['new']
        try:
            self.log.warning("Change: input_path={}".format(new))
            self._num_events = None
            self._event_id_list = []
            self._init_path(new)
            self.extractor = TargetioExtractor(new, self.max_events)
        except AttributeError:
            pass

    @staticmethod
    def check_file_compatibility(file_path):
        compatible = True
        # TODO: Change check to be a try of targetio_event_source?
        if not file_path.endswith('.fits') and not file_path.endswith('.tio'):
            compatible = False
        return compatible

    @property
    def num_events(self):
        if not self._num_events:
            # self.log.info("Obtaining number of events in file...")
            num = self.extractor.n_events
            if self.max_events and self.max_events < num:
                num = self.max_events
            # self.log.info("Number of events = {}".format(num))
            self._num_events = num
        return self._num_events

    @property
    def event_id_list(self):
        if not self._event_id_list:
            # self.log.info("Building new list of event ids...")
            self._event_id_list = self.extractor.event_id_list[:self.
                                                               max_events]
            # self.log.info("List of event ids built.")
        return self._event_id_list

    def read(self,
             allowed_tels=None,
             requested_event=None,
             use_event_id=False):
        """
        Read the file using the appropriate method depending on the file origin

        Parameters
        ----------
        allowed_tels : list[int]
            select only a subset of telescope, if None, all are read. This can
            be used for example emulate the final CTA data format, where there
            would be 1 telescope per file (whereas in current monte-carlo,
            they are all interleaved into one file)
        requested_event : int
            Seek to a paricular event index
        use_event_id : bool
            If True ,'requested_event' now seeks for a particular event id
            instead of index

        Returns
        -------
        source : generator
            A generator that can be iterated over to obtain events
        """

        # Obtain relevent source
        self.log.debug("Reading file...")
        if self.max_events:
            self.log.info("Max events being read = {}".format(self.max_events))
        source = self.extractor.read_generator()
        self.log.debug("File reading complete")
        return source

    def get_event(self, requested_event, use_event_id=False):
        """
        Loop through events until the requested event is found

        Parameters
        ----------
        requested_event : int
            Seek to a paricular event index
        use_event_id : bool
            If True ,'requested_event' now seeks for a particular event id
            instead of index

        Returns
        -------
        event : `ctapipe` event-container

        """
        self.extractor.read_event(requested_event, use_event_id)
        event = self.extractor.data
        return deepcopy(event)
예제 #8
0
    def __init__(self, url, max_events=None):
        """
        Parameters
        ----------
        url : string
            path to the TARGET fits file
        """
        self._event_index = None

        self.url = url
        self.max_events = max_events

        self.event_id = 0
        self.time_tack = None
        self.time_sec = None
        self.time_ns = None

        self.cameraconfig = Config()

        self.tio_reader = TIOReader(self.url, self.cameraconfig.n_cells,
                                    self.cameraconfig.skip_sample,
                                    self.cameraconfig.skip_end_sample,
                                    self.cameraconfig.skip_event,
                                    self.cameraconfig.skip_end_event)
        self.n_events = self.tio_reader.fNEvents
        first_event_id = self.tio_reader.fFirstEventID
        last_event_id = self.tio_reader.fLastEventID
        self.event_id_list = np.arange(first_event_id, last_event_id)
        self.run_id = self.tio_reader.fRunID
        self.n_pix = self.tio_reader.fNPixels
        self.n_modules = self.tio_reader.fNModules
        self.n_tmpix = self.n_pix // self.n_modules
        self.n_samples = self.tio_reader.fNSamples
        self.n_cells = self.tio_reader.fNCells

        # Setup camera geom
        if self.n_pix == self.n_tmpix:
            self.cameraconfig.switch_to_single_module()
        self.pixel_pos = self.cameraconfig.pixel_pos
        self.optical_foclen = self.cameraconfig.optical_foclen

        self.n_rows = self.cameraconfig.n_rows
        self.n_columns = self.cameraconfig.n_columns
        self.n_blocks = self.cameraconfig.n_blocks
        self.refshape = self.cameraconfig.refshape
        self.refstep = self.cameraconfig.refstep
        self.time_slice = self.cameraconfig.time_slice

        # Init arrays
        self.r0_samples = None
        self.r1_samples = np.zeros((self.n_pix, self.n_samples),
                                   dtype=np.float32)[None, ...]
        self.first_cell_ids = np.zeros(self.n_pix, dtype=np.uint16)

        # Setup if file is already r1
        self.is_r1 = self.tio_reader.fR1
        if self.is_r1:
            self.get_event = self.tio_reader.GetR1Event
            self.samples = self.r1_samples[0]
        else:
            self.r0_samples = np.zeros((self.n_pix, self.n_samples),
                                       dtype=np.uint16)[None, ...]
            self.get_event = self.tio_reader.GetR0Event
            self.samples = self.r0_samples[0]

        self.data = None
        self.init_container()
예제 #9
0
class TargetioExtractor:
    """
    Extract waveforms from `target_io` and build them into a camera image

    Attributes
    ----------
    tio_reader : target_io.TargetIOEventReader()
    n_events : int
        number of events in the fits file
    n_samples : int
        number of samples in the waveform
    r0_samples : ndarray
        two dimensional array to store the waveform for each pixel

    """
    def __init__(self, url, max_events=None):
        """
        Parameters
        ----------
        url : string
            path to the TARGET fits file
        """
        self._event_index = None

        self.url = url
        self.max_events = max_events

        self.event_id = 0
        self.time_tack = None
        self.time_sec = None
        self.time_ns = None

        self.cameraconfig = Config()

        self.tio_reader = TIOReader(self.url, self.cameraconfig.n_cells,
                                    self.cameraconfig.skip_sample,
                                    self.cameraconfig.skip_end_sample,
                                    self.cameraconfig.skip_event,
                                    self.cameraconfig.skip_end_event)
        self.n_events = self.tio_reader.fNEvents
        first_event_id = self.tio_reader.fFirstEventID
        last_event_id = self.tio_reader.fLastEventID
        self.event_id_list = np.arange(first_event_id, last_event_id)
        self.run_id = self.tio_reader.fRunID
        self.n_pix = self.tio_reader.fNPixels
        self.n_modules = self.tio_reader.fNModules
        self.n_tmpix = self.n_pix // self.n_modules
        self.n_samples = self.tio_reader.fNSamples
        self.n_cells = self.tio_reader.fNCells

        # Setup camera geom
        if self.n_pix == self.n_tmpix:
            self.cameraconfig.switch_to_single_module()
        self.pixel_pos = self.cameraconfig.pixel_pos
        self.optical_foclen = self.cameraconfig.optical_foclen

        self.n_rows = self.cameraconfig.n_rows
        self.n_columns = self.cameraconfig.n_columns
        self.n_blocks = self.cameraconfig.n_blocks
        self.refshape = self.cameraconfig.refshape
        self.refstep = self.cameraconfig.refstep
        self.time_slice = self.cameraconfig.time_slice

        # Init arrays
        self.r0_samples = None
        self.r1_samples = np.zeros((self.n_pix, self.n_samples),
                                   dtype=np.float32)[None, ...]
        self.first_cell_ids = np.zeros(self.n_pix, dtype=np.uint16)

        # Setup if file is already r1
        self.is_r1 = self.tio_reader.fR1
        if self.is_r1:
            self.get_event = self.tio_reader.GetR1Event
            self.samples = self.r1_samples[0]
        else:
            self.r0_samples = np.zeros((self.n_pix, self.n_samples),
                                       dtype=np.uint16)[None, ...]
            self.get_event = self.tio_reader.GetR0Event
            self.samples = self.r0_samples[0]

        self.data = None
        self.init_container()

    @property
    def event_index(self):
        return self._event_index

    @event_index.setter
    def event_index(self, val):
        self._event_index = val
        self.get_event(self.event_index, self.samples, self.first_cell_ids)
        self.event_id = self.tio_reader.fCurrentEventID
        self.time_tack = self.tio_reader.fCurrentTimeTack
        self.time_sec = self.tio_reader.fCurrentTimeSec
        self.time_ns = self.tio_reader.fCurrentTimeNs
        self.update_container()

    def move_to_next_event(self):
        for self.event_index in range(self.n_events):
            yield self.run_id, self.event_id

    def init_container(self):
        url = self.url
        max_events = self.max_events
        chec_tel = 0

        data = DataContainer()
        data.meta['origin'] = "targetio"

        # some targetio_event_source specific parameters
        data.meta['input'] = url
        data.meta['max_events'] = max_events
        data.meta['n_rows'] = self.n_rows
        data.meta['n_columns'] = self.n_columns
        data.meta['n_blocks'] = self.n_blocks
        data.meta['n_blockphases'] = N_BLOCKSAMPLES
        data.meta['n_cells'] = self.n_cells
        data.meta['n_modules'] = self.n_modules
        data.meta['tm'] = np.arange(self.n_pix,
                                    dtype=np.uint16) // self.n_tmpix
        data.meta['tmpix'] = np.arange(self.n_pix,
                                       dtype=np.uint16) % self.n_tmpix

        pix_pos = self.pixel_pos * u.m
        foclen = self.optical_foclen * u.m
        teldesc = TelescopeDescription.guess(*pix_pos, foclen)
        data.inst.subarray.tels[chec_tel] = teldesc

        self.data = data

    def update_container(self):
        data = self.data
        chec_tel = 0

        event_id = self.event_id
        run_id = self.run_id

        data.r0.run_id = run_id
        data.r0.event_id = event_id
        data.r0.tels_with_data = {chec_tel}
        data.r1.run_id = run_id
        data.r1.event_id = event_id
        data.r1.tels_with_data = {chec_tel}
        data.dl0.run_id = run_id
        data.dl0.event_id = event_id
        data.dl0.tels_with_data = {chec_tel}

        data.trig.tels_with_trigger = [chec_tel]

        data.meta['tack'] = self.time_tack
        data.meta['sec'] = self.time_sec
        data.meta['ns'] = self.time_ns
        data.trig.gps_time = Time(self.time_sec * u.s,
                                  self.time_ns * u.ns,
                                  format='unix',
                                  scale='utc',
                                  precision=9)

        data.count = self.event_index

        # this should be done in a nicer way to not re-allocate the
        # data each time (right now it's just deleted and garbage
        # collected)

        data.r0.tel.clear()
        data.r1.tel.clear()
        data.dl0.tel.clear()
        data.dl1.tel.clear()
        data.mc.tel.clear()

        # load the data per telescope/chan
        data.r0.tel[chec_tel].adc_samples = self.r0_samples
        data.r1.tel[chec_tel].pe_samples = self.r1_samples
        data.r0.tel[chec_tel].first_cell_ids = self.first_cell_ids
        bp, r, c = get_bp_r_c(self.first_cell_ids)
        data.r0.tel[chec_tel].blockphase = bp
        data.r0.tel[chec_tel].row = r
        data.r0.tel[chec_tel].column = c
        data.r0.tel[chec_tel].num_samples = self.n_samples

        data.mc.tel[chec_tel].reference_pulse_shape = self.refshape
        data.mc.tel[chec_tel].meta['refstep'] = self.refstep
        data.mc.tel[chec_tel].time_slice = self.time_slice

        data.meta['n_blocks'] = self.n_blocks

    def read_generator(self):
        data = self.data
        n_events = self.n_events
        if self.max_events and self.max_events < self.n_events:
            n_events = self.max_events
        for self.event_index in range(n_events):
            yield data

    def read_event(self, requested_event, use_event_id=False):
        """
        Obtain a particular event from the targetio file.

        Parameters
        ----------
        requested_event : int
        use_event_id : bool
            If True ,'requested_event' now seeks for a particular events id
            instead of index
        """
        index = requested_event
        if use_event_id:
            # Obtaining event id not implemented
            index = self.tio_reader.GetEventIndex(requested_event)
        n_events = self.n_events
        if self.max_events and self.max_events < self.n_events:
            n_events = self.max_events
        if (index >= n_events) | (index < 0):
            raise RuntimeError("Outside event range")
        self.event_index = index