def demo_draw(feed_dict, result, extra_info): reconstruct = get_env('demo.is_reconstruct', False) grid_desc = get_env('demo.draw.grid_desc') all_outputs = [] for i in range(1000): name = 'canvas_step{}'.format(i) if name in result: all_outputs.append(result[name][0, :, :, 0]) final = image.image_grid(all_outputs, grid_desc) final = (final * 255).astype('uint8') if reconstruct: img = feed_dict['img'][0, :, :, 0] h = final.shape[0] w = int(img.shape[1] * h / img.shape[0]) img = (img * 255).astype('uint8') img = image.resize(img, (h, w)) final = np.hstack((img, final)) final = image.resize_minmax(final, 480, 720) image.imshow('demo', final)
def resize_state(s): return image.resize(s, get_env('a3c.input_shape'), interpolation='NEAREST')
def _crop_and_resize(self, img): img = image.imdecode(img) img = image.resize(img, self._img_shape) return img
def resize_state(s): return image.grayscale( image.resize(s, get_env('dqn.input_shape'), interpolation='NEAREST'))
def resize_state(s): return image.resize(s, (84, 84), interpolation='NEAREST')