def write_doc_file(self): """ Write reform documentation to text file. """ if len(self.policy_dicts) <= 1: doc = Calculator.reform_documentation(self.param_dict) else: doc = Calculator.reform_documentation(self.param_dict, self.policy_dicts[1:]) doc_fname = self._output_filename.replace('.csv', '-doc.text') with open(doc_fname, 'w') as dfile: dfile.write(doc)
def __init__(self, input_filename, reform, exact_calculations, emulate_taxsim_2441_logic, output_records): """ SimpleTaxIO class constructor. """ # pylint: disable=too-many-arguments # check that input_filename is a string if not isinstance(input_filename, str): msg = 'SimpleTaxIO.ctor input_filename is not a string' raise ValueError(msg) # construct output_filename and delete old output file if it exists # ... construct reform extension to output_filename if reform is None: ref = '' self._using_reform_file = True else: # if reform is not None if isinstance(reform, str): if reform.endswith('.json'): ref = '-{}'.format(reform[:-5]) else: ref = '-{}'.format(reform) self._using_reform_file = True elif isinstance(reform, dict): ref = '' self._using_reform_file = False else: msg = 'SimpleTaxIO.ctor reform is neither None, str, nor dict' raise ValueError(msg) # ... construct whole output_filename self._using_input_file = True self._output_filename = '{}.out-simtax{}'.format(input_filename, ref) if os.path.isfile(self._output_filename): os.remove(self._output_filename) # pragma: no cover # check for existence of file named input_filename if not os.path.isfile(input_filename): msg = 'INPUT file named {} could not be found' raise ValueError(msg.format(input_filename)) # read input file contents into self._input dictionary self._read_input(input_filename) self.policy = Policy() # implement reform if reform is specified if reform: if self._using_reform_file: param_dict = Calculator.read_json_param_objects(reform, None) r_pol = param_dict['policy'] else: r_pol = reform self.policy.implement_reform(r_pol) # validate input variable values self._validate_input() self.calc = self._calc_object(exact_calculations, emulate_taxsim_2441_logic, output_records)
def _calc_object(self, exact_calcs, emulate_taxsim_2441_logic, output_records): """ Create and return Calculator object to conduct the tax calculations. Parameters ---------- exact_calcs: boolean emulate_taxsim_2441_logic: boolean output_records: boolean Returns ------- calc: Calculator """ # create all-zeros dictionary and then list of all-zero dictionaries Records.read_var_info() zero_dict = {} for varname in Records.USABLE_READ_VARS: zero_dict[varname] = 0 dict_list = [zero_dict for _ in range(0, len(self._input))] # use dict_list to create a Pandas DataFrame and Records object recsdf = pd.DataFrame(dict_list, dtype='int64') recsdf['MARS'] = recsdf['MARS'].add(1) # because MARS==0 is illegal recs = Records(data=recsdf, exact_calculations=exact_calcs, gfactors=None, weights=None, start_year=self.policy.start_year) assert recs.array_length == len(self._input) # specify input for each tax filing unit in Records object lnum = 0 for idx in range(0, recs.array_length): lnum += 1 SimpleTaxIO._specify_input(recs, idx, self._input[lnum], emulate_taxsim_2441_logic) # optionally write Records.USABLE_READ_VARS content to file if output_records: recdf = pd.DataFrame() # pragma: no cover for varname in Records.USABLE_READ_VARS: # pragma: no cover vardata = getattr(recs, varname) # pragma: no cover recdf[varname] = vardata # pragma: no cover recdf.to_csv(re.sub('out-simtax', 'records', # pragma: no cover self._output_filename), float_format='%.2f', index=False) # create Calculator object containing all tax filing units return Calculator(policy=self.policy, records=recs, sync_years=False)
class TaxCalcIO(): """ Constructor for the Tax-Calculator Input-Output class. TaxCalcIO class constructor call must be followed by init() call. Parameters ---------- input_data: string or Pandas DataFrame string is name of INPUT file that is CSV formatted containing variable names in the Records USABLE_READ_VARS set, or Pandas DataFrame is INPUT data containing variable names in the Records USABLE_READ_VARS set. INPUT vsrisbles not in the Records USABLE_READ_VARS set can be present but are ignored. tax_year: integer calendar year for which taxes will be computed for INPUT. baseline: None or string None implies baseline policy is current-law policy, or string is name of optional BASELINE file that is a JSON reform file. reform: None or string None implies no policy reform (current-law policy), or string is name of optional REFORM file(s). assump: None or string None implies economic assumptions are standard assumptions, or string is name of optional ASSUMP file. outdir: None or string None implies output files written to current directory, or string is name of optional output directory Returns ------- class instance: TaxCalcIO """ # pylint: disable=too-many-instance-attributes def __init__(self, input_data, tax_year, baseline, reform, assump, outdir=None): # pylint: disable=too-many-arguments,too-many-locals # pylint: disable=too-many-branches,too-many-statements self.errmsg = '' # check name and existence of INPUT file inp = 'x' self.puf_input_data = False self.cps_input_data = False if isinstance(input_data, str): # remove any leading directory path from INPUT filename fname = os.path.basename(input_data) # check if fname ends with ".csv" if fname.endswith('.csv'): inp = '{}-{}'.format(fname[:-4], str(tax_year)[2:]) else: msg = 'INPUT file name does not end in .csv' self.errmsg += 'ERROR: {}\n'.format(msg) # check existence of INPUT file self.puf_input_data = input_data.endswith('puf.csv') self.cps_input_data = input_data.endswith('cps.csv') if not self.cps_input_data and not os.path.isfile(input_data): msg = 'INPUT file could not be found' self.errmsg += 'ERROR: {}\n'.format(msg) elif isinstance(input_data, pd.DataFrame): inp = 'df-{}'.format(str(tax_year)[2:]) else: msg = 'INPUT is neither string nor Pandas DataFrame' self.errmsg += 'ERROR: {}\n'.format(msg) # check name and existence of BASELINE file bas = '-x' if baseline is None: bas = '-#' elif isinstance(baseline, str): # remove any leading directory path from BASELINE filename fname = os.path.basename(baseline) # check if fname ends with ".json" if fname.endswith('.json'): bas = '-{}'.format(fname[:-5]) else: msg = 'BASELINE file name does not end in .json' self.errmsg += 'ERROR: {}\n'.format(msg) # check existence of BASELINE file if not os.path.isfile(baseline): msg = 'BASELINE file could not be found' self.errmsg += 'ERROR: {}\n'.format(msg) else: msg = 'TaxCalcIO.ctor: baseline is neither None nor str' self.errmsg += 'ERROR: {}\n'.format(msg) # check name(s) and existence of REFORM file(s) ref = '-x' if reform is None: self.specified_reform = False ref = '-#' elif isinstance(reform, str): self.specified_reform = True # split any compound reform into list of simple reforms refnames = list() reforms = reform.split('+') for rfm in reforms: # remove any leading directory path from rfm filename fname = os.path.basename(rfm) # check if fname ends with ".json" if not fname.endswith('.json'): msg = '{} does not end in .json'.format(fname) self.errmsg += 'ERROR: REFORM file name {}\n'.format(msg) # check existence of REFORM file if not os.path.isfile(rfm): msg = '{} could not be found'.format(rfm) self.errmsg += 'ERROR: REFORM file {}\n'.format(msg) # add fname to list of refnames used in output file names refnames.append(fname) # create (possibly compound) reform name for output file names ref = '-' num_refnames = 0 for refname in refnames: num_refnames += 1 if num_refnames > 1: ref += '+' ref += '{}'.format(refname[:-5]) else: msg = 'TaxCalcIO.ctor: reform is neither None nor str' self.errmsg += 'ERROR: {}\n'.format(msg) # check name and existence of ASSUMP file asm = '-x' if assump is None: asm = '-#' elif isinstance(assump, str): # remove any leading directory path from ASSUMP filename fname = os.path.basename(assump) # check if fname ends with ".json" if fname.endswith('.json'): asm = '-{}'.format(fname[:-5]) else: msg = 'ASSUMP file name does not end in .json' self.errmsg += 'ERROR: {}\n'.format(msg) # check existence of ASSUMP file if not os.path.isfile(assump): msg = 'ASSUMP file could not be found' self.errmsg += 'ERROR: {}\n'.format(msg) else: msg = 'TaxCalcIO.ctor: assump is neither None nor str' self.errmsg += 'ERROR: {}\n'.format(msg) # check name and existence of OUTDIR if outdir is None: valid_outdir = True elif isinstance(outdir, str): # check existence of OUTDIR if os.path.isdir(outdir): valid_outdir = True else: valid_outdir = False msg = 'OUTDIR could not be found' self.errmsg += 'ERROR: {}\n'.format(msg) else: valid_outdir = False msg = 'TaxCalcIO.ctor: outdir is neither None nor str' self.errmsg += 'ERROR: {}\n'.format(msg) # create OUTPUT file name and delete any existing output files output_filename = '{}{}{}{}.csv'.format(inp, bas, ref, asm) if outdir is None: self._output_filename = output_filename delete_old_files = True elif valid_outdir: self._output_filename = os.path.join(outdir, output_filename) delete_old_files = True else: delete_old_files = False if delete_old_files: delete_file(self._output_filename) delete_file(self._output_filename.replace('.csv', '.db')) delete_file(self._output_filename.replace('.csv', '-doc.text')) delete_file(self._output_filename.replace('.csv', '-tab.text')) delete_file(self._output_filename.replace('.csv', '-atr.html')) delete_file(self._output_filename.replace('.csv', '-mtr.html')) delete_file(self._output_filename.replace('.csv', '-pch.html')) # initialize variables whose values are set in init method self.calc = None self.calc_base = None self.param_dict = None self.policy_dicts = list() def init(self, input_data, tax_year, baseline, reform, assump, aging_input_data, exact_calculations): """ TaxCalcIO class post-constructor method that completes initialization. Parameters ---------- First five are same as the first five of the TaxCalcIO constructor: input_data, tax_year, baseline, reform, assump. aging_input_data: boolean whether or not to extrapolate Records data from data year to tax_year. exact_calculations: boolean specifies whether or not exact tax calculations are done without any smoothing of "stair-step" provisions in the tax law. """ # pylint: disable=too-many-arguments,too-many-locals # pylint: disable=too-many-statements,too-many-branches self.errmsg = '' # get policy parameter dictionary from --baseline file basedict = Calculator.read_json_param_objects(baseline, None) # get assumption sub-dictionaries paramdict = Calculator.read_json_param_objects(None, assump) # get policy parameter dictionaries from --reform file(s) policydicts = list() if self.specified_reform: reforms = reform.split('+') for ref in reforms: pdict = Calculator.read_json_param_objects(ref, None) policydicts.append(pdict['policy']) paramdict['policy'] = policydicts[0] # remember parameters for reform documentation self.param_dict = paramdict self.policy_dicts = policydicts # create gdiff_baseline object gdiff_baseline = GrowDiff() try: gdiff_baseline.update_growdiff(paramdict['growdiff_baseline']) except paramtools.ValidationError as valerr_msg: self.errmsg += valerr_msg.__str__() # create GrowFactors base object that incorporates gdiff_baseline gfactors_base = GrowFactors() gdiff_baseline.apply_to(gfactors_base) # specify gdiff_response object gdiff_response = GrowDiff() try: gdiff_response.update_growdiff(paramdict['growdiff_response']) except paramtools.ValidationError as valerr_msg: self.errmsg += valerr_msg.__str__() # create GrowFactors ref object that has all gdiff objects applied gfactors_ref = GrowFactors() gdiff_baseline.apply_to(gfactors_ref) gdiff_response.apply_to(gfactors_ref) # create Policy objects: # ... the baseline Policy object base = Policy(gfactors=gfactors_base) try: base.implement_reform(basedict['policy'], print_warnings=True, raise_errors=False) self.errmsg += base.parameter_errors except paramtools.ValidationError as valerr_msg: self.errmsg += valerr_msg.__str__() # ... the reform Policy object if self.specified_reform: pol = Policy(gfactors=gfactors_ref) for poldict in policydicts: try: pol.implement_reform(poldict, print_warnings=True, raise_errors=False) self.errmsg += pol.parameter_errors except paramtools.ValidationError as valerr_msg: self.errmsg += valerr_msg.__str__() else: pol = Policy(gfactors=gfactors_base) # create Consumption object con = Consumption() try: con.update_consumption(paramdict['consumption']) except paramtools.ValidationError as valerr_msg: self.errmsg += valerr_msg.__str__() # check for valid tax_year value if tax_year < pol.start_year: msg = 'tax_year {} less than policy.start_year {}' msg = msg.format(tax_year, pol.start_year) self.errmsg += 'ERROR: {}\n'.format(msg) if tax_year > pol.end_year: msg = 'tax_year {} greater than policy.end_year {}' msg = msg.format(tax_year, pol.end_year) self.errmsg += 'ERROR: {}\n'.format(msg) # any errors imply cannot proceed with calculations if self.errmsg: return # set policy to tax_year pol.set_year(tax_year) base.set_year(tax_year) # read input file contents into Records objects if aging_input_data: if self.cps_input_data: recs = Records.cps_constructor( gfactors=gfactors_ref, exact_calculations=exact_calculations) recs_base = Records.cps_constructor( gfactors=gfactors_base, exact_calculations=exact_calculations) else: # if not cps_input_data but aging_input_data recs = Records(data=input_data, gfactors=gfactors_ref, exact_calculations=exact_calculations) recs_base = Records(data=input_data, gfactors=gfactors_base, exact_calculations=exact_calculations) else: # input_data are raw data that are not being aged recs = Records(data=input_data, start_year=tax_year, gfactors=None, weights=None, adjust_ratios=None, exact_calculations=exact_calculations) recs_base = copy.deepcopy(recs) if tax_year < recs.data_year: msg = 'tax_year {} less than records.data_year {}' msg = msg.format(tax_year, recs.data_year) self.errmsg += 'ERROR: {}\n'.format(msg) # create Calculator objects self.calc = Calculator(policy=pol, records=recs, verbose=True, consumption=con, sync_years=aging_input_data) self.calc_base = Calculator(policy=base, records=recs_base, verbose=False, consumption=con, sync_years=aging_input_data) def custom_dump_variables(self, tcdumpvars_str): """ Return set of variable names extracted from tcdumpvars_str, which contains the contents of the tcdumpvars file in the current directory. Also, builds self.errmsg if any custom variables are not valid. """ assert isinstance(tcdumpvars_str, str) self.errmsg = '' # change some common delimiter characters into spaces dump_vars_str = tcdumpvars_str.replace(',', ' ') dump_vars_str = dump_vars_str.replace(';', ' ') dump_vars_str = dump_vars_str.replace('|', ' ') # split dump_vars_str into a list of dump variables dump_vars_list = dump_vars_str.split() # check that all dump_vars_list items are valid recs_vinfo = Records(data=None) # contains records VARINFO only valid_set = recs_vinfo.USABLE_READ_VARS | recs_vinfo.CALCULATED_VARS for var in dump_vars_list: if var not in valid_set: msg = 'invalid variable name in tcdumpvars file: {}' msg = msg.format(var) self.errmsg += 'ERROR: {}\n'.format(msg) # add essential variables even if not on custom list if 'RECID' not in dump_vars_list: dump_vars_list.append('RECID') if 'FLPDYR' not in dump_vars_list: dump_vars_list.append('FLPDYR') # convert list into a set and return return set(dump_vars_list) def tax_year(self): """ Return calendar year for which TaxCalcIO calculations are being done. """ return self.calc.current_year def output_filepath(self): """ Return full path to output file named in TaxCalcIO constructor. """ dirpath = os.path.abspath(os.path.dirname(__file__)) return os.path.join(dirpath, self._output_filename) def analyze(self, writing_output_file=False, output_tables=False, output_graphs=False, dump_varset=None, output_dump=False, output_sqldb=False): """ Conduct tax analysis. Parameters ---------- writing_output_file: boolean whether or not to generate and write output file output_tables: boolean whether or not to generate and write distributional tables to a text file output_graphs: boolean whether or not to generate and write HTML graphs of average and marginal tax rates by income percentile dump_varset: set custom set of variables to include in dump and sqldb output; None implies include all variables in dump and sqldb output output_dump: boolean whether or not to replace standard output with all input and calculated variables using their Tax-Calculator names output_sqldb: boolean whether or not to write SQLite3 database with dump table containing same output as written by output_dump to a csv file Returns ------- Nothing """ # pylint: disable=too-many-arguments,too-many-branches,too-many-locals if self.puf_input_data and self.calc.reform_warnings: warn = 'PARAMETER VALUE WARNING(S): {}\n{}{}' # pragma: no cover print( # pragma: no cover warn.format('(read documentation for each parameter)', self.calc.reform_warnings, 'CONTINUING WITH CALCULATIONS...')) calc_base_calculated = False self.calc.calc_all() if output_dump or output_sqldb: # might need marginal tax rates (mtr_paytax, mtr_inctax, _) = self.calc.mtr(wrt_full_compensation=False, calc_all_already_called=True) else: # definitely do not need marginal tax rates mtr_paytax = None mtr_inctax = None # extract output if writing_output_file if writing_output_file: self.write_output_file(output_dump, dump_varset, mtr_paytax, mtr_inctax) self.write_doc_file() # optionally write --sqldb output to SQLite3 database if output_sqldb: self.write_sqldb_file(dump_varset, mtr_paytax, mtr_inctax) # optionally write --tables output to text file if output_tables: if not calc_base_calculated: self.calc_base.calc_all() calc_base_calculated = True self.write_tables_file() # optionally write --graphs output to HTML files if output_graphs: if not calc_base_calculated: self.calc_base.calc_all() calc_base_calculated = True self.write_graph_files() def write_output_file(self, output_dump, dump_varset, mtr_paytax, mtr_inctax): """ Write output to CSV-formatted file. """ if output_dump: outdf = self.dump_output(dump_varset, mtr_inctax, mtr_paytax) column_order = sorted(outdf.columns) else: outdf = self.minimal_output() column_order = outdf.columns assert len(outdf.index) == self.calc.array_len outdf.to_csv(self._output_filename, columns=column_order, index=False, float_format='%.2f') del outdf gc.collect() def write_doc_file(self): """ Write reform documentation to text file. """ if len(self.policy_dicts) <= 1: doc = Calculator.reform_documentation(self.param_dict) else: doc = Calculator.reform_documentation(self.param_dict, self.policy_dicts[1:]) doc_fname = self._output_filename.replace('.csv', '-doc.text') with open(doc_fname, 'w') as dfile: dfile.write(doc) def write_sqldb_file(self, dump_varset, mtr_paytax, mtr_inctax): """ Write dump output to SQLite3 database table dump. """ outdf = self.dump_output(dump_varset, mtr_inctax, mtr_paytax) assert len(outdf.index) == self.calc.array_len db_fname = self._output_filename.replace('.csv', '.db') dbcon = sqlite3.connect(db_fname) outdf.to_sql('dump', dbcon, if_exists='replace', index=False) dbcon.close() del outdf gc.collect() def write_tables_file(self): """ Write tables to text file. """ # pylint: disable=too-many-locals tab_fname = self._output_filename.replace('.csv', '-tab.text') # skip tables if there are not some positive weights if self.calc_base.total_weight() <= 0.: with open(tab_fname, 'w') as tfile: msg = 'No tables because sum of weights is not positive\n' tfile.write(msg) return # create list of results for nontax variables # - weights don't change with reform # - expanded_income may change, so always use baseline expanded income nontax_vars = ['s006', 'expanded_income'] nontax = [self.calc_base.array(var) for var in nontax_vars] # create list of results for tax variables from reform Calculator tax_vars = ['iitax', 'payrolltax', 'lumpsum_tax', 'combined'] reform = [self.calc.array(var) for var in tax_vars] # create DataFrame with tax distribution under reform dist = nontax + reform # using expanded_income under baseline policy all_vars = nontax_vars + tax_vars distdf = pd.DataFrame(data=np.column_stack(dist), columns=all_vars) # create DataFrame with tax differences (reform - baseline) base = [self.calc_base.array(var) for var in tax_vars] change = [(reform[idx] - base[idx]) for idx in range(0, len(tax_vars))] diff = nontax + change # using expanded_income under baseline policy diffdf = pd.DataFrame(data=np.column_stack(diff), columns=all_vars) # write each kind of distributional table with open(tab_fname, 'w') as tfile: TaxCalcIO.write_decile_table(distdf, tfile, tkind='Reform Totals') tfile.write('\n') TaxCalcIO.write_decile_table(diffdf, tfile, tkind='Differences') # delete intermediate DataFrame objects del distdf del diffdf gc.collect() @staticmethod def write_decile_table(dfx, tfile, tkind='Totals'): """ Write to tfile the tkind decile table using dfx DataFrame. """ dfx = add_quantile_table_row_variable(dfx, 'expanded_income', 10, decile_details=False, pop_quantiles=False, weight_by_income_measure=False) gdfx = dfx.groupby('table_row', as_index=False) rtns_series = gdfx.apply(unweighted_sum, 's006') xinc_series = gdfx.apply(weighted_sum, 'expanded_income') itax_series = gdfx.apply(weighted_sum, 'iitax') ptax_series = gdfx.apply(weighted_sum, 'payrolltax') htax_series = gdfx.apply(weighted_sum, 'lumpsum_tax') ctax_series = gdfx.apply(weighted_sum, 'combined') # write decile table to text file row = 'Weighted Tax {} by Baseline Expanded-Income Decile\n' tfile.write(row.format(tkind)) rowfmt = '{}{}{}{}{}{}\n' row = rowfmt.format(' Returns', ' ExpInc', ' IncTax', ' PayTax', ' LSTax', ' AllTax') tfile.write(row) row = rowfmt.format(' (#m)', ' ($b)', ' ($b)', ' ($b)', ' ($b)', ' ($b)') tfile.write(row) rowfmt = '{:9.2f}{:10.1f}{:10.1f}{:10.1f}{:10.1f}{:10.1f}\n' for decile in range(0, 10): row = '{:2d}'.format(decile) row += rowfmt.format(rtns_series[decile] * 1e-6, xinc_series[decile] * 1e-9, itax_series[decile] * 1e-9, ptax_series[decile] * 1e-9, htax_series[decile] * 1e-9, ctax_series[decile] * 1e-9) tfile.write(row) row = ' A' row += rowfmt.format(rtns_series.sum() * 1e-6, xinc_series.sum() * 1e-9, itax_series.sum() * 1e-9, ptax_series.sum() * 1e-9, htax_series.sum() * 1e-9, ctax_series.sum() * 1e-9) tfile.write(row) del gdfx del rtns_series del xinc_series del itax_series del ptax_series del htax_series del ctax_series gc.collect() def write_graph_files(self): """ Write graphs to HTML files. All graphs contain same number of filing units in each quantile. """ pos_wght_sum = self.calc.total_weight() > 0.0 fig = None # average-tax-rate graph atr_fname = self._output_filename.replace('.csv', '-atr.html') atr_title = 'ATR by Income Percentile' if pos_wght_sum: fig = self.calc_base.atr_graph(self.calc, pop_quantiles=False) write_graph_file(fig, atr_fname, atr_title) else: reason = 'No graph because sum of weights is not positive' TaxCalcIO.write_empty_graph_file(atr_fname, atr_title, reason) # marginal-tax-rate graph mtr_fname = self._output_filename.replace('.csv', '-mtr.html') mtr_title = 'MTR by Income Percentile' if pos_wght_sum: fig = self.calc_base.mtr_graph( self.calc, alt_e00200p_text='Taxpayer Earnings', pop_quantiles=False) write_graph_file(fig, mtr_fname, mtr_title) else: reason = 'No graph because sum of weights is not positive' TaxCalcIO.write_empty_graph_file(mtr_fname, mtr_title, reason) # percentage-aftertax-income-change graph pch_fname = self._output_filename.replace('.csv', '-pch.html') pch_title = 'PCH by Income Percentile' if pos_wght_sum: fig = self.calc_base.pch_graph(self.calc, pop_quantiles=False) write_graph_file(fig, pch_fname, pch_title) else: reason = 'No graph because sum of weights is not positive' TaxCalcIO.write_empty_graph_file(pch_fname, pch_title, reason) if fig: del fig gc.collect() @staticmethod def write_empty_graph_file(fname, title, reason): """ Write HTML graph file with title but no graph for specified reason. """ txt = ('<html>\n' '<head><title>{}</title></head>\n' '<body><center<h1>{}</h1></center></body>\n' '</html>\n').format(title, reason) with open(fname, 'w') as gfile: gfile.write(txt) def minimal_output(self): """ Extract minimal output and return it as Pandas DataFrame. """ varlist = ['RECID', 'YEAR', 'WEIGHT', 'INCTAX', 'LSTAX', 'PAYTAX'] odict = dict() scalc = self.calc odict['RECID'] = scalc.array('RECID') # id for tax filing unit odict['YEAR'] = self.tax_year() # tax calculation year odict['WEIGHT'] = scalc.array('s006') # sample weight odict['INCTAX'] = scalc.array('iitax') # federal income taxes odict['LSTAX'] = scalc.array('lumpsum_tax') # lump-sum tax odict['PAYTAX'] = scalc.array('payrolltax') # payroll taxes (ee+er) odf = pd.DataFrame(data=odict, columns=varlist) return odf def dump_output(self, dump_varset, mtr_inctax, mtr_paytax): """ Extract dump output and return it as Pandas DataFrame. """ recs_vinfo = Records(data=None) # contains only Records VARINFO if dump_varset is None: varset = recs_vinfo.USABLE_READ_VARS | recs_vinfo.CALCULATED_VARS else: varset = dump_varset # create and return dump output DataFrame odf = pd.DataFrame() for varname in varset: vardata = self.calc.array(varname) if varname in recs_vinfo.INTEGER_VARS: odf[varname] = vardata else: odf[varname] = vardata.round(2) # rounded to nearest cent # specify mtr values in percentage terms if 'mtr_inctax' in varset: odf['mtr_inctax'] = (mtr_inctax * 100).round(2) if 'mtr_paytax' in varset: odf['mtr_paytax'] = (mtr_paytax * 100).round(2) # specify tax calculation year odf['FLPDYR'] = self.tax_year() return odf
def init(self, input_data, tax_year, baseline, reform, assump, aging_input_data, exact_calculations): """ TaxCalcIO class post-constructor method that completes initialization. Parameters ---------- First five are same as the first five of the TaxCalcIO constructor: input_data, tax_year, baseline, reform, assump. aging_input_data: boolean whether or not to extrapolate Records data from data year to tax_year. exact_calculations: boolean specifies whether or not exact tax calculations are done without any smoothing of "stair-step" provisions in the tax law. """ # pylint: disable=too-many-arguments,too-many-locals # pylint: disable=too-many-statements,too-many-branches self.errmsg = '' # get policy parameter dictionary from --baseline file basedict = Calculator.read_json_param_objects(baseline, None) # get assumption sub-dictionaries paramdict = Calculator.read_json_param_objects(None, assump) # get policy parameter dictionaries from --reform file(s) policydicts = list() if self.specified_reform: reforms = reform.split('+') for ref in reforms: pdict = Calculator.read_json_param_objects(ref, None) policydicts.append(pdict['policy']) paramdict['policy'] = policydicts[0] # remember parameters for reform documentation self.param_dict = paramdict self.policy_dicts = policydicts # create gdiff_baseline object gdiff_baseline = GrowDiff() try: gdiff_baseline.update_growdiff(paramdict['growdiff_baseline']) except paramtools.ValidationError as valerr_msg: self.errmsg += valerr_msg.__str__() # create GrowFactors base object that incorporates gdiff_baseline gfactors_base = GrowFactors() gdiff_baseline.apply_to(gfactors_base) # specify gdiff_response object gdiff_response = GrowDiff() try: gdiff_response.update_growdiff(paramdict['growdiff_response']) except paramtools.ValidationError as valerr_msg: self.errmsg += valerr_msg.__str__() # create GrowFactors ref object that has all gdiff objects applied gfactors_ref = GrowFactors() gdiff_baseline.apply_to(gfactors_ref) gdiff_response.apply_to(gfactors_ref) # create Policy objects: # ... the baseline Policy object base = Policy(gfactors=gfactors_base) try: base.implement_reform(basedict['policy'], print_warnings=True, raise_errors=False) self.errmsg += base.parameter_errors except paramtools.ValidationError as valerr_msg: self.errmsg += valerr_msg.__str__() # ... the reform Policy object if self.specified_reform: pol = Policy(gfactors=gfactors_ref) for poldict in policydicts: try: pol.implement_reform(poldict, print_warnings=True, raise_errors=False) self.errmsg += pol.parameter_errors except paramtools.ValidationError as valerr_msg: self.errmsg += valerr_msg.__str__() else: pol = Policy(gfactors=gfactors_base) # create Consumption object con = Consumption() try: con.update_consumption(paramdict['consumption']) except paramtools.ValidationError as valerr_msg: self.errmsg += valerr_msg.__str__() # check for valid tax_year value if tax_year < pol.start_year: msg = 'tax_year {} less than policy.start_year {}' msg = msg.format(tax_year, pol.start_year) self.errmsg += 'ERROR: {}\n'.format(msg) if tax_year > pol.end_year: msg = 'tax_year {} greater than policy.end_year {}' msg = msg.format(tax_year, pol.end_year) self.errmsg += 'ERROR: {}\n'.format(msg) # any errors imply cannot proceed with calculations if self.errmsg: return # set policy to tax_year pol.set_year(tax_year) base.set_year(tax_year) # read input file contents into Records objects if aging_input_data: if self.cps_input_data: recs = Records.cps_constructor( gfactors=gfactors_ref, exact_calculations=exact_calculations) recs_base = Records.cps_constructor( gfactors=gfactors_base, exact_calculations=exact_calculations) else: # if not cps_input_data but aging_input_data recs = Records(data=input_data, gfactors=gfactors_ref, exact_calculations=exact_calculations) recs_base = Records(data=input_data, gfactors=gfactors_base, exact_calculations=exact_calculations) else: # input_data are raw data that are not being aged recs = Records(data=input_data, start_year=tax_year, gfactors=None, weights=None, adjust_ratios=None, exact_calculations=exact_calculations) recs_base = copy.deepcopy(recs) if tax_year < recs.data_year: msg = 'tax_year {} less than records.data_year {}' msg = msg.format(tax_year, recs.data_year) self.errmsg += 'ERROR: {}\n'.format(msg) # create Calculator objects self.calc = Calculator(policy=pol, records=recs, verbose=True, consumption=con, sync_years=aging_input_data) self.calc_base = Calculator(policy=base, records=recs_base, verbose=False, consumption=con, sync_years=aging_input_data)
class TaxCalcIO(): """ Constructor for the Tax-Calculator Input-Output class. TaxCalcIO class constructor call must be followed by init() call. Parameters ---------- input_data: string or Pandas DataFrame string is name of INPUT file that is CSV formatted containing variable names in the Records.USABLE_READ_VARS set, or Pandas DataFrame is INPUT data containing variable names in the Records.USABLE_READ_VARS set. INPUT vsrisbles not in the Records.USABLE_READ_VARS set can be present but are ignored. tax_year: integer calendar year for which taxes will be computed for INPUT. baseline: None or string None implies baseline policy is current-law policy, or string is name of optional BASELINE file that is a JSON reform file. reform: None or string None implies no policy reform (current-law policy), or string is name of optional REFORM file(s). assump: None or string None implies economic assumptions are standard assumptions, or string is name of optional ASSUMP file. outdir: None or string None implies output files written to current directory, or string is name of optional output directory Returns ------- class instance: TaxCalcIO """ # pylint: disable=too-many-instance-attributes def __init__(self, input_data, tax_year, baseline, reform, assump, outdir=None): # pylint: disable=too-many-arguments,too-many-locals # pylint: disable=too-many-branches,too-many-statements self.errmsg = '' # check name and existence of INPUT file inp = 'x' self.puf_input_data = False self.cps_input_data = False if isinstance(input_data, str): # remove any leading directory path from INPUT filename fname = os.path.basename(input_data) # check if fname ends with ".csv" if fname.endswith('.csv'): inp = '{}-{}'.format(fname[:-4], str(tax_year)[2:]) else: msg = 'INPUT file name does not end in .csv' self.errmsg += 'ERROR: {}\n'.format(msg) # check existence of INPUT file self.puf_input_data = input_data.endswith('puf.csv') self.cps_input_data = input_data.endswith('cps.csv') if not self.cps_input_data and not os.path.isfile(input_data): msg = 'INPUT file could not be found' self.errmsg += 'ERROR: {}\n'.format(msg) elif isinstance(input_data, pd.DataFrame): inp = 'df-{}'.format(str(tax_year)[2:]) else: msg = 'INPUT is neither string nor Pandas DataFrame' self.errmsg += 'ERROR: {}\n'.format(msg) # check name and existence of BASELINE file bas = '-x' if baseline is None: bas = '-#' elif isinstance(baseline, str): # remove any leading directory path from BASELINE filename fname = os.path.basename(baseline) # check if fname ends with ".json" if fname.endswith('.json'): bas = '-{}'.format(fname[:-5]) else: msg = 'BASELINE file name does not end in .json' self.errmsg += 'ERROR: {}\n'.format(msg) # check existence of BASELINE file if not os.path.isfile(baseline): msg = 'BASELINE file could not be found' self.errmsg += 'ERROR: {}\n'.format(msg) else: msg = 'TaxCalcIO.ctor: baseline is neither None nor str' self.errmsg += 'ERROR: {}\n'.format(msg) # check name(s) and existence of REFORM file(s) ref = '-x' if reform is None: self.specified_reform = False ref = '-#' elif isinstance(reform, str): self.specified_reform = True # split any compound reform into list of simple reforms refnames = list() reforms = reform.split('+') for rfm in reforms: # remove any leading directory path from rfm filename fname = os.path.basename(rfm) # check if fname ends with ".json" if not fname.endswith('.json'): msg = '{} does not end in .json'.format(fname) self.errmsg += 'ERROR: REFORM file name {}\n'.format(msg) # check existence of REFORM file if not os.path.isfile(rfm): msg = '{} could not be found'.format(rfm) self.errmsg += 'ERROR: REFORM file {}\n'.format(msg) # add fname to list of refnames used in output file names refnames.append(fname) # create (possibly compound) reform name for output file names ref = '-' num_refnames = 0 for refname in refnames: num_refnames += 1 if num_refnames > 1: ref += '+' ref += '{}'.format(refname[:-5]) else: msg = 'TaxCalcIO.ctor: reform is neither None nor str' self.errmsg += 'ERROR: {}\n'.format(msg) # check name and existence of ASSUMP file asm = '-x' if assump is None: asm = '-#' elif isinstance(assump, str): # remove any leading directory path from ASSUMP filename fname = os.path.basename(assump) # check if fname ends with ".json" if fname.endswith('.json'): asm = '-{}'.format(fname[:-5]) else: msg = 'ASSUMP file name does not end in .json' self.errmsg += 'ERROR: {}\n'.format(msg) # check existence of ASSUMP file if not os.path.isfile(assump): msg = 'ASSUMP file could not be found' self.errmsg += 'ERROR: {}\n'.format(msg) else: msg = 'TaxCalcIO.ctor: assump is neither None nor str' self.errmsg += 'ERROR: {}\n'.format(msg) # check name and existence of OUTDIR if outdir is None: valid_outdir = True elif isinstance(outdir, str): # check existence of OUTDIR if os.path.isdir(outdir): valid_outdir = True else: valid_outdir = False msg = 'OUTDIR could not be found' self.errmsg += 'ERROR: {}\n'.format(msg) else: valid_outdir = False msg = 'TaxCalcIO.ctor: outdir is neither None nor str' self.errmsg += 'ERROR: {}\n'.format(msg) # create OUTPUT file name and delete any existing output files output_filename = '{}{}{}{}.csv'.format(inp, bas, ref, asm) if outdir is None: self._output_filename = output_filename delete_old_files = True elif valid_outdir: self._output_filename = os.path.join(outdir, output_filename) delete_old_files = True else: delete_old_files = False if delete_old_files: delete_file(self._output_filename) delete_file(self._output_filename.replace('.csv', '.db')) delete_file(self._output_filename.replace('.csv', '-doc.text')) delete_file(self._output_filename.replace('.csv', '-tab.text')) delete_file(self._output_filename.replace('.csv', '-atr.html')) delete_file(self._output_filename.replace('.csv', '-mtr.html')) delete_file(self._output_filename.replace('.csv', '-pch.html')) # initialize variables whose values are set in init method self.calc = None self.calc_base = None self.param_dict = None self.policy_dicts = list() def init(self, input_data, tax_year, baseline, reform, assump, aging_input_data, exact_calculations): """ TaxCalcIO class post-constructor method that completes initialization. Parameters ---------- First five are same as the first five of the TaxCalcIO constructor: input_data, tax_year, baseline, reform, assump. aging_input_data: boolean whether or not to extrapolate Records data from data year to tax_year. exact_calculations: boolean specifies whether or not exact tax calculations are done without any smoothing of "stair-step" provisions in the tax law. """ # pylint: disable=too-many-arguments,too-many-locals # pylint: disable=too-many-statements,too-many-branches self.errmsg = '' # get policy parameter dictionary from --baseline file basedict = Calculator.read_json_param_objects(baseline, None) # get assumption sub-dictionaries paramdict = Calculator.read_json_param_objects(None, assump) # get policy parameter dictionaries from --reform file(s) policydicts = list() if self.specified_reform: reforms = reform.split('+') for ref in reforms: pdict = Calculator.read_json_param_objects(ref, None) policydicts.append(pdict['policy']) paramdict['policy'] = policydicts[0] # remember parameters for reform documentation self.param_dict = paramdict self.policy_dicts = policydicts # create gdiff_baseline object gdiff_baseline = GrowDiff() try: gdiff_baseline.update_growdiff(paramdict['growdiff_baseline']) except ValueError as valerr_msg: self.errmsg += valerr_msg.__str__() # create GrowFactors base object that incorporates gdiff_baseline gfactors_base = GrowFactors() gdiff_baseline.apply_to(gfactors_base) # specify gdiff_response object gdiff_response = GrowDiff() try: gdiff_response.update_growdiff(paramdict['growdiff_response']) except ValueError as valerr_msg: self.errmsg += valerr_msg.__str__() # create GrowFactors ref object that has all gdiff objects applied gfactors_ref = GrowFactors() gdiff_baseline.apply_to(gfactors_ref) gdiff_response.apply_to(gfactors_ref) # create Policy objects: # ... the baseline Policy object base = Policy(gfactors=gfactors_base) try: base.implement_reform(basedict['policy'], print_warnings=False, raise_errors=False) self.errmsg += base.parameter_errors except ValueError as valerr_msg: self.errmsg += valerr_msg.__str__() # ... the reform Policy object if self.specified_reform: pol = Policy(gfactors=gfactors_ref) for poldict in policydicts: try: pol.implement_reform(poldict, print_warnings=False, raise_errors=False) self.errmsg += pol.parameter_errors except ValueError as valerr_msg: self.errmsg += valerr_msg.__str__() else: pol = Policy(gfactors=gfactors_base) # create Consumption object con = Consumption() try: con.update_consumption(paramdict['consumption']) except ValueError as valerr_msg: self.errmsg += valerr_msg.__str__() # check for valid tax_year value if tax_year < pol.start_year: msg = 'tax_year {} less than policy.start_year {}' msg = msg.format(tax_year, pol.start_year) self.errmsg += 'ERROR: {}\n'.format(msg) if tax_year > pol.end_year: msg = 'tax_year {} greater than policy.end_year {}' msg = msg.format(tax_year, pol.end_year) self.errmsg += 'ERROR: {}\n'.format(msg) # any errors imply cannot proceed with calculations if self.errmsg: return # set policy to tax_year pol.set_year(tax_year) base.set_year(tax_year) # read input file contents into Records objects if aging_input_data: if self.cps_input_data: recs = Records.cps_constructor( gfactors=gfactors_ref, exact_calculations=exact_calculations ) recs_base = Records.cps_constructor( gfactors=gfactors_base, exact_calculations=exact_calculations ) else: # if not cps_input_data but aging_input_data recs = Records( data=input_data, gfactors=gfactors_ref, exact_calculations=exact_calculations ) recs_base = Records( data=input_data, gfactors=gfactors_base, exact_calculations=exact_calculations ) else: # input_data are raw data that are not being aged recs = Records(data=input_data, gfactors=None, exact_calculations=exact_calculations, weights=None, adjust_ratios=None, start_year=tax_year) recs_base = copy.deepcopy(recs) if tax_year < recs.data_year: msg = 'tax_year {} less than records.data_year {}' msg = msg.format(tax_year, recs.data_year) self.errmsg += 'ERROR: {}\n'.format(msg) # create Calculator objects self.calc = Calculator(policy=pol, records=recs, verbose=True, consumption=con, sync_years=aging_input_data) self.calc_base = Calculator(policy=base, records=recs_base, verbose=False, consumption=con, sync_years=aging_input_data) def custom_dump_variables(self, tcdumpvars_str): """ Return set of variable names extracted from tcdumpvars_str, which contains the contents of the tcdumpvars file in the current directory. Also, builds self.errmsg if any custom variables are not valid. """ assert isinstance(tcdumpvars_str, str) self.errmsg = '' # change some common delimiter characters into spaces dump_vars_str = tcdumpvars_str.replace(',', ' ') dump_vars_str = dump_vars_str.replace(';', ' ') dump_vars_str = dump_vars_str.replace('|', ' ') # split dump_vars_str into a list of dump variables dump_vars_list = dump_vars_str.split() # check that all dump_vars_list items are valid valid_set = Records.USABLE_READ_VARS | Records.CALCULATED_VARS for var in dump_vars_list: if var not in valid_set: msg = 'invalid variable name in tcdumpvars file: {}' msg = msg.format(var) self.errmsg += 'ERROR: {}\n'.format(msg) # add essential variables even if not on custom list if 'RECID' not in dump_vars_list: dump_vars_list.append('RECID') if 'FLPDYR' not in dump_vars_list: dump_vars_list.append('FLPDYR') # convert list into a set and return return set(dump_vars_list) def tax_year(self): """ Return calendar year for which TaxCalcIO calculations are being done. """ return self.calc.current_year def output_filepath(self): """ Return full path to output file named in TaxCalcIO constructor. """ dirpath = os.path.abspath(os.path.dirname(__file__)) return os.path.join(dirpath, self._output_filename) def analyze(self, writing_output_file=False, output_tables=False, output_graphs=False, dump_varset=None, output_dump=False, output_sqldb=False): """ Conduct tax analysis. Parameters ---------- writing_output_file: boolean whether or not to generate and write output file output_tables: boolean whether or not to generate and write distributional tables to a text file output_graphs: boolean whether or not to generate and write HTML graphs of average and marginal tax rates by income percentile dump_varset: set custom set of variables to include in dump and sqldb output; None implies include all variables in dump and sqldb output output_dump: boolean whether or not to replace standard output with all input and calculated variables using their Tax-Calculator names output_sqldb: boolean whether or not to write SQLite3 database with dump table containing same output as written by output_dump to a csv file Returns ------- Nothing """ # pylint: disable=too-many-arguments,too-many-branches,too-many-locals if self.puf_input_data and self.calc.reform_warnings: warn = 'PARAMETER VALUE WARNING(S): {}\n{}{}' # pragma: no cover print( # pragma: no cover warn.format('(read documentation for each parameter)', self.calc.reform_warnings, 'CONTINUING WITH CALCULATIONS...') ) calc_base_calculated = False self.calc.calc_all() if output_dump or output_sqldb: # might need marginal tax rates (mtr_paytax, mtr_inctax, _) = self.calc.mtr(wrt_full_compensation=False, calc_all_already_called=True) else: # definitely do not need marginal tax rates mtr_paytax = None mtr_inctax = None # extract output if writing_output_file if writing_output_file: self.write_output_file(output_dump, dump_varset, mtr_paytax, mtr_inctax) self.write_doc_file() # optionally write --sqldb output to SQLite3 database if output_sqldb: self.write_sqldb_file(dump_varset, mtr_paytax, mtr_inctax) # optionally write --tables output to text file if output_tables: if not calc_base_calculated: self.calc_base.calc_all() calc_base_calculated = True self.write_tables_file() # optionally write --graphs output to HTML files if output_graphs: if not calc_base_calculated: self.calc_base.calc_all() calc_base_calculated = True self.write_graph_files() def write_output_file(self, output_dump, dump_varset, mtr_paytax, mtr_inctax): """ Write output to CSV-formatted file. """ if output_dump: outdf = self.dump_output(dump_varset, mtr_inctax, mtr_paytax) column_order = sorted(outdf.columns) else: outdf = self.minimal_output() column_order = outdf.columns assert len(outdf.index) == self.calc.array_len outdf.to_csv(self._output_filename, columns=column_order, index=False, float_format='%.2f') del outdf gc.collect() def write_doc_file(self): """ Write reform documentation to text file. """ if len(self.policy_dicts) <= 1: doc = Calculator.reform_documentation(self.param_dict) else: doc = Calculator.reform_documentation(self.param_dict, self.policy_dicts[1:]) doc_fname = self._output_filename.replace('.csv', '-doc.text') with open(doc_fname, 'w') as dfile: dfile.write(doc) def write_sqldb_file(self, dump_varset, mtr_paytax, mtr_inctax): """ Write dump output to SQLite3 database table dump. """ outdf = self.dump_output(dump_varset, mtr_inctax, mtr_paytax) assert len(outdf.index) == self.calc.array_len db_fname = self._output_filename.replace('.csv', '.db') dbcon = sqlite3.connect(db_fname) outdf.to_sql('dump', dbcon, if_exists='replace', index=False) dbcon.close() del outdf gc.collect() def write_tables_file(self): """ Write tables to text file. """ # pylint: disable=too-many-locals tab_fname = self._output_filename.replace('.csv', '-tab.text') # skip tables if there are not some positive weights if self.calc_base.total_weight() <= 0.: with open(tab_fname, 'w') as tfile: msg = 'No tables because sum of weights is not positive\n' tfile.write(msg) return # create list of results for nontax variables # - weights don't change with reform # - expanded_income may change, so always use baseline expanded income nontax_vars = ['s006', 'expanded_income'] nontax = [self.calc_base.array(var) for var in nontax_vars] # create list of results for tax variables from reform Calculator tax_vars = ['iitax', 'payrolltax', 'lumpsum_tax', 'combined'] reform = [self.calc.array(var) for var in tax_vars] # create DataFrame with tax distribution under reform dist = nontax + reform # using expanded_income under baseline policy all_vars = nontax_vars + tax_vars distdf = pd.DataFrame(data=np.column_stack(dist), columns=all_vars) # create DataFrame with tax differences (reform - baseline) base = [self.calc_base.array(var) for var in tax_vars] change = [(reform[idx] - base[idx]) for idx in range(0, len(tax_vars))] diff = nontax + change # using expanded_income under baseline policy diffdf = pd.DataFrame(data=np.column_stack(diff), columns=all_vars) # write each kind of distributional table with open(tab_fname, 'w') as tfile: TaxCalcIO.write_decile_table(distdf, tfile, tkind='Reform Totals') tfile.write('\n') TaxCalcIO.write_decile_table(diffdf, tfile, tkind='Differences') # delete intermediate DataFrame objects del distdf del diffdf gc.collect() @staticmethod def write_decile_table(dfx, tfile, tkind='Totals'): """ Write to tfile the tkind decile table using dfx DataFrame. """ dfx = add_quantile_table_row_variable(dfx, 'expanded_income', 10, decile_details=False, weight_by_income_measure=False) gdfx = dfx.groupby('table_row', as_index=False) rtns_series = gdfx.apply(unweighted_sum, 's006') xinc_series = gdfx.apply(weighted_sum, 'expanded_income') itax_series = gdfx.apply(weighted_sum, 'iitax') ptax_series = gdfx.apply(weighted_sum, 'payrolltax') htax_series = gdfx.apply(weighted_sum, 'lumpsum_tax') ctax_series = gdfx.apply(weighted_sum, 'combined') # write decile table to text file row = 'Weighted Tax {} by Baseline Expanded-Income Decile\n' tfile.write(row.format(tkind)) rowfmt = '{}{}{}{}{}{}\n' row = rowfmt.format(' Returns', ' ExpInc', ' IncTax', ' PayTax', ' LSTax', ' AllTax') tfile.write(row) row = rowfmt.format(' (#m)', ' ($b)', ' ($b)', ' ($b)', ' ($b)', ' ($b)') tfile.write(row) rowfmt = '{:9.2f}{:10.1f}{:10.1f}{:10.1f}{:10.1f}{:10.1f}\n' for decile in range(0, 10): row = '{:2d}'.format(decile) row += rowfmt.format(rtns_series[decile] * 1e-6, xinc_series[decile] * 1e-9, itax_series[decile] * 1e-9, ptax_series[decile] * 1e-9, htax_series[decile] * 1e-9, ctax_series[decile] * 1e-9) tfile.write(row) row = ' A' row += rowfmt.format(rtns_series.sum() * 1e-6, xinc_series.sum() * 1e-9, itax_series.sum() * 1e-9, ptax_series.sum() * 1e-9, htax_series.sum() * 1e-9, ctax_series.sum() * 1e-9) tfile.write(row) del gdfx del rtns_series del xinc_series del itax_series del ptax_series del htax_series del ctax_series gc.collect() def write_graph_files(self): """ Write graphs to HTML files. """ pos_wght_sum = self.calc.total_weight() > 0.0 fig = None # average-tax-rate graph atr_fname = self._output_filename.replace('.csv', '-atr.html') atr_title = 'ATR by Income Percentile' if pos_wght_sum: fig = self.calc_base.atr_graph(self.calc) write_graph_file(fig, atr_fname, atr_title) else: reason = 'No graph because sum of weights is not positive' TaxCalcIO.write_empty_graph_file(atr_fname, atr_title, reason) # marginal-tax-rate graph mtr_fname = self._output_filename.replace('.csv', '-mtr.html') mtr_title = 'MTR by Income Percentile' if pos_wght_sum: fig = self.calc_base.mtr_graph( self.calc, alt_e00200p_text='Taxpayer Earnings') write_graph_file(fig, mtr_fname, mtr_title) else: reason = 'No graph because sum of weights is not positive' TaxCalcIO.write_empty_graph_file(mtr_fname, mtr_title, reason) # percentage-aftertax-income-change graph pch_fname = self._output_filename.replace('.csv', '-pch.html') pch_title = 'PCH by Income Percentile' if pos_wght_sum: fig = self.calc_base.pch_graph(self.calc) write_graph_file(fig, pch_fname, pch_title) else: reason = 'No graph because sum of weights is not positive' TaxCalcIO.write_empty_graph_file(pch_fname, pch_title, reason) if fig: del fig gc.collect() @staticmethod def write_empty_graph_file(fname, title, reason): """ Write HTML graph file with title but no graph for specified reason. """ txt = ('<html>\n' '<head><title>{}</title></head>\n' '<body><center<h1>{}</h1></center></body>\n' '</html>\n').format(title, reason) with open(fname, 'w') as gfile: gfile.write(txt) def minimal_output(self): """ Extract minimal output and return it as Pandas DataFrame. """ varlist = ['RECID', 'YEAR', 'WEIGHT', 'INCTAX', 'LSTAX', 'PAYTAX'] odict = dict() scalc = self.calc odict['RECID'] = scalc.array('RECID') # id for tax filing unit odict['YEAR'] = self.tax_year() # tax calculation year odict['WEIGHT'] = scalc.array('s006') # sample weight odict['INCTAX'] = scalc.array('iitax') # federal income taxes odict['LSTAX'] = scalc.array('lumpsum_tax') # lump-sum tax odict['PAYTAX'] = scalc.array('payrolltax') # payroll taxes (ee+er) odf = pd.DataFrame(data=odict, columns=varlist) return odf def dump_output(self, dump_varset, mtr_inctax, mtr_paytax): """ Extract dump output and return it as Pandas DataFrame. """ if dump_varset is None: varset = Records.USABLE_READ_VARS | Records.CALCULATED_VARS else: varset = dump_varset # create and return dump output DataFrame odf = pd.DataFrame() for varname in varset: vardata = self.calc.array(varname) if varname in Records.INTEGER_VARS: odf[varname] = vardata else: odf[varname] = vardata.round(2) # rounded to nearest cent # specify mtr values in percentage terms if 'mtr_inctax' in varset: odf['mtr_inctax'] = (mtr_inctax * 100).round(2) if 'mtr_paytax' in varset: odf['mtr_paytax'] = (mtr_paytax * 100).round(2) # specify tax calculation year odf['FLPDYR'] = self.tax_year() return odf
def init(self, input_data, tax_year, baseline, reform, assump, aging_input_data, exact_calculations): """ TaxCalcIO class post-constructor method that completes initialization. Parameters ---------- First five are same as the first five of the TaxCalcIO constructor: input_data, tax_year, baseline, reform, assump. aging_input_data: boolean whether or not to extrapolate Records data from data year to tax_year. exact_calculations: boolean specifies whether or not exact tax calculations are done without any smoothing of "stair-step" provisions in the tax law. """ # pylint: disable=too-many-arguments,too-many-locals # pylint: disable=too-many-statements,too-many-branches self.errmsg = '' # get policy parameter dictionary from --baseline file basedict = Calculator.read_json_param_objects(baseline, None) # get assumption sub-dictionaries paramdict = Calculator.read_json_param_objects(None, assump) # get policy parameter dictionaries from --reform file(s) policydicts = list() if self.specified_reform: reforms = reform.split('+') for ref in reforms: pdict = Calculator.read_json_param_objects(ref, None) policydicts.append(pdict['policy']) paramdict['policy'] = policydicts[0] # remember parameters for reform documentation self.param_dict = paramdict self.policy_dicts = policydicts # create gdiff_baseline object gdiff_baseline = GrowDiff() try: gdiff_baseline.update_growdiff(paramdict['growdiff_baseline']) except ValueError as valerr_msg: self.errmsg += valerr_msg.__str__() # create GrowFactors base object that incorporates gdiff_baseline gfactors_base = GrowFactors() gdiff_baseline.apply_to(gfactors_base) # specify gdiff_response object gdiff_response = GrowDiff() try: gdiff_response.update_growdiff(paramdict['growdiff_response']) except ValueError as valerr_msg: self.errmsg += valerr_msg.__str__() # create GrowFactors ref object that has all gdiff objects applied gfactors_ref = GrowFactors() gdiff_baseline.apply_to(gfactors_ref) gdiff_response.apply_to(gfactors_ref) # create Policy objects: # ... the baseline Policy object base = Policy(gfactors=gfactors_base) try: base.implement_reform(basedict['policy'], print_warnings=False, raise_errors=False) self.errmsg += base.parameter_errors except ValueError as valerr_msg: self.errmsg += valerr_msg.__str__() # ... the reform Policy object if self.specified_reform: pol = Policy(gfactors=gfactors_ref) for poldict in policydicts: try: pol.implement_reform(poldict, print_warnings=False, raise_errors=False) self.errmsg += pol.parameter_errors except ValueError as valerr_msg: self.errmsg += valerr_msg.__str__() else: pol = Policy(gfactors=gfactors_base) # create Consumption object con = Consumption() try: con.update_consumption(paramdict['consumption']) except ValueError as valerr_msg: self.errmsg += valerr_msg.__str__() # check for valid tax_year value if tax_year < pol.start_year: msg = 'tax_year {} less than policy.start_year {}' msg = msg.format(tax_year, pol.start_year) self.errmsg += 'ERROR: {}\n'.format(msg) if tax_year > pol.end_year: msg = 'tax_year {} greater than policy.end_year {}' msg = msg.format(tax_year, pol.end_year) self.errmsg += 'ERROR: {}\n'.format(msg) # any errors imply cannot proceed with calculations if self.errmsg: return # set policy to tax_year pol.set_year(tax_year) base.set_year(tax_year) # read input file contents into Records objects if aging_input_data: if self.cps_input_data: recs = Records.cps_constructor( gfactors=gfactors_ref, exact_calculations=exact_calculations ) recs_base = Records.cps_constructor( gfactors=gfactors_base, exact_calculations=exact_calculations ) else: # if not cps_input_data but aging_input_data recs = Records( data=input_data, gfactors=gfactors_ref, exact_calculations=exact_calculations ) recs_base = Records( data=input_data, gfactors=gfactors_base, exact_calculations=exact_calculations ) else: # input_data are raw data that are not being aged recs = Records(data=input_data, gfactors=None, exact_calculations=exact_calculations, weights=None, adjust_ratios=None, start_year=tax_year) recs_base = copy.deepcopy(recs) if tax_year < recs.data_year: msg = 'tax_year {} less than records.data_year {}' msg = msg.format(tax_year, recs.data_year) self.errmsg += 'ERROR: {}\n'.format(msg) # create Calculator objects self.calc = Calculator(policy=pol, records=recs, verbose=True, consumption=con, sync_years=aging_input_data) self.calc_base = Calculator(policy=base, records=recs_base, verbose=False, consumption=con, sync_years=aging_input_data)
def generate_policy_revenues(): from taxcalc.growfactors import GrowFactors from taxcalc.policy import Policy from taxcalc.records import Records from taxcalc.gstrecords import GSTRecords from taxcalc.corprecords import CorpRecords from taxcalc.parameters import ParametersBase from taxcalc.calculator import Calculator """ for num in range(1, num_reforms): block_selected_dict[num]['selected_item']= block_widget_dict[num][1].get() block_selected_dict[num]['selected_value']= block_widget_dict[num][3].get() block_selected_dict[num]['selected_year']= block_widget_dict[num][2].get() print(block_selected_dict) """ f = open('reform.json') block_selected_dict = json.load(f) print("block_selected_dict from json",block_selected_dict) #print(block_selected_dict) # create Records object containing pit.csv and pit_weights.csv input data #print("growfactors filename ", growfactors_filename) #recs = Records(data=data_filename, weights=weights_filename, gfactors=GrowFactors(growfactors_filename=growfactors_filename)) #recs = Records(data=data_filename, weights=weights_filename, gfactors=GrowFactors(growfactors_filename=growfactors_filename)) #recs.increment_year1(3.0) #grecs = GSTRecords() f = open('global_vars.json') vars = json.load(f) print("data_filename: ", vars['cit_data_filename']) print("weights_filename: ", vars['cit_weights_filename']) print("growfactors_filename: ", vars['GROWFACTORS_FILENAME']) print("policy_filename: ", vars['DEFAULTS_FILENAME']) # create CorpRecords object using cross-section data #crecs1 = CorpRecords(data='cit_cross.csv', weights='cit_cross_wgts1.csv') crecs1 = CorpRecords(data=vars['cit_data_filename'], weights=vars['cit_weights_filename'], gfactors=GrowFactors(growfactors_filename=vars['GROWFACTORS_FILENAME'])) #crecs1 = CorpRecords(data=vars['cit_weights_filename'], weights=vars['cit_weights_filename']) # Note: weights argument is optional assert isinstance(crecs1, CorpRecords) assert crecs1.current_year == 2017 # create Policy object containing current-law policy pol = Policy(DEFAULTS_FILENAME=vars['DEFAULTS_FILENAME']) # specify Calculator objects for current-law policy #calc1 = Calculator(policy=pol, records=recs, corprecords=crecs1, # gstrecords=grecs, verbose=False) calc1 = Calculator(policy=pol, corprecords=crecs1, verbose=False) #calc1.increment_year1(3.8) assert isinstance(calc1, Calculator) assert calc1.current_year == 2017 np.seterr(divide='ignore', invalid='ignore') pol2 = Policy(DEFAULTS_FILENAME=vars['DEFAULTS_FILENAME']) years, reform=read_reform_dict(block_selected_dict) print("reform dictionary: ",reform) #reform = Calculator.read_json_param_objects('app01_reform.json', None) pol2.implement_reform(reform['policy']) #calc2 = Calculator(policy=pol2, records=recs, corprecords=crecs1, # gstrecords=grecs, verbose=False) calc2 = Calculator(policy=pol2, corprecords=crecs1, verbose=False) pit_adjustment_factor={} revenue_dict_cit={} revenue_amount_dict = {} calc1.calc_all() for year in range(2019, 2024): cols = [] calc1.advance_to_year(year) calc2.advance_to_year(year) # NOTE: calc1 now contains a PRIVATE COPY of pol and a PRIVATE COPY of recs, # so we can continue to use pol and recs in this script without any # concern about side effects from Calculator method calls on calc1. # Produce DataFrame of results using the calculator # First run the calculator for the corporate income tax calc1.calc_all() print("***** Year ", year) weighted_citax1 = calc1.weighted_total_cit('citax') citax_collection_billions1 = weighted_citax1/10**9 citax_collection_str1 = '{0:.2f}'.format(citax_collection_billions1) print("The CIT Collection in billions is: ", citax_collection_billions1) # Produce DataFrame of results using cross-section calc2.calc_all() weighted_citax2 = calc2.weighted_total_cit('citax') citax_collection_billions2 = weighted_citax2/10**9 citax_collection_str2 = '{0:.2f}'.format(citax_collection_billions2) # This is the difference in the collection due to the reform # This amount will now be allocated to dividends of PIT citax_diff_collection_billions2 = (citax_collection_billions2-citax_collection_billions1) citax_diff_collection_str2 = '{0:.2f}'.format(citax_diff_collection_billions2) print("The CIT Collection after reform billions is: ", citax_collection_billions2) print("The difference in CIT Collection in billions is: ", citax_diff_collection_billions2) # Process of allocation of difference in CIT profits to PIT # in the form of Dividends # Dividends in this case is reported as Income from Other Sources # TOTAL_INCOME_OS in the PIT form # First get the unadjusted amounts # Now calculate the adjusted amounts # contribution to PIT Dividends proportion_change_dividend = (weighted_citax1 - weighted_citax2)/weighted_citax1 new_dividend_proportion_of_old = (1 + proportion_change_dividend) pit_adjustment_factor[year]=new_dividend_proportion_of_old # Store Results revenue_dict_cit[year]={} revenue_dict_cit[year]['current_law']=citax_collection_str1 revenue_dict_cit[year]['reform']=citax_collection_str2 revenue_dict_cit[year]['difference']=citax_diff_collection_str2 print(revenue_dict_cit) print("new_dividend_proportion_of_old ", pit_adjustment_factor) # now update pit.csv with this proportion # start a new round of simulation for pit recs = Records(data=vars['pit_data_filename'], weights=vars['pit_weights_filename'], gfactors=GrowFactors(growfactors_filename=vars['GROWFACTORS_FILENAME'])) # create Policy object containing current-law policy pol = Policy(DEFAULTS_FILENAME=vars['DEFAULTS_FILENAME']) # specify Calculator objects for current-law policy #calc1 = Calculator(policy=pol, records=recs, corprecords=crecs1, # gstrecords=grecs, verbose=False) calc1 = Calculator(policy=pol, records=recs, verbose=False) #calc1.increment_year1(3.8) assert isinstance(calc1, Calculator) assert calc1.current_year == 2017 np.seterr(divide='ignore', invalid='ignore') pol2 = Policy(DEFAULTS_FILENAME=vars['DEFAULTS_FILENAME']) #years, reform=read_reform_dict(block_selected_dict) #print("reform dictionary: ", reform) #reform = Calculator.read_json_param_objects('app01_reform.json', None) pol2.implement_reform(reform['policy']) #calc2 = Calculator(policy=pol2, records=recs, corprecords=crecs1, # gstrecords=grecs, verbose=False) calc2 = Calculator(policy=pol2, records=recs, verbose=False) total_revenue_text={} reform_revenue_text={} revenue_dict_pit={} revenue_amount_dict = {} num = 1 first_time = True i=1 j=0 #rows = [] window = tk.Toplevel() window.geometry("800x400+140+140") display_table(window, revenue_dict_cit, revenue_dict_pit, header=True) #for year in range(years[0], years[-1]+1): for year in range(2019, 2024): cols = [] calc1.advance_to_year(year) calc2.advance_to_year(year) # NOTE: calc1 now contains a PRIVATE COPY of pol and a PRIVATE COPY of recs, # so we can continue to use pol and recs in this script without any # concern about side effects from Calculator method calls on calc1. # Produce DataFrame of results using the calculator # First run the calculator for the corporate income tax calc1.calc_all() weighted_pitax1 = calc1.weighted_total_pit('pitax') pitax_collection_billions1 = weighted_pitax1/10**9 pitax_collection_str1 = '{0:.2f}'.format(pitax_collection_billions1) print('\n\n\n') print(f'TAX COLLECTION FOR THE YEAR - {year} \n') print("The PIT Collection in billions is: ", pitax_collection_billions1) #total_revenue_text[year] = "PIT COLLECTION UNDER CURRENT LAW FOR THE YEAR - " + str(year)+" : "+str(pitax_collection_str1)+" bill" # Produce DataFrame of results using cross-section calc2.calc_all() weighted_pitax2 = calc2.weighted_total_pit('pitax') pitax_collection_billions2 = weighted_pitax2/10**9 pitax_collection_str2 = '{0:.2f}'.format(pitax_collection_billions2) pitax_diff_collection_billions2 = (pitax_collection_billions2-pitax_collection_billions1) pitax_diff_collection_str2 = '{0:.2f}'.format(pitax_diff_collection_billions2) # Now calculate the adjusted amounts # contribution to PIT Dividends print("Total Income from Other Sources (bill) no adjustment is ", calc2.weighted_total_pit('TOTAL_INCOME_OS')/10**9 ) calc2.adjust_pit(pit_adjustment_factor[year]) print("Total Income from Other Sources (bill) after adjustment is ", calc2.weighted_total_pit('TOTAL_INCOME_OS')/10**9 ) calc2.calc_all() weighted_pitax3 = calc2.weighted_total_pit('pitax') pitax_collection_billions3 = weighted_pitax3/10**9 pitax_collection_str3 = '{0:.2f}'.format(pitax_collection_billions3) pitax_diff_collection_billions3 = (pitax_collection_billions3-pitax_collection_billions1) pitax_diff_collection_str3 = '{0:.2f}'.format(pitax_diff_collection_billions3) pitax_diff_collection_billions4 = (pitax_collection_billions3-pitax_collection_billions2) pitax_diff_collection_str4 = '{0:.2f}'.format(pitax_diff_collection_billions4) #save the results revenue_dict_pit[year]={} revenue_dict_pit[year]['current_law']=pitax_collection_str1 revenue_dict_pit[year]['reform']={} revenue_dict_pit[year]['reform']['unadjusted']=pitax_collection_str2 revenue_dict_pit[year]['reform']['adjusted']=pitax_collection_str3 revenue_dict_pit[year]['difference']=pitax_diff_collection_str3 print('\n\n\n') print(f'TAX COLLECTION FOR THE YEAR UNDER REFORM - {year} \n') print("The PIT Collection in billions is: ", pitax_collection_billions2) print("The difference in PIT Collection in billions is: ", pitax_diff_collection_billions2) print('****AFTER ADJUSTMENT \n\n\n') print('TAX COLLECTION FOR THE YEAR UNDER REFORM WITH ADJUSTMENT \n') print("The PIT Collection in billions after adjusting for the impact of CIT is: ", pitax_collection_billions3) print("The difference in PIT Collection in billions after adjusting for the impact of CIT is: ", pitax_diff_collection_billions3) print("The impact of adjustment is: ", pitax_diff_collection_billions4) display_table(window, revenue_dict_cit, revenue_dict_pit, year=year, row=i) i=i+1 #reverse the adjustment to obtain baseline calc2.adjust_pit(1/pit_adjustment_factor[year]) display_table(window, revenue_dict_cit, revenue_dict_pit, footer=i) """
def generate_revenues(): from taxcalc.growfactors import GrowFactors from taxcalc.policy import Policy from taxcalc.records import Records from taxcalc.gstrecords import GSTRecords from taxcalc.corprecords import CorpRecords from taxcalc.parameters import ParametersBase from taxcalc.calculator import Calculator """ for num in range(1, num_reforms): block_selected_dict[num]['selected_item']= block_widget_dict[num][1].get() block_selected_dict[num]['selected_value']= block_widget_dict[num][3].get() block_selected_dict[num]['selected_year']= block_widget_dict[num][2].get() print(block_selected_dict) """ f = open('reform.json') block_selected_dict = json.load(f) print("block_selected_dict from json", block_selected_dict) #print(block_selected_dict) # create Records object containing pit.csv and pit_weights.csv input data #print("growfactors filename ", growfactors_filename) #recs = Records(data=data_filename, weights=weights_filename, gfactors=GrowFactors(growfactors_filename=growfactors_filename)) #recs = Records(data=data_filename, weights=weights_filename, gfactors=GrowFactors(growfactors_filename=growfactors_filename)) #recs.increment_year1(3.0) #grecs = GSTRecords() f = open('global_vars.json') vars = json.load(f) print("data_filename: ", vars['cit_data_filename']) print("weights_filename: ", vars['cit_weights_filename']) print("growfactors_filename: ", vars['GROWFACTORS_FILENAME']) print("policy_filename: ", vars['DEFAULTS_FILENAME']) # create CorpRecords object using cross-section data #crecs1 = CorpRecords(data='cit_cross.csv', weights='cit_cross_wgts1.csv') crecs1 = CorpRecords( data=vars['cit_data_filename'], weights=vars['cit_weights_filename'], gfactors=GrowFactors( growfactors_filename=vars['GROWFACTORS_FILENAME'])) #crecs1 = CorpRecords(data=vars['cit_weights_filename'], weights=vars['cit_weights_filename']) # Note: weights argument is optional assert isinstance(crecs1, CorpRecords) assert crecs1.current_year == 2017 # create Policy object containing current-law policy pol = Policy(DEFAULTS_FILENAME=vars['DEFAULTS_FILENAME']) # specify Calculator objects for current-law policy #calc1 = Calculator(policy=pol, records=recs, corprecords=crecs1, # gstrecords=grecs, verbose=False) calc1 = Calculator(policy=pol, corprecords=crecs1, verbose=False) #calc1.increment_year1(3.8) assert isinstance(calc1, Calculator) assert calc1.current_year == 2017 np.seterr(divide='ignore', invalid='ignore') calc1.calc_all() revenue_dict_cit = {} for year in range(2019, 2024): cols = [] calc1.advance_to_year(year) # NOTE: calc1 now contains a PRIVATE COPY of pol and a PRIVATE COPY of recs, # so we can continue to use pol and recs in this script without any # concern about side effects from Calculator method calls on calc1. # Produce DataFrame of results using the calculator # First run the calculator for the corporate income tax calc1.calc_all() print("***** Year ", year) weighted_citax1 = calc1.weighted_total_cit('citax') citax_collection_billions1 = weighted_citax1 / 10**9 citax_collection_str1 = '{0:.2f}'.format(citax_collection_billions1) print("The CIT Collection in billions is: ", citax_collection_billions1) # Store Results revenue_dict_cit[year] = {} revenue_dict_cit[year]['current_law'] = citax_collection_str1 # start a new round of simulation for pit recs = Records(data=vars['pit_data_filename'], weights=vars['pit_weights_filename'], gfactors=GrowFactors( growfactors_filename=vars['GROWFACTORS_FILENAME'])) # create Policy object containing current-law policy pol = Policy(DEFAULTS_FILENAME=vars['DEFAULTS_FILENAME']) # specify Calculator objects for current-law policy #calc1 = Calculator(policy=pol, records=recs, corprecords=crecs1, # gstrecords=grecs, verbose=False) calc1 = Calculator(policy=pol, records=recs, verbose=False) #calc1.increment_year1(3.8) assert isinstance(calc1, Calculator) assert calc1.current_year == 2017 np.seterr(divide='ignore', invalid='ignore') total_revenue_text = {} reform_revenue_text = {} revenue_dict_pit = {} revenue_amount_dict = {} num = 1 first_time = True i = 1 j = 0 #rows = [] window = tk.Toplevel() window.geometry("800x400+140+140") display_table(window, revenue_dict_cit, revenue_dict_pit, header=True) #for year in range(years[0], years[-1]+1): for year in range(2019, 2024): cols = [] calc1.advance_to_year(year) # NOTE: calc1 now contains a PRIVATE COPY of pol and a PRIVATE COPY of recs, # so we can continue to use pol and recs in this script without any # concern about side effects from Calculator method calls on calc1. # Produce DataFrame of results using the calculator # First run the calculator for the corporate income tax calc1.calc_all() weighted_pitax1 = calc1.weighted_total_pit('pitax') pitax_collection_billions1 = weighted_pitax1 / 10**9 pitax_collection_str1 = '{0:.2f}'.format(pitax_collection_billions1) print('\n\n\n') print(f'TAX COLLECTION FOR THE YEAR - {year} \n') print("The PIT Collection in billions is: ", pitax_collection_billions1) #total_revenue_text[year] = "PIT COLLECTION UNDER CURRENT LAW FOR THE YEAR - " + str(year)+" : "+str(pitax_collection_str1)+" bill" #save the results revenue_dict_pit[year] = {} revenue_dict_pit[year]['current_law'] = pitax_collection_str1 display_table(window, revenue_dict_cit, revenue_dict_pit, year=year, row=i) i = i + 1 display_table(window, revenue_dict_cit, revenue_dict_pit, footer=i) """