def get_cluster_graph(self, df_result, label): gv = GraphVisualizer() gv.set_plotly() data_meta_list = [] for i in OrderedDict.fromkeys(df_result[label]): content_label_list = [] for content_label in df_result[df_result.predict == i]["content"]: if len(content_label) > 30: content_label = content_label[:30] + "..." content_label_list.append(content_label) else: content_label_list.append(content_label) data_meta = { "data_name": i, "x_data": df_result[df_result[label] == i]["x"], "y_data": df_result[df_result[label] == i]["y"], "label": content_label_list } data_meta_list.append(data_meta) graph_meta = { "title": "Cluter Graph - " + label, "x_name": "TSNE X", "y_name": "TSNE Y" } return gv.draw_scatter(data_meta_list, graph_meta)
def get_kmeans_graph(self, df_result, label): gv = GraphVisualizer() gv.set_plotly() data_meta_list = [] for predict in list(OrderedDict.fromkeys(df_result[label])): data_meta = { "data_name": predict, "x_data": df_result[df_result[label]==predict]["x"], "y_data": df_result[df_result[label]==predict]["y"], "label": predict } data_meta_list.append(data_meta) graph_meta = { "title": "K-Means Clutering Graph - " + label, "x_name": "TSNE X", "y_name": "TSNE Y" } return gv.draw_scatter(data_meta_list, graph_meta)