except Exception as e: print(e) sys.exit() average_elapsed_time = np.sum(elapsed_times) / (TEST_TRIAL * batch_num) result[lr][node] = average_elapsed_time print( '[Resolution: Size ({}x{}), OutputNode: {}] / Inference time per frame(sec) {} / Max-Min(sec) {}' .format( t_w, t_h, node, round(average_elapsed_time, 4), round( np.max(elapsed_times) - np.min(elapsed_times), 4))) for node in self.output_nodes: log = '' log += '{}\t'.format(node) for lr in self.node2res[node]: log += '{}\t'.format(round(result[lr][node], 4)) summary_logger.info(log) if __name__ == "__main__": model = MultiNetwork(template.get_nas_config(opt.quality)) dataset = DatasetForDASH(opt) evaluator = Tester(opt, model, dataset) #evaluator.evaluate_quality() evaluator.evaluate_runtime()
for i in range(idx): res = self.body[i](res) res = self.body_end(res) res += x if self.scale > 1: x = self.upscale(res) else: x = res x = self.tail(x) return x if __name__ == "__main__": """Simple test code for model""" model = MultiNetwork(template.get_nas_config('low')).to('cuda:0') model.setTargetScale(4) dataset = DatasetForDASH(opt) dataset.setTargetLR(240) dataset.setDatasetType('train') #print(len(dataset)) #print(model.getOutputNodes(4)) dataloader = data.DataLoader(dataset=dataset, num_workers=opt.num_thread, batch_size=opt.num_batch, pin_memory=True, shuffle=True) for iteration, batch in enumerate(dataloader): batch[0] = batch[0].cuda() output = model(batch[0]) print(batch[0].size(), output.size()) break