예제 #1
0
import tensiga.utils.varmeshes as varmeshes
from tensiga.quadrature.glnint import glnint
from tensiga.fredholm.HilbertSchmidtKern import expkernop as cov
from tensiga.fredholm.assembly.ApproxGalerkin import ApproxGalerkin

# init geometry
domain = varmeshes.QuarterAnnulus2D(1., 0.6)
idomain = varmeshes.QuarterAnnulus2D(1., 0.6)

# refine the spline object
for k in range(domain.dim):
    domain.href(np.linspace(0, 1, 30)[1:-1], k)
    idomain.href(np.linspace(0, 1, 30)[1:-1], k)

# compute global quadrature rule
quadrature = glnint(domain.kv, domain.deg + np.array([1, 1]))

# define data struct for covariance kernel (:sig:, :b:, :L:)
cov_data = np.array([1., .5, 1.])

# initialize method
method = ApproxGalerkin(domain, idomain, quadrature, cov, cov_data)

# formation and assembly
A, B = method.direct()

# solution
neigs = 3
lambda_h, f_h = eigsh(A, neigs, B)  # ordered smallest to highest
method.normalize_ev(f_h)
예제 #2
0
파일: Bspline.py 프로젝트: m1ka05/tensiga
    ctrlpts = [
        np.array([[1.0, 0.6], [1.0, 0.6], [0.0, 0.0]]),  # x
        np.array([[0.0, 0.0], [1.0, 0.6], [1.0, 0.6]])
    ]  # z

    # init primitive spline object
    spline = Bspline(dim, codim, kv, deg, ctrlpts)

    # refine the spline object
    u = np.linspace(0, 1, 20)[1:-1]
    v = np.linspace(0, 1, 6)[1:-1]
    spline.href(u, 0)
    spline.href(v, 1)

    # get the integration rule
    quadrature = glnint(spline.kv, spline.deg + np.array([1, 1]))
    xip = spline.eval(quadrature.ip, 0)
    yip = spline.eval(quadrature.ip, 1)

    # compute jacobian
    J = spline.jacobian(quadrature.ip)

    # compute geometry
    ep = spline.kv
    x = spline.eval(ep, 0)
    y = spline.eval(ep, 1)

    # plot
    plt.pcolor(x, y, np.sqrt(x**2 + y**2), edgecolor='black')
    plt.plot(xip, yip, 'ko', markersize=1)
    plt.show()
예제 #3
0
ep = [np.unique(kv) for kv in domain.kv]
x, y, z = [domain.eval(ep, k) for k in range(domain.dim)]
''' # plot mesh
plotter = pv.Plotter()
mesh = pv.StructuredGrid(x, y, z)
plotter.add_mesh(mesh, show_edges=False)
plotter.show_axes()
plotter.view_xy()
plotter.show()

'''

print(domain.nelem())

# compute global quadrature rule
quadrature = glnint(domain.kv, domain.deg + np.array([2, 2, 2]))

# define data struct for covariance kernel (:sig:, :b:, :L:)
cov_data = np.array([1., 0.5, 10.])

# initialize method
method = Galerkin(domain, quadrature, cov, cov_data)

# formation and assembly
A, B = method._nurbs_direct_elementwise()
Aref, Bref = method._bspline_direct_elementwise()

# solution
neigs = 10
lambda_h, f_h = eigsh(A, neigs, B)  # ordered smallest to highest