def testAttention1D(self): batch = 5 target_length = 7 source_length = 13 source_depth = 9 target_depth = 11 attention_size = 21 output_size = 15 num_heads = 7 source = np.random.rand(batch, source_length, source_depth) target = np.random.rand(batch, target_length, target_depth) mask = np.random.rand(batch, target_length, source_length) with self.test_session() as session: a = common_layers.attention_1d_v0( tf.constant(source, dtype=tf.float32), tf.constant(target, dtype=tf.float32), attention_size, output_size, num_heads, tf.constant(mask, dtype=tf.float32)) session.run(tf.global_variables_initializer()) res = session.run(a) self.assertEqual(res.shape, (batch, target_length, output_size))