def main(_): # gym.logger.set_level(gym.logger.DEBUG) hparams = registry.hparams(FLAGS.loop_hparams_set) hparams.parse(FLAGS.loop_hparams) # Not important for experiments past 2018 if "wm_policy_param_sharing" not in hparams.values().keys(): hparams.add_hparam("wm_policy_param_sharing", False) directories = player_utils.infer_paths(output_dir=FLAGS.output_dir, world_model=FLAGS.wm_dir, policy=FLAGS.policy_dir, data=FLAGS.episodes_data_dir) epoch = FLAGS.epoch if FLAGS.epoch == "last" else int(FLAGS.epoch) if FLAGS.simulated_env: env = player_utils.load_data_and_make_simulated_env( directories["data"], directories["world_model"], hparams, which_epoch_data=epoch) else: env = player_utils.setup_and_load_epoch(hparams, data_dir=directories["data"], which_epoch_data=epoch) env = FlatBatchEnv(env) env = PlayerEnvWrapper(env) # pylint: disable=redefined-variable-type env = player_utils.wrap_with_monitor(env, FLAGS.video_dir) if FLAGS.dry_run: for _ in range(5): env.reset() for i in range(50): env.step(i % 3) env.step(PlayerEnvWrapper.RESET_ACTION) # reset return play.play(env, zoom=FLAGS.zoom, fps=FLAGS.fps)
class SimulatedGymEnv(gym.Env): """Gym environment, running with world model. Allows passing custom initial frames. Examples: Setup simulated env from some point of real rollout. >>> sim_env = SimulatedGymEnv(setable_initial_frames=True, **kwargs) >>> real_env = FlatBatchEnv(T2TGymEnv(...)) >>> while ...: >>> ob, _, _, _ = real_env.step(action) >>> sim_env.add_to_initial_stack(ob) >>> sim_env.reset() >>> # Continue sim_env rollout. """ def __init__(self, real_env, world_model_dir, hparams, random_starts, setable_initial_frames=False): """Init. Args: real_env: gym environment. world_model_dir: path to world model checkpoint directory. hparams: hparams for rlmb pipeline. random_starts: if restart world model from random frames, or only from initial ones (from beginning of episodes). Valid only when `setable_initial_fames` set to False. setable_initial_frames: if True, initial_frames for world model should be set by `add_to_initial_stack`. """ self._setable_initial_frames = setable_initial_frames if self._setable_initial_frames: real_obs_shape = real_env.observation_space.shape shape = (1, hparams.frame_stack_size) + real_obs_shape self._initial_frames = np.zeros(shape=shape, dtype=np.uint8) def initial_frame_chooser(batch_size): assert batch_size == 1 return self._initial_frames else: initial_frame_chooser = rl_utils.make_initial_frame_chooser( real_env, hparams.frame_stack_size, simulation_random_starts=random_starts, simulation_flip_first_random_for_beginning=False) env_fn = make_simulated_env_fn_from_hparams( real_env, hparams, batch_size=1, initial_frame_chooser=initial_frame_chooser, model_dir=world_model_dir, ) env = env_fn(in_graph=False) self.env = FlatBatchEnv(env) self.observation_space = self.env.observation_space self.action_space = self.env.action_space def reset(self): return self.env.reset() def step(self, action): return self.env.step(action) def add_to_initial_stack(self, frame): """Adds new frame to (initial) frame stack, removes last one.""" if not self._setable_initial_frames: raise ValueError( "This instance does not allow to manually set initial frame stack." ) assert_msg = "{}, {}".format(frame.shape, self._initial_frames.shape[:1]) assert frame.shape == self._initial_frames.shape[2:], assert_msg initial_frames = np.roll(self._initial_frames, shift=-1, axis=1) initial_frames[0, -1, ...] = frame self._initial_frames = initial_frames