예제 #1
0
파일: __init__.py 프로젝트: Alewep/REETM
 def cell_create(self, scope_name):
     with tf.compat.v1.variable_scope(scope_name):
         if self.cell_type == 'tanh':
             cells = rnn.MultiRNNCell([
                 rnn.BasicRNNCell(self.n_hidden[i])
                 for i in range(self.n_layers)
             ],
                                      state_is_tuple=True)
         elif self.cell_type == 'LSTM':
             cells = rnn.MultiRNNCell([
                 rnn.BasicLSTMCell(self.n_hidden[i])
                 for i in range(self.n_layers)
             ],
                                      state_is_tuple=True)
         elif self.cell_type == 'GRU':
             cells = rnn.MultiRNNCell([
                 rnn.GRUCell(self.n_hidden[i]) for i in range(self.n_layers)
             ],
                                      state_is_tuple=True)
         elif self.cell_type == 'LSTMP':
             cells = rnn.MultiRNNCell([
                 rnn.LSTMCell(self.n_hidden[i])
                 for i in range(self.n_layers)
             ],
                                      state_is_tuple=True)
         cells = rnn.DropoutWrapper(cells,
                                    input_keep_prob=self.dropout_ph,
                                    output_keep_prob=self.dropout_ph)
     return cells
예제 #2
0
파일: bigru.py 프로젝트: morningD/GrouProx
    def create_model(self, optimizer):
        features = tf.placeholder(tf.int32, [None, self.seq_len], name='features')
        labels = tf.placeholder(tf.int64, [None,], name='labels')

        embs = tf.Variable(self.emb_arr, dtype=tf.float32, trainable=False)
        x = tf.nn.embedding_lookup(embs, features)
        
        forward_cell1, backward_cell1  = rnn.BasicGRUCell(64), rnn.BasicGRUCell(64)
        forward_cell2, backward_cell2  = rnn.BasicGRUCell(32), rnn.BasicGRUCell(32)
        (birnn_fw1, birnn_bw1), _, _ = dynamic_birnn(forward_cell1, backward_cell1, x, dtype=tf.float32)
        print("shape:", birnn_fw1.shape, birnn_bw1.shape)
        stacked_lstm = rnn.MultiRNNCell(
            [rnn.BasicLSTMCell(self.n_hidden) for _ in range(2)])
        outputs, _ = tf.nn.dynamic_rnn(stacked_lstm, x, dtype=tf.float32)
        fc1 = tf.layers.dense(inputs=outputs[:,-1,:], units=30)
        pred = tf.squeeze(tf.layers.dense(inputs=fc1, units=1))
        
        loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=labels, logits=pred)
        #optimizer = tf.train.AdamOptimizer(learning_rate=self.lr)
        grads_and_vars = optimizer.compute_gradients(loss)
        grads, _ = zip(*grads_and_vars)
        train_op = optimizer.apply_gradients(grads_and_vars, global_step=tf.train.get_global_step())
        
        correct_pred = tf.equal(tf.to_int64(tf.greater(pred,0)), labels)
        eval_metric_ops = tf.count_nonzero(correct_pred)
        
        return features, labels, train_op, grads, eval_metric_ops, loss
예제 #3
0
    def create_model(self, optimizer):
        features = tf.placeholder(tf.int32, [None, self.seq_len])
        embedding = tf.get_variable("embedding", [self.num_classes, 8])
        x = tf.nn.embedding_lookup(embedding, features)
        labels = tf.placeholder(tf.int32, [None, self.num_classes])

        stacked_lstm = rnn.MultiRNNCell(
            [rnn.BasicLSTMCell(self.n_hidden) for _ in range(2)])
        outputs, _ = tf.nn.dynamic_rnn(stacked_lstm, x, dtype=tf.float32)
        pred = tf.layers.dense(inputs=outputs[:, -1, :],
                               units=self.num_classes)

        loss = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred,
                                                       labels=labels))

        grads_and_vars = optimizer.compute_gradients(loss)
        grads, _ = zip(*grads_and_vars)
        train_op = optimizer.apply_gradients(
            grads_and_vars, global_step=tf.train.get_global_step())

        correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(labels, 1))
        eval_metric_ops = tf.count_nonzero(correct_pred)

        return features, labels, train_op, grads, eval_metric_ops, loss
예제 #4
0
    def __init__(self, dim_bert, rnn_size, rnn_layer, batch_size,
                 input_embedding_size, dim_hidden, max_words_d,
                 vocabulary_size_d, drop_out_rate, method):
        self.dim_bert = dim_bert
        self.rnn_size = rnn_size
        self.rnn_layer = rnn_layer
        self.batch_size = batch_size
        self.input_embedding_size = input_embedding_size
        self.dim_hidden = dim_hidden
        self.max_words_d = max_words_d
        self.vocabulary_size_d = vocabulary_size_d
        self.drop_out_rate = drop_out_rate
        self.method = method

        if self.method == 'lstm':
            # print("\nmethod: {}\n".format(self.method))
            # description-embedding
            self.embed_desc_W = tf.Variable(tf.random.uniform(
                [self.vocabulary_size_d, self.input_embedding_size], -0.08,
                0.08),
                                            name='embed_desc_W')

            # encoder: RNN body
            self.lstm_1_d = rnn_cell.LSTMCell(rnn_size,
                                              input_embedding_size,
                                              state_is_tuple=False)
            self.lstm_dropout_1_d = rnn_cell.DropoutWrapper(
                self.lstm_1_d, output_keep_prob=1 - self.drop_out_rate)
            self.lstm_2_d = rnn_cell.LSTMCell(rnn_size,
                                              rnn_size,
                                              state_is_tuple=False)
            self.lstm_dropout_2_d = rnn_cell.DropoutWrapper(
                self.lstm_2_d, output_keep_prob=1 - self.drop_out_rate)
            self.stacked_lstm_d = rnn_cell.MultiRNNCell(
                [self.lstm_dropout_1_d, self.lstm_dropout_2_d])

            # description state-embedding
            self.embed_state_desc_W = tf.Variable(tf.random.uniform(
                [2 * rnn_size * rnn_layer, self.dim_hidden], -0.08, 0.08),
                                                  name='embed_state_desc_W')
        elif self.method == 'bert':
            # print("\nmethod: {}\n".format(self.method))
            # description state-embedding
            self.embed_state_desc_W = tf.Variable(tf.random.uniform(
                [dim_bert, self.dim_hidden], -0.08, 0.08),
                                                  name='embed_state_desc_W')

        self.embed_state_desc_b = tf.Variable(tf.random.uniform(
            [self.dim_hidden], -0.08, 0.08),
                                              name='embed_state_desc_b')

        # score embedding
        self.embed_score_W = tf.Variable(tf.random.uniform(
            [dim_hidden, vocabulary_size_d], -0.08, 0.08),
                                         name='embed_score_W')
        self.embed_score_b = tf.Variable(tf.random.uniform([vocabulary_size_d],
                                                           -0.08, 0.08),
                                         name='embed_score_b')
예제 #5
0
    def __init__(self, rnn_size, rnn_layer, batch_size, input_embedding_size, dim_image, dim_hidden, max_words_q, vocabulary_size, max_words_d, vocabulary_size_d, drop_out_rate, num_output):
        self.rnn_size = rnn_size
        self.rnn_layer = rnn_layer
        self.batch_size = batch_size
        self.input_embedding_size = input_embedding_size
        self.dim_image = dim_image
        self.dim_hidden = dim_hidden
        self.max_words_q = max_words_q
        self.vocabulary_size = vocabulary_size
        self.max_words_d = max_words_d
        self.vocabulary_size_d = vocabulary_size_d	
        self.drop_out_rate = drop_out_rate
        self.num_output = num_output

    	# question-embedding
        self.embed_ques_W = tf.Variable(tf.random.uniform([self.vocabulary_size, self.input_embedding_size], -0.08, 0.08), name='embed_ques_W')

    	# encoder: RNN body
        self.lstm_1 = rnn_cell.LSTMCell(rnn_size, input_embedding_size, state_is_tuple=False)
        self.lstm_dropout_1 = rnn_cell.DropoutWrapper(self.lstm_1, output_keep_prob = 1 - self.drop_out_rate)
        self.lstm_2 = rnn_cell.LSTMCell(rnn_size, rnn_size, state_is_tuple=False)
        self.lstm_dropout_2 = rnn_cell.DropoutWrapper(self.lstm_2, output_keep_prob = 1 - self.drop_out_rate)
        self.stacked_lstm = rnn_cell.MultiRNNCell([self.lstm_dropout_1, self.lstm_dropout_2])

    	# state-embedding
        self.embed_state_W = tf.Variable(tf.random.uniform([2*rnn_size*rnn_layer, self.dim_hidden], -0.08,0.08),name='embed_state_W')
        self.embed_state_b = tf.Variable(tf.random.uniform([self.dim_hidden], -0.08, 0.08), name='embed_state_b')
    	
        # description-embedding
        self.embed_desc_W = tf.Variable(tf.random.uniform([self.vocabulary_size_d, self.input_embedding_size], -0.08, 0.08), name='embed_desc_W')

        # encoder: RNN body
        self.lstm_1_d = rnn_cell.LSTMCell(rnn_size, input_embedding_size, state_is_tuple=False)
        self.lstm_dropout_1_d = rnn_cell.DropoutWrapper(self.lstm_1_d, output_keep_prob = 1 - self.drop_out_rate)
        self.lstm_2_d = rnn_cell.LSTMCell(rnn_size, rnn_size, state_is_tuple=False)
        self.lstm_dropout_2_d = rnn_cell.DropoutWrapper(self.lstm_2_d, output_keep_prob = 1 - self.drop_out_rate)
        self.stacked_lstm_d = rnn_cell.MultiRNNCell([self.lstm_dropout_1_d, self.lstm_dropout_2_d])

        # description state-embedding
        self.embed_state_desc_W = tf.Variable(tf.random.uniform([2*rnn_size*rnn_layer, self.dim_hidden], -0.08,0.08),name='embed_state_desc_W')
        self.embed_state_desc_b = tf.Variable(tf.random.uniform([self.dim_hidden], -0.08, 0.08), name='embed_state_desc_b')

        # image-embedding 1
        self.embed_image_W = tf.Variable(tf.random.uniform([dim_image, self.dim_hidden], -0.08, 0.08), name='embed_image_W')
        self.embed_image_b = tf.Variable(tf.random.uniform([dim_hidden], -0.08, 0.08), name='embed_image_b')

        # my code
        # image-embedding 2
        self.embed_image2_W = tf.Variable(tf.random.uniform([dim_image, self.dim_hidden], -0.08, 0.08), name='embed_image2_W')
        self.embed_image2_b = tf.Variable(tf.random.uniform([dim_hidden], -0.08, 0.08), name='embed_image2_b')

        # image-embedding 3
        self.embed_image3_W = tf.Variable(tf.random.uniform([dim_image, self.dim_hidden], -0.08, 0.08), name='embed_image3_W')
        self.embed_image3_b = tf.Variable(tf.random.uniform([dim_hidden], -0.08, 0.08), name='embed_image3_b')

        # image-embedding 4
        self.embed_image4_W = tf.Variable(tf.random.uniform([dim_image, self.dim_hidden], -0.08, 0.08), name='embed_image4_W')
        self.embed_image4_b = tf.Variable(tf.random.uniform([dim_hidden], -0.08, 0.08), name='embed_image4_b')

        # image-embedding 5
        self.embed_image5_W = tf.Variable(tf.random.uniform([dim_image, self.dim_hidden], -0.08, 0.08), name='embed_image5_W')
        self.embed_image5_b = tf.Variable(tf.random.uniform([dim_hidden], -0.08, 0.08), name='embed_image5_b')

    	# end my code

        # score-embedding
        self.embed_scor_W = tf.Variable(tf.random.uniform([dim_hidden, self.num_output], -0.08, 0.08), name='embed_scor_W')
        self.embed_scor_b = tf.Variable(tf.random.uniform([self.num_output], -0.08, 0.08), name='embed_scor_b')