def testBatchMultivariateFullDynamic(self): with self.test_session() as sess: x = array_ops.placeholder(dtypes.float32, name="x") mu = array_ops.placeholder(dtypes.float32, name="mu") scale_diag = array_ops.placeholder(dtypes.float32, name="scale_diag") event_ndims = array_ops.placeholder(dtypes.int32, name="event_ndims") x_value = np.array([[[1., 1]]], dtype=np.float32) mu_value = np.array([[1., -1]], dtype=np.float32) scale_diag_value = np.array([[2., 2]], dtype=np.float32) event_ndims_value = 1 feed_dict = { x: x_value, mu: mu_value, scale_diag: scale_diag_value, event_ndims: event_ndims_value } bijector = Affine(shift=mu, scale_diag=scale_diag, event_ndims=event_ndims) self.assertEqual(1, sess.run(bijector.event_ndims, feed_dict)) self.assertAllClose([[[3., 1]]], sess.run(bijector.forward(x), feed_dict)) self.assertAllClose([[[0., 1]]], sess.run(bijector.inverse(x), feed_dict)) self.assertAllClose([-np.log(4)], sess.run(bijector.inverse_log_det_jacobian(x), feed_dict))
def testBatchMultivariateFullDynamic(self): with self.test_session() as sess: x = array_ops.placeholder(dtypes.float32, name="x") mu = array_ops.placeholder(dtypes.float32, name="mu") scale_diag = array_ops.placeholder(dtypes.float32, name="scale_diag") event_ndims = array_ops.placeholder(dtypes.int32, name="event_ndims") x_value = np.array([[[1., 1]]], dtype=np.float32) mu_value = np.array([[1., -1]], dtype=np.float32) scale_diag_value = np.array([[2., 2]], dtype=np.float32) event_ndims_value = 1 feed_dict = { x: x_value, mu: mu_value, scale_diag: scale_diag_value, event_ndims: event_ndims_value } bijector = Affine( shift=mu, scale_diag=scale_diag, event_ndims=event_ndims) self.assertEqual(1, sess.run(bijector.event_ndims, feed_dict)) self.assertAllClose([[[3., 1]]], sess.run(bijector.forward(x), feed_dict)) self.assertAllClose([[[0., 1]]], sess.run(bijector.inverse(x), feed_dict)) self.assertAllClose([-np.log(4)], sess.run( bijector.inverse_log_det_jacobian(x), feed_dict))
def testNoBatchMultivariateFullDynamic(self): with self.cached_session() as sess: x = array_ops.placeholder(dtypes.float32, name="x") mu = array_ops.placeholder(dtypes.float32, name="mu") scale_diag = array_ops.placeholder(dtypes.float32, name="scale_diag") x_value = np.array([[1., 1]], dtype=np.float32) mu_value = np.array([1., -1], dtype=np.float32) scale_diag_value = np.array([2., 2], dtype=np.float32) feed_dict = { x: x_value, mu: mu_value, scale_diag: scale_diag_value, } bijector = Affine(shift=mu, scale_diag=scale_diag) self.assertAllClose([[3., 1]], sess.run(bijector.forward(x), feed_dict)) self.assertAllClose([[0., 1]], sess.run(bijector.inverse(x), feed_dict)) self.assertAllClose( -np.log(4), sess.run(bijector.inverse_log_det_jacobian(x, event_ndims=1), feed_dict))
def _testLegalInputs(self, shift=None, scale_params=None, x=None): def _powerset(x): s = list(x) return itertools.chain.from_iterable( itertools.combinations(s, r) for r in range(len(s) + 1)) for args in _powerset(scale_params.items()): with self.test_session(): args = dict(args) scale_args = dict({"x": x}, **args) scale = self._makeScale(**scale_args) # We haven't specified enough information for the scale. if scale is None: with self.assertRaisesRegexp(ValueError, ("must be specified.")): bijector = Affine(shift=shift, **args) else: bijector = Affine(shift=shift, **args) np_x = x # For the case a vector is passed in, we need to make the shape # match the matrix for matmul to work. if x.ndim == scale.ndim - 1: np_x = np.expand_dims(x, axis=-1) forward = np.matmul(scale, np_x) + shift if x.ndim == scale.ndim - 1: forward = np.squeeze(forward, axis=-1) self.assertAllClose(forward, bijector.forward(x).eval()) backward = np.linalg.solve(scale, np_x - shift) if x.ndim == scale.ndim - 1: backward = np.squeeze(backward, axis=-1) self.assertAllClose(backward, bijector.inverse(x).eval()) scale *= np.ones(shape=x.shape[:-1], dtype=scale.dtype) ildj = -np.log(np.abs(np.linalg.det(scale))) # TODO (jvdillon): We need to make it so the scale_identity_multiplier id:1102 # https://github.com/imdone/tensorflow/issues/1103 # case does not deviate in expected shape. Fixing this will get rid of # these special cases. if (ildj.ndim > 0 and (len(scale_args) == 1 or (len(scale_args) == 2 and scale_args.get( "scale_identity_multiplier", None) is not None))): ildj = np.squeeze(ildj[0]) elif ildj.ndim < scale.ndim - 2: ildj = np.reshape(ildj, scale.shape[0:-2]) self.assertAllClose( ildj, bijector.inverse_log_det_jacobian( x, event_ndims=1).eval())
def _testLegalInputs(self, shift=None, scale_params=None, x=None): def _powerset(x): s = list(x) return itertools.chain.from_iterable( itertools.combinations(s, r) for r in range(len(s) + 1)) for args in _powerset(scale_params.items()): with self.test_session(): args = dict(args) scale_args = dict({"x": x}, **args) scale = self._makeScale(**scale_args) bijector_args = dict({"event_ndims": 1}, **args) # We haven't specified enough information for the scale. if scale is None: with self.assertRaisesRegexp(ValueError, ("must be specified.")): bijector = Affine(shift=shift, **bijector_args) else: bijector = Affine(shift=shift, **bijector_args) np_x = x # For the case a vector is passed in, we need to make the shape # match the matrix for matmul to work. if x.ndim == scale.ndim - 1: np_x = np.expand_dims(x, axis=-1) forward = np.matmul(scale, np_x) + shift if x.ndim == scale.ndim - 1: forward = np.squeeze(forward, axis=-1) self.assertAllClose(forward, bijector.forward(x).eval()) backward = np.linalg.solve(scale, np_x - shift) if x.ndim == scale.ndim - 1: backward = np.squeeze(backward, axis=-1) self.assertAllClose(backward, bijector.inverse(x).eval()) ildj = -np.log(np.abs(np.linalg.det(scale))) # TODO(jvdillon): We need to make it so the scale_identity_multiplier # case does not deviate in expected shape. Fixing this will get rid of # these special cases. if (ildj.ndim > 0 and (len(scale_args) == 1 or ( len(scale_args) == 2 and scale_args.get("scale_identity_multiplier", None) is not None))): ildj = np.squeeze(ildj[0]) elif ildj.ndim < scale.ndim - 2: ildj = np.reshape(ildj, scale.shape[0:-2]) self.assertAllClose(ildj, bijector.inverse_log_det_jacobian(x).eval())
def testNoBatchMultivariateFullDynamic(self): with self.test_session() as sess: x = array_ops.placeholder(dtypes.float32, name="x") mu = array_ops.placeholder(dtypes.float32, name="mu") scale_diag = array_ops.placeholder(dtypes.float32, name="scale_diag") x_value = np.array([[1., 1]], dtype=np.float32) mu_value = np.array([1., -1], dtype=np.float32) scale_diag_value = np.array([2., 2], dtype=np.float32) feed_dict = { x: x_value, mu: mu_value, scale_diag: scale_diag_value, } bijector = Affine(shift=mu, scale_diag=scale_diag) self.assertAllClose([[3., 1]], sess.run(bijector.forward(x), feed_dict)) self.assertAllClose([[0., 1]], sess.run(bijector.inverse(x), feed_dict)) self.assertAllClose( -np.log(4), sess.run(bijector.inverse_log_det_jacobian(x), feed_dict))