_, f1 = model.predict(testX, batch_size=1024) testX = np.concatenate([f1, testX], axis=1) Y = clf.predict(testX) utils.submit(Y) else: testX = utils.load_test_data(submit) Y = np.array( list( map( idx2word.get, np.argmax(model.predict(testX, batch_size=1024)[0], axis=-1)))) utils.submit(Y) elif svm: X, Y = utils.load_train_data(data_path) Y = Y.astype(int) trainX = np.delete(X, [1, 6, 11], axis=1) _, f1 = model.predict(trainX, batch_size=1024) X[:, 0] = f1.ravel() clf_svm(X, Y, save_model=svm) else: model.load_weights(model_path) #print(f'\n\033[32;1mTraining score: {model.evaluate(trainX, trainY, verbose=0)}') #print(f'Validation Score: {model.evaluate(validX, validY, verbose=0)}\033[0m') print( f'\n\033[32;1mTraining score: {model.evaluate(trainX, [trainY, missing_col], verbose=0, batch_size=1024)}' ) print( f'Validation Score: {model.evaluate(validX, [validY, valid_missing_col], verbose=0, batch_size=1024)}\033[0m' )
testX[:, 0:1], f2, testX[:, 1:5], f7, testX[:, 5:9], f12, testX[:, 9:] ], axis=1) Y = clf.predict(testX) utils.submit(Y) else: out = tf.cast(out * 2, tf.int32) submit_model = Model(I, out) utils.submit(submit_model, submit) elif svm: X, Y = utils.load_train_data(data_path) Y = Y.astype(int) trainX = np.delete(X, [1, 6, 11], axis=1) _, f2, f7, f12 = model.predict(trainX, batch_size=1024) X[:, 1] = f2.ravel() X[:, 6] = f7.ravel() X[:, 11] = f12.ravel() clf_svm(X, Y, seed, save_model=svm) else: trainX, trainY = utils.load_train_data(data_path) trainY = trainY.astype(int) trainX, validX, trainY, validY = utils.train_test_split(trainX, trainY, seed=seed) missing_col, valid_missing_col = trainX[:, [1, 6, 11]], validX[:, [1, 6, 11]] trainX = np.delete(trainX, [1, 6, 11], axis=1) validX = np.delete(validX, [1, 6, 11], axis=1) print( f'\n\033[32;1mTraining score: {model.evaluate(trainX, [trainY, missing_col[:, 0], missing_col[:, 1], missing_col[:, 2]], verbose=0)}'