def build(self, input_shape=None):
        if not self.inputs or not self.outputs:
            raise TypeError('Sequential model cannot be built: model is empty.'
                            ' Add some layers first.')
        # actually create the model
        self.model = Model(self.inputs,
                           self.outputs[0],
                           name=self.name + '_model')
        self.model.trainable = self.trainable

        # mirror model attributes
        self.supports_masking = self.model.supports_masking
        self._output_mask_cache = self.model._output_mask_cache
        self._output_tensor_cache = self.model._output_tensor_cache
        self._output_shape_cache = self.model._output_shape_cache
        self._input_layers = self.model._input_layers
        self._output_layers = self.model._output_layers
        self._input_coordinates = self.model._input_coordinates
        self._output_coordinates = self.model._output_coordinates
        self._nodes_by_depth = self.model._nodes_by_depth
        self._network_nodes = self.model._network_nodes
        self.output_names = self.model.output_names
        self.input_names = self.model.input_names
        self._feed_input_names = self.model._feed_input_names
        self._feed_inputs = self.model._feed_inputs

        # Make sure child model callbacks
        # will call the parent Sequential model.
        self.model.callback_model = self

        self.built = True
예제 #2
0
  def build(self, input_shape=None):
    if not self.inputs or not self.outputs:
      raise TypeError('Sequential model cannot be built: model is empty.'
                      ' Add some layers first.')
    # actually create the model
    self.model = Model(self.inputs, self.outputs[0], name=self.name + '_model')
    self.model.trainable = self.trainable

    # mirror model attributes
    self.supports_masking = self.model.supports_masking
    self._output_mask_cache = self.model._output_mask_cache
    self._output_tensor_cache = self.model._output_tensor_cache
    self._output_shape_cache = self.model._output_shape_cache
    self._input_layers = self.model._input_layers
    self._output_layers = self.model._output_layers
    self._input_coordinates = self.model._input_coordinates
    self._output_coordinates = self.model._output_coordinates
    self._nodes_by_depth = self.model._nodes_by_depth
    self._network_nodes = self.model._network_nodes
    self.output_names = self.model.output_names
    self.input_names = self.model.input_names
    self._feed_input_names = self.model._feed_input_names
    self._feed_inputs = self.model._feed_inputs

    # Make sure child model callbacks
    # will call the parent Sequential model.
    self.model.callback_model = self

    self.built = True
class Sequential(Model):
    """Linear stack of layers.

  Arguments:
      layers: list of layers to add to the model.

  # Note
      The first layer passed to a Sequential model
      should have a defined input shape. What that
      means is that it should have received an `input_shape`
      or `batch_input_shape` argument,
      or for some type of layers (recurrent, Dense...)
      an `input_dim` argument.

  Example:

      ```python
          model = Sequential()
          # first layer must have a defined input shape
          model.add(Dense(32, input_dim=500))
          # afterwards, Keras does automatic shape inference
          model.add(Dense(32))

          # also possible (equivalent to the above):
          model = Sequential()
          model.add(Dense(32, input_shape=(500,)))
          model.add(Dense(32))

          # also possible (equivalent to the above):
          model = Sequential()
          # here the batch dimension is None,
          # which means any batch size will be accepted by the model.
          model.add(Dense(32, batch_input_shape=(None, 500)))
          model.add(Dense(32))
      ```
  """
    def __init__(self, layers=None, name=None):
        self._is_graph_network = True
        self._is_compiled = False
        self._layers = []  # Stack of layers.
        self.model = None  # Internal Model instance.
        self.inputs = []  # List of input tensors
        self.outputs = []  # List of length 1: the output tensor (unique).
        self._trainable = True
        self._initial_weights = None
        self._input_layers = []

        # Model attributes.
        self._inbound_nodes = []
        self._outbound_nodes = []
        self.built = False

        # Set model name.
        if not name:
            prefix = 'sequential_'
            name = prefix + str(K.get_uid(prefix))
        self._name = name

        # Used by Layer base class.
        self._dtype = None
        self._activity_regularizer = None

        # The following properties are not actually used by Keras;
        # they exist for compatibility with TF's variable scoping mechanism.
        self._updates = []
        self._losses = []
        self._scope = None
        self._reuse = None
        self._base_name = name
        self._graph = ops.get_default_graph()

        # Add to the model any layers passed to the constructor.
        if layers:
            for layer in layers:
                self.add(layer)

    def add(self, layer):
        """Adds a layer instance on top of the layer stack.

    Arguments:
        layer: layer instance.

    Raises:
        TypeError: If `layer` is not a layer instance.
        ValueError: In case the `layer` argument does not
            know its input shape.
        ValueError: In case the `layer` argument has
            multiple output tensors, or is already connected
            somewhere else (forbidden in `Sequential` models).
    """
        if not isinstance(layer, (base_layer.Layer, base_layer.TFBaseLayer)):
            raise TypeError('The added layer must be '
                            'an instance of class Layer. '
                            'Found: ' + str(layer))
        if not self.outputs:
            # First layer in model: check that it is an input layer.
            if not isinstance(layer, InputLayer):
                # Create an input layer.
                # First, we need to infer its expected input shape and dtype.
                if isinstance(layer, (Model, Sequential)):
                    # We were passed a model as first layer.
                    # This requires a specific way to figure out the
                    # input shape and dtype.
                    if not layer.layers:
                        raise ValueError('Cannot add an empty model '
                                         'to a `Sequential` model.')
                    # In case of nested models: recover the first layer
                    # of the deepest model to infer input shape and dtype.
                    first_layer = layer.layers[0]
                    while isinstance(first_layer, (Model, Sequential)):
                        first_layer = first_layer.layers[0]
                    batch_shape = first_layer._batch_input_shape
                    dtype = first_layer.dtype
                else:
                    # We were passed a regular layer, and it should
                    # know about its input shape. Otherwise, that's an error.
                    if not hasattr(layer, '_batch_input_shape'):
                        raise ValueError('The first layer in a '
                                         'Sequential model must '
                                         'get an `input_shape` argument.')
                    batch_shape = layer._batch_input_shape
                    dtype = layer.dtype
                # Instantiate the input layer.
                x = Input(batch_shape=batch_shape,
                          dtype=dtype,
                          name=layer.name + '_input')
                # This will build the current layer
                # and create the node connecting the current layer
                # to the input layer we just created.
                layer(x)

            if len(layer._inbound_nodes[-1].output_tensors) != 1:
                raise ValueError('All layers in a Sequential model '
                                 'should have a single output tensor. '
                                 'For multi-output layers, '
                                 'use the functional API.')

            self.outputs = [layer._inbound_nodes[-1].output_tensors[0]]
            self.inputs = network.get_source_inputs(self.outputs[0])

            # We create an input node, which we will keep updated
            # as we add more layers
            base_layer.Node(outbound_layer=self,
                            inbound_layers=[],
                            node_indices=[],
                            tensor_indices=[],
                            input_tensors=self.inputs,
                            output_tensors=self.outputs)
        else:
            output_tensor = layer(self.outputs[0])
            if isinstance(output_tensor, list):
                raise TypeError('All layers in a Sequential model '
                                'should have a single output tensor. '
                                'For multi-output layers, '
                                'use the functional API.')
            self.outputs = [output_tensor]
            # update self._inbound_nodes
            self._inbound_nodes[0].output_tensors = self.outputs
            self._inbound_nodes[0].output_shapes = [
                K.int_shape(self.outputs[0])
            ]

        self._layers.append(layer)
        self.built = False

    def pop(self):
        """Removes the last layer in the model.

    Raises:
        TypeError: if there are no layers in the model.
    """
        if not self.layers:
            raise TypeError('There are no layers in the model.')

        self.layers.pop()
        if not self.layers:
            self.outputs = []
            self._inbound_nodes = []
            self._outbound_nodes = []
        else:
            self.layers[-1]._outbound_nodes = []
            self.outputs = [self.layers[-1].output]
            # update self._inbound_nodes
            self._inbound_nodes[0].output_tensors = self.outputs
            self._inbound_nodes[0].output_shapes = [
                K.int_shape(self.outputs[0])
            ]
        self.built = False

    def get_layer(self, name=None, index=None):
        """Retrieve a layer that is part of the model.

    Returns a layer based on either its name (unique)
    or its index in the graph. Indices are based on
    order of horizontal graph traversal (bottom-up).

    Arguments:
        name: string, name of layer.
        index: integer, index of layer.

    Returns:
        A layer instance.
    """
        if not self.built:
            self.build()
        return self.model.get_layer(name, index)

    def call(self, inputs, **kwargs):
        if not self.built:
            self.build()
        return self.model.call(inputs, **kwargs)

    def build(self, input_shape=None):
        if not self.inputs or not self.outputs:
            raise TypeError('Sequential model cannot be built: model is empty.'
                            ' Add some layers first.')
        # actually create the model
        self.model = Model(self.inputs,
                           self.outputs[0],
                           name=self.name + '_model')
        self.model.trainable = self.trainable

        # mirror model attributes
        self.supports_masking = self.model.supports_masking
        self._output_mask_cache = self.model._output_mask_cache
        self._output_tensor_cache = self.model._output_tensor_cache
        self._output_shape_cache = self.model._output_shape_cache
        self._input_layers = self.model._input_layers
        self._output_layers = self.model._output_layers
        self._input_coordinates = self.model._input_coordinates
        self._output_coordinates = self.model._output_coordinates
        self._nodes_by_depth = self.model._nodes_by_depth
        self._network_nodes = self.model._network_nodes
        self.output_names = self.model.output_names
        self.input_names = self.model.input_names
        self._feed_input_names = self.model._feed_input_names
        self._feed_inputs = self.model._feed_inputs

        # Make sure child model callbacks
        # will call the parent Sequential model.
        self.model.callback_model = self

        self.built = True

    @property
    def uses_learning_phase(self):
        if not self.built:
            self.build()
        return self.model.uses_learning_phase

    def _gather_list_attr(self, attr):
        all_attrs = []
        for layer in self.layers:
            all_attrs += getattr(layer, attr, [])
        return all_attrs

    def _make_train_function(self):
        self.model._make_train_function()

    def _make_test_function(self):
        self.model._make_test_function()

    def _make_predict_function(self):
        self.model._make_predict_function()

    @property
    def trainable(self):
        return self._trainable

    @trainable.setter
    def trainable(self, value):
        if self.model:
            self.model.trainable = value
        self._trainable = value

    @property
    def trainable_weights(self):
        if not self.trainable:
            return []
        return self._gather_list_attr('trainable_weights')

    @property
    def non_trainable_weights(self):
        weights = self._gather_list_attr('non_trainable_weights')
        if not self.trainable:
            trainable_weights = self._gather_list_attr('trainable_weights')
            return trainable_weights + weights
        return weights

    @property
    def regularizers(self):
        if not self.built:
            self.build()
        return self.model.regularizers

    def get_weights(self):
        """Retrieves the weights of the model.

    Returns:
        A flat list of Numpy arrays
        (one array per model weight).
    """
        if not self.built:
            self.build()
        return self.model.get_weights()

    def set_weights(self, weights):
        """Sets the weights of the model.

    Arguments:
        weights: Should be a list
            of Numpy arrays with shapes and types matching
            the output of `model.get_weights()`.
    """
        if not self.built:
            self.build()
        self.model.set_weights(weights)

    def load_weights(self, filepath, by_name=False):
        if h5py is None:
            raise ImportError('`load_weights` requires h5py.')
        f = h5py.File(filepath, mode='r')
        if 'layer_names' not in f.attrs and 'model_weights' in f:
            f = f['model_weights']
        layers = self.layers
        if by_name:
            saving.load_weights_from_hdf5_group_by_name(f, layers)
        else:
            saving.load_weights_from_hdf5_group(f, layers)
        if hasattr(f, 'close'):
            f.close()

    def save_weights(self, filepath, overwrite=True):
        if h5py is None:
            raise ImportError('`save_weights` requires h5py.')
        # If file exists and should not be overwritten:
        if not overwrite and os.path.isfile(filepath):
            proceed = ask_to_proceed_with_overwrite(filepath)
            if not proceed:
                return
        layers = self.layers
        f = h5py.File(filepath, 'w')
        saving.save_weights_to_hdf5_group(f, layers)
        f.flush()
        f.close()

    def compile(self,
                optimizer,
                loss,
                metrics=None,
                sample_weight_mode=None,
                weighted_metrics=None,
                target_tensors=None,
                **kwargs):
        """Configures the model for training.

    Arguments:
        optimizer: String (name of optimizer) or optimizer object.
            See [optimizers](/optimizers).
        loss: String (name of objective function) or objective function.
            See [losses](/losses).
            If the model has multiple outputs, you can use a different loss
            on each output by passing a dictionary or a list of losses.
            The loss value that will be minimized by the model
            will then be the sum of all individual losses.
        metrics: List of metrics to be evaluated by the model
            during training and testing.
            Typically you will use `metrics=['accuracy']`.
            To specify different metrics for different outputs of a
            multi-output model, you could also pass a dictionary,
            such as `metrics={'output_a': 'accuracy'}`.
        sample_weight_mode: If you need to do timestep-wise
            sample weighting (2D weights), set this to `"temporal"`.
            `None` defaults to sample-wise weights (1D).
            If the model has multiple outputs, you can use a different
            `sample_weight_mode` on each output by passing a
            dictionary or a list of modes.
        weighted_metrics: list of metrics to be evaluated and weighted
             by `sample_weight` or `class_weight` during training and testing.
        target_tensors: By default, Keras will create a placeholder for the
            model's target, which will be fed with the target data during
            training. If instead you would like to use your own
            target tensor (in turn, Keras will not expect external
            Numpy data for these targets at training time), you
            can specify them via the `target_tensors` argument.
            It should be a single tensor
            (for a single-output `Sequential` model).
        **kwargs: These arguments are passed into `tf.Session.run`.

    Example:
        ```python
            model = Sequential()
            model.add(Dense(32, input_shape=(500,)))
            model.add(Dense(10, activation='softmax'))
            model.compile(optimizer='rmsprop',
                          loss='categorical_crossentropy',
                          metrics=['accuracy'])
        ```
    """
        # create the underlying model
        self.build()
        # call compile method of Model class
        self.model.compile(optimizer,
                           loss,
                           metrics=metrics,
                           sample_weight_mode=sample_weight_mode,
                           weighted_metrics=weighted_metrics,
                           target_tensors=target_tensors,
                           **kwargs)
        self.optimizer = self.model.optimizer
        self.loss = self.model.loss
        self.metrics = self.model.metrics
        self.loss_weights = self.model.loss_weights
        self.sample_weight_mode = self.model.sample_weight_mode
        self.weighted_metrics = self.model.weighted_metrics
        self.targets = self.model.targets
        self.metrics_tensors = self.model.metrics_tensors
        self.metrics_names = self.model.metrics_names
        self.sample_weights = self.model.sample_weights
        self.total_loss = self.model.total_loss

    def fit(self,
            x=None,
            y=None,
            batch_size=None,
            epochs=1,
            verbose=1,
            callbacks=None,
            validation_split=0.,
            validation_data=None,
            shuffle=True,
            class_weight=None,
            sample_weight=None,
            initial_epoch=0,
            steps_per_epoch=None,
            validation_steps=None,
            **kwargs):
        """Trains the model for a fixed number of epochs.

    Arguments:
        x: Numpy array of training data.
            If the input layer in the model is named, you can also pass a
            dictionary mapping the input name to a Numpy array.
            `x` can be `None` (default) if feeding from
            TensorFlow data tensors.
        y: Numpy array of target (label) data.
            If the output layer in the model is named, you can also pass a
            dictionary mapping the output name to a Numpy array.
            `y` can be `None` (default) if feeding from
            TensorFlow data tensors.
        batch_size: Integer or `None`.
            Number of samples per gradient update.
            If unspecified, it will default to 32.
        epochs: Integer. Number of epochs to train the model.
            An epoch is an iteration over the entire `x` and `y`
            data provided.
            Note that in conjunction with `initial_epoch`,
            `epochs` is to be understood as "final epoch".
            The model is not trained for a number of iterations
            given by `epochs`, but merely until the epoch
            of index `epochs` is reached.
        verbose: 0, 1, or 2. Verbosity mode.
            0 = silent, 1 = progress bar, 2 = one line per epoch.
        callbacks: List of `keras.callbacks.Callback` instances.
            List of callbacks to apply during training.
            See [callbacks](/callbacks).
        validation_split: Float between 0 and 1:
            Fraction of the training data to be used as validation data.
            The model will set apart this fraction of the training data,
            will not train on it, and will evaluate
            the loss and any model metrics
            on this data at the end of each epoch.
            The validation data is selected from the last samples
            in the `x` and `y` data provided, before shuffling.
        validation_data: tuple `(x_val, y_val)` or tuple
            `(x_val, y_val, val_sample_weights)` on which to evaluate
            the loss and any model metrics at the end of each epoch.
            The model will not be trained on this data.
            This will override `validation_split`.
        shuffle: Boolean (whether to shuffle the training data
            before each epoch) or str (for 'batch').
            'batch' is a special option for dealing with the
            limitations of HDF5 data; it shuffles in batch-sized chunks.
            Has no effect when `steps_per_epoch` is not `None`.
        class_weight: Optional dictionary mapping class indices (integers)
            to a weight (float) value, used for weighting the loss function
            (during training only).
            This can be useful to tell the model to
            "pay more attention" to samples from
            an under-represented class.
        sample_weight: Optional Numpy array of weights for
            the training samples, used for weighting the loss function
            (during training only). You can either pass a flat (1D)
            Numpy array with the same length as the input samples
            (1:1 mapping between weights and samples),
            or in the case of temporal data,
            you can pass a 2D array with shape
            `(samples, sequence_length)`,
            to apply a different weight to every timestep of every sample.
            In this case you should make sure to specify
            `sample_weight_mode="temporal"` in `compile()`.
        initial_epoch: Epoch at which to start training
            (useful for resuming a previous training run).
        steps_per_epoch: Total number of steps (batches of samples)
            before declaring one epoch finished and starting the
            next epoch. When training with input tensors such as
            TensorFlow data tensors, the default `None` is equal to
            the number of unique samples in your dataset divided by
            the batch size, or 1 if that cannot be determined.
        validation_steps: Only relevant if `steps_per_epoch`
            is specified. Total number of steps (batches of samples)
            to validate before stopping.
        **kwargs: Used for backwards compatibility support.

    Returns:
        A `History` object. Its `History.history` attribute is
        a record of training loss values and metrics values
        at successive epochs, as well as validation loss values
        and validation metrics values (if applicable).

    Raises:
        RuntimeError: If the model was never compiled.
        ValueError: In case of mismatch between the provided input data
            and what the model expects.
    """
        if not self.built:
            raise RuntimeError(
                'The model needs to be compiled before being used.')
        return self.model.fit(x,
                              y,
                              batch_size=batch_size,
                              epochs=epochs,
                              verbose=verbose,
                              callbacks=callbacks,
                              validation_split=validation_split,
                              validation_data=validation_data,
                              shuffle=shuffle,
                              class_weight=class_weight,
                              sample_weight=sample_weight,
                              initial_epoch=initial_epoch,
                              steps_per_epoch=steps_per_epoch,
                              validation_steps=validation_steps)

    def evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None):
        """Computes the loss on some input data, batch by batch.

    Arguments:
        x: input data, as a Numpy array or list of Numpy arrays
            (if the model has multiple inputs).
        y: labels, as a Numpy array.
        batch_size: integer. Number of samples per gradient update.
        verbose: verbosity mode, 0 or 1.
        sample_weight: sample weights, as a Numpy array.

    Returns:
        Scalar test loss (if the model has no metrics)
        or list of scalars (if the model computes other metrics).
        The attribute `model.metrics_names` will give you
        the display labels for the scalar outputs.

    Raises:
        RuntimeError: if the model was never compiled.
    """
        if not self.built:
            raise RuntimeError(
                'The model needs to be compiled before being used.')
        return self.model.evaluate(x,
                                   y,
                                   batch_size=batch_size,
                                   verbose=verbose,
                                   sample_weight=sample_weight)

    def predict(self, x, batch_size=32, verbose=0):
        """Generates output predictions for the input samples.

    The input samples are processed batch by batch.

    Arguments:
        x: the input data, as a Numpy array.
        batch_size: integer.
        verbose: verbosity mode, 0 or 1.

    Returns:
        A Numpy array of predictions.
    """
        if not self.built:
            self.build()
        return self.model.predict(x, batch_size=batch_size, verbose=verbose)

    def predict_on_batch(self, x):
        """Returns predictions for a single batch of samples.

    Arguments:
        x: input data, as a Numpy array or list of Numpy arrays
            (if the model has multiple inputs).

    Returns:
        A Numpy array of predictions.
    """
        if not self.built:
            self.build()
        return self.model.predict_on_batch(x)

    def train_on_batch(self, x, y, class_weight=None, sample_weight=None):
        """Single gradient update over one batch of samples.

    Arguments:
        x: input data, as a Numpy array or list of Numpy arrays
            (if the model has multiple inputs).
        y: labels, as a Numpy array.
        class_weight: dictionary mapping classes to a weight value,
            used for scaling the loss function (during training only).
        sample_weight: sample weights, as a Numpy array.

    Returns:
        Scalar training loss (if the model has no metrics)
        or list of scalars (if the model computes other metrics).
        The attribute `model.metrics_names` will give you
        the display labels for the scalar outputs.

    Raises:
        RuntimeError: if the model was never compiled.
    """
        if not self.built:
            raise RuntimeError(
                'The model needs to be compiled before being used.')
        return self.model.train_on_batch(x,
                                         y,
                                         sample_weight=sample_weight,
                                         class_weight=class_weight)

    def test_on_batch(self, x, y, sample_weight=None):
        """Evaluates the model over a single batch of samples.

    Arguments:
        x: input data, as a Numpy array or list of Numpy arrays
            (if the model has multiple inputs).
        y: labels, as a Numpy array.
        sample_weight: sample weights, as a Numpy array.

    Returns:
        Scalar test loss (if the model has no metrics)
        or list of scalars (if the model computes other metrics).
        The attribute `model.metrics_names` will give you
        the display labels for the scalar outputs.

    Raises:
        RuntimeError: if the model was never compiled.
    """
        if not self.built:
            raise RuntimeError(
                'The model needs to be compiled before being used.')
        return self.model.test_on_batch(x, y, sample_weight=sample_weight)

    def predict_proba(self, x, batch_size=32, verbose=0):
        """Generates class probability predictions for the input samples.

    The input samples are processed batch by batch.

    Arguments:
        x: input data, as a Numpy array or list of Numpy arrays
            (if the model has multiple inputs).
        batch_size: integer.
        verbose: verbosity mode, 0 or 1.

    Returns:
        A Numpy array of probability predictions.
    """
        preds = self.predict(x, batch_size, verbose)
        if preds.min() < 0. or preds.max() > 1.:
            logging.warning('Network returning invalid probability values. '
                            'The last layer might not normalize predictions '
                            'into probabilities '
                            '(like softmax or sigmoid would).')
        return preds

    def predict_classes(self, x, batch_size=32, verbose=0):
        """Generate class predictions for the input samples.

    The input samples are processed batch by batch.

    Arguments:
        x: input data, as a Numpy array or list of Numpy arrays
            (if the model has multiple inputs).
        batch_size: integer.
        verbose: verbosity mode, 0 or 1.

    Returns:
        A numpy array of class predictions.
    """
        proba = self.predict(x, batch_size=batch_size, verbose=verbose)
        if proba.shape[-1] > 1:
            return proba.argmax(axis=-1)
        else:
            return (proba > 0.5).astype('int32')

    def fit_generator(self,
                      generator,
                      steps_per_epoch=None,
                      epochs=1,
                      verbose=1,
                      callbacks=None,
                      validation_data=None,
                      validation_steps=None,
                      class_weight=None,
                      max_queue_size=10,
                      workers=1,
                      use_multiprocessing=False,
                      shuffle=True,
                      initial_epoch=0,
                      **kwargs):
        """Fits the model on data generated batch-by-batch by a Python generator.

    The generator is run in parallel to the model, for efficiency.
    For instance, this allows you to do real-time data augmentation
    on images on CPU in parallel to training your model on GPU.

    Arguments:
        generator: A generator.
            The output of the generator must be either
            - a tuple (inputs, targets)
            - a tuple (inputs, targets, sample_weights).
            All arrays should contain the same number of samples.
            The generator is expected to loop over its data
            indefinitely. An epoch finishes when `steps_per_epoch`
            batches have been seen by the model.
        steps_per_epoch: Total number of steps (batches of samples)
            to yield from `generator` before declaring one epoch
            finished and starting the next epoch. It should typically
            be equal to the number of samples of your dataset
            divided by the batch size.
            Optional for `Sequence`: if unspecified, will use
            the `len(generator)` as a number of steps.
        epochs: Integer, total number of iterations on the data.
            Note that in conjunction with initial_epoch, the parameter
            epochs is to be understood as "final epoch". The model is
            not trained for n steps given by epochs, but until the
            epoch epochs is reached.
        verbose: Verbosity mode, 0, 1, or 2.
        callbacks: List of callbacks to be called during training.
        validation_data: This can be either
            - A generator for the validation data
            - A tuple (inputs, targets)
            - A tuple (inputs, targets, sample_weights).
        validation_steps: Only relevant if `validation_data`
            is a generator.
            Number of steps to yield from validation generator
            at the end of every epoch. It should typically
            be equal to the number of samples of your
            validation dataset divided by the batch size.
            Optional for `Sequence`: if unspecified, will use
            the `len(validation_data)` as a number of steps.
        class_weight: Dictionary mapping class indices to a weight
            for the class.
        max_queue_size: Maximum size for the generator queue
        workers: Maximum number of processes to spin up
        use_multiprocessing: If True, use process based threading.
            Note that because
            this implementation relies on multiprocessing,
            you should not pass
            non picklable arguments to the generator
            as they can't be passed
            easily to children processes.
       shuffle: Whether to shuffle the order of the batches at
              the beginning of each epoch. Only used with instances
              of `Sequence` (keras.utils.Sequence).
        initial_epoch: Epoch at which to start training
            (useful for resuming a previous training run)
        **kwargs: support for legacy arguments.

    Returns:
        A `History` object.

    Raises:
        RuntimeError: if the model was never compiled.
        ValueError: In case the generator yields
            data in an invalid format.

    Example:

    ```python
        def generate_arrays_from_file(path):
            while 1:
                f = open(path)
                for line in f:
                    # create Numpy arrays of input data
                    # and labels, from each line in the file
                    x, y = process_line(line)
                    yield (x, y)
                    f.close()

        model.fit_generator(generate_arrays_from_file('/my_file.txt'),
                            steps_per_epoch=1000, epochs=10)
    ```
    """
        # Legacy support
        if 'max_q_size' in kwargs:
            max_queue_size = kwargs.pop('max_q_size')
            logging.warning(
                'The argument `max_q_size` has been renamed '
                '`max_queue_size`. Update your method calls accordingly.')
        if 'pickle_safe' in kwargs:
            use_multiprocessing = kwargs.pop('pickle_safe')
            logging.warning('The argument `pickle_safe` has been renamed '
                            '`use_multiprocessing`. '
                            'Update your method calls accordingly.')
        if kwargs:
            raise ValueError('Unrecognized keyword arguments: ' + str(kwargs))

        if not self.built:
            raise RuntimeError(
                'The model needs to be compiled before being used.')
        return self.model.fit_generator(
            generator,
            steps_per_epoch,
            epochs,
            verbose=verbose,
            callbacks=callbacks,
            validation_data=validation_data,
            validation_steps=validation_steps,
            class_weight=class_weight,
            max_queue_size=max_queue_size,
            workers=workers,
            use_multiprocessing=use_multiprocessing,
            shuffle=shuffle,
            initial_epoch=initial_epoch)

    def evaluate_generator(self,
                           generator,
                           steps=None,
                           max_queue_size=10,
                           workers=1,
                           use_multiprocessing=False,
                           **kwargs):
        """Evaluates the model on a data generator.

    The generator should return the same kind of data
    as accepted by `test_on_batch`.

    Arguments:
        generator: Generator yielding tuples (inputs, targets)
            or (inputs, targets, sample_weights)
        steps: Total number of steps (batches of samples)
            to yield from `generator` before stopping.
            Optional for `Sequence`: if unspecified, will use
            the `len(generator)` as a number of steps.
        max_queue_size: maximum size for the generator queue
        workers: maximum number of processes to spin up
        use_multiprocessing: if True, use process based threading.
            Note that because this implementation
            relies on multiprocessing, you should not pass
            non picklable arguments to the generator
            as they can't be passed easily to children processes.
        **kwargs: support for legacy arguments.

    Returns:
        Scalar test loss (if the model has no metrics)
        or list of scalars (if the model computes other metrics).
        The attribute `model.metrics_names` will give you
        the display labels for the scalar outputs.

    Raises:
        RuntimeError: if the model was never compiled.
        ValueError: In case the generator yields
            data in an invalid format.
    """
        # Legacy support
        if 'max_q_size' in kwargs:
            max_queue_size = kwargs.pop('max_q_size')
            logging.warning(
                'The argument `max_q_size` has been renamed '
                '`max_queue_size`. Update your method calls accordingly.')
        if 'pickle_safe' in kwargs:
            use_multiprocessing = kwargs.pop('pickle_safe')
            logging.warning('The argument `pickle_safe` has been renamed '
                            '`use_multiprocessing`. '
                            'Update your method calls accordingly.')
        if kwargs:
            raise ValueError('Unrecognized keyword arguments: ' + str(kwargs))

        if not self.built:
            raise RuntimeError(
                'The model needs to be compiled before being used.')
        return self.model.evaluate_generator(
            generator,
            steps,
            max_queue_size=max_queue_size,
            workers=workers,
            use_multiprocessing=use_multiprocessing)

    def predict_generator(self,
                          generator,
                          steps=None,
                          max_queue_size=10,
                          workers=1,
                          use_multiprocessing=False,
                          verbose=0,
                          **kwargs):
        """Generates predictions for the input samples from a data generator.

    The generator should return the same kind of data as accepted by
    `predict_on_batch`.

    Arguments:
        generator: generator yielding batches of input samples.
        steps: Total number of steps (batches of samples)
            to yield from `generator` before stopping.
            Optional for `Sequence`: if unspecified, will use
            the `len(generator)` as a number of steps.
        max_queue_size: maximum size for the generator queue
        workers: maximum number of processes to spin up
        use_multiprocessing: if True, use process based threading.
            Note that because this implementation
            relies on multiprocessing, you should not pass
            non picklable arguments to the generator
            as they can't be passed easily to children processes.
        verbose: verbosity mode, 0 or 1.
        **kwargs: support for legacy arguments.

    Returns:
        A Numpy array of predictions.

    Raises:
        ValueError: In case the generator yields
            data in an invalid format.
    """
        # Legacy support
        if 'max_q_size' in kwargs:
            max_queue_size = kwargs.pop('max_q_size')
            logging.warning(
                'The argument `max_q_size` has been renamed '
                '`max_queue_size`. Update your method calls accordingly.')
        if 'pickle_safe' in kwargs:
            use_multiprocessing = kwargs.pop('pickle_safe')
            logging.warning('The argument `pickle_safe` has been renamed '
                            '`use_multiprocessing`. '
                            'Update your method calls accordingly.')
        if kwargs:
            raise ValueError('Unrecognized keyword arguments: ' + str(kwargs))

        if not self.built:
            self.build()
        return self.model.predict_generator(
            generator,
            steps,
            max_queue_size=max_queue_size,
            workers=workers,
            use_multiprocessing=use_multiprocessing,
            verbose=verbose)

    def get_config(self):
        config = []
        for layer in self.layers:
            config.append({
                'class_name': layer.__class__.__name__,
                'config': layer.get_config()
            })
        return copy.deepcopy(config)

    @classmethod
    def from_config(cls, config, custom_objects=None):
        model = cls()
        for conf in config:
            layer = layer_module.deserialize(conf,
                                             custom_objects=custom_objects)
            model.add(layer)
        return model
예제 #4
0
def multi_gpu_model(model, gpus):
    """Replicates a model on different GPUs.

  Specifically, this function implements single-machine
  multi-GPU data parallelism. It works in the following way:

  - Divide the model's input(s) into multiple sub-batches.
  - Apply a model copy on each sub-batch. Every model copy
      is executed on a dedicated GPU.
  - Concatenate the results (on CPU) into one big batch.

  E.g. if your `batch_size` is 64 and you use `gpus=2`,
  then we will divide the input into 2 sub-batches of 32 samples,
  process each sub-batch on one GPU, then return the full
  batch of 64 processed samples.

  This induces quasi-linear speedup on up to 8 GPUs.

  This function is only available with the TensorFlow backend
  for the time being.

  Arguments:
      model: A Keras model instance. To avoid OOM errors,
          this model could have been built on CPU, for instance
          (see usage example below).
      gpus: Integer >= 2, number of on GPUs on which to create
          model replicas.

  Returns:
      A Keras `Model` instance which can be used just like the initial
      `model` argument, but which distributes its workload on multiple GPUs.

  Example:

  ```python
      import tensorflow as tf
      from keras.applications import Xception
      from keras.utils import multi_gpu_model

      num_samples = 1000
      height = 224
      width = 224
      num_classes = 1000

      # Instantiate the base model (or "template" model).
      # We recommend doing this with under a CPU device scope,
      # so that the model's weights are hosted on CPU memory.
      # Otherwise they may end up hosted on a GPU, which would
      # complicate weight sharing.
      with tf.device('/cpu:0'):
          model = Xception(weights=None,
                           input_shape=(height, width, 3),
                           classes=num_classes)

      # Replicates the model on 8 GPUs.
      # This assumes that your machine has 8 available GPUs.
      parallel_model = multi_gpu_model(model, gpus=8)
      parallel_model.compile(loss='categorical_crossentropy',
                             optimizer='rmsprop')

      # Generate dummy data.
      x = np.random.random((num_samples, height, width, 3))
      y = np.random.random((num_samples, num_classes))

      # This `fit` call will be distributed on 8 GPUs.
      # Since the batch size is 256, each GPU will process 32 samples.
      parallel_model.fit(x, y, epochs=20, batch_size=256)

      # Save model via the template model (which shares the same weights):
      model.save('my_model.h5')
  ```

  Raises:
    ValueError: if the `gpus` argument does not match available devices.
  """
    # pylint: disable=g-import-not-at-top
    from tensorflow.python.keras._impl.keras.layers.core import Lambda
    from tensorflow.python.keras._impl.keras.layers.merge import concatenate

    if isinstance(gpus, (list, tuple)):
        if len(gpus) <= 1:
            raise ValueError('For multi-gpu usage to be effective, '
                             'call `multi_gpu_model` with `len(gpus) >= 2`. '
                             'Received: `gpus=%s`' % gpus)
        num_gpus = len(gpus)
        target_gpu_ids = gpus
    else:
        if gpus <= 1:
            raise ValueError('For multi-gpu usage to be effective, '
                             'call `multi_gpu_model` with `gpus >= 2`. '
                             'Received: `gpus=%d`' % gpus)
        num_gpus = gpus
        target_gpu_ids = range(num_gpus)

    target_devices = ['/cpu:0'] + ['/gpu:%d' % i for i in target_gpu_ids]
    available_devices = _get_available_devices()
    available_devices = [
        _normalize_device_name(name) for name in available_devices
    ]
    for device in target_devices:
        if device not in available_devices:
            raise ValueError(
                'To call `multi_gpu_model` with `gpus=%d`, '
                'we expect the following devices to be available: %s. '
                'However this machine only has: %s. '
                'Try reducing `gpus`.' %
                (gpus, target_devices, available_devices))

    def get_slice(data, i, parts):
        """Slice an array into `parts` slices and return slice `i`.

    Arguments:
      data: array to slice.
      i: index of slice to return.
      parts: number of slices to make.

    Returns:
      Slice `i` of `data`.
    """
        shape = array_ops.shape(data)
        batch_size = shape[:1]
        input_shape = shape[1:]
        step = batch_size // parts
        if i == num_gpus - 1:
            size = batch_size - step * i
        else:
            size = step
        size = array_ops.concat([size, input_shape], axis=0)
        stride = array_ops.concat([step, input_shape * 0], axis=0)
        start = stride * i
        return array_ops.slice(data, start, size)

    all_outputs = []
    for i in range(len(model.outputs)):
        all_outputs.append([])

    # Place a copy of the model on each GPU,
    # each getting a slice of the inputs.
    for i, gpu_id in enumerate(target_gpu_ids):
        with ops.device('/gpu:%d' % gpu_id):
            with ops.name_scope('replica_%d' % gpu_id):
                inputs = []
                # Retrieve a slice of the input.
                for x in model.inputs:
                    input_shape = tuple(x.get_shape().as_list())[1:]
                    slice_i = Lambda(get_slice,
                                     output_shape=input_shape,
                                     arguments={
                                         'i': i,
                                         'parts': num_gpus
                                     })(x)
                    inputs.append(slice_i)

                # Apply model on slice
                # (creating a model replica on the target device).
                outputs = model(inputs)
                if not isinstance(outputs, list):
                    outputs = [outputs]

                # Save the outputs for merging back together later.
                for o in range(len(outputs)):
                    all_outputs[o].append(outputs[o])

    # Merge outputs on CPU.
    with ops.device('/cpu:0'):
        merged = []
        for name, outputs in zip(model.output_names, all_outputs):
            merged.append(concatenate(outputs, axis=0, name=name))
        return Model(model.inputs, merged)
예제 #5
0
class Sequential(Model):
  """Linear stack of layers.

  Arguments:
      layers: list of layers to add to the model.

  # Note
      The first layer passed to a Sequential model
      should have a defined input shape. What that
      means is that it should have received an `input_shape`
      or `batch_input_shape` argument,
      or for some type of layers (recurrent, Dense...)
      an `input_dim` argument.

  Example:

      ```python
          model = Sequential()
          # first layer must have a defined input shape
          model.add(Dense(32, input_dim=500))
          # afterwards, Keras does automatic shape inference
          model.add(Dense(32))

          # also possible (equivalent to the above):
          model = Sequential()
          model.add(Dense(32, input_shape=(500,)))
          model.add(Dense(32))

          # also possible (equivalent to the above):
          model = Sequential()
          # here the batch dimension is None,
          # which means any batch size will be accepted by the model.
          model.add(Dense(32, batch_input_shape=(None, 500)))
          model.add(Dense(32))
      ```
  """

  def __init__(self, layers=None, name=None):
    self._is_graph_network = True
    self._is_compiled = False
    self._layers = []  # Stack of layers.
    self.model = None  # Internal Model instance.
    self.inputs = []  # List of input tensors
    self.outputs = []  # List of length 1: the output tensor (unique).
    self._trainable = True
    self._initial_weights = None
    self._input_layers = []

    # Model attributes.
    self._inbound_nodes = []
    self._outbound_nodes = []
    self.built = False

    # Set model name.
    if not name:
      prefix = 'sequential_'
      name = prefix + str(K.get_uid(prefix))
    self._name = name

    # Used by Layer base class.
    self._dtype = None
    self._activity_regularizer = None

    # The following properties are not actually used by Keras;
    # they exist for compatibility with TF's variable scoping mechanism.
    self._updates = []
    self._losses = []
    self._scope = None
    self._reuse = None
    self._base_name = name
    self._graph = ops.get_default_graph()

    # Add to the model any layers passed to the constructor.
    if layers:
      for layer in layers:
        self.add(layer)

  def add(self, layer):
    """Adds a layer instance on top of the layer stack.

    Arguments:
        layer: layer instance.

    Raises:
        TypeError: If `layer` is not a layer instance.
        ValueError: In case the `layer` argument does not
            know its input shape.
        ValueError: In case the `layer` argument has
            multiple output tensors, or is already connected
            somewhere else (forbidden in `Sequential` models).
    """
    if not isinstance(layer, (base_layer.Layer, base_layer.TFBaseLayer)):
      raise TypeError('The added layer must be '
                      'an instance of class Layer. '
                      'Found: ' + str(layer))
    if not self.outputs:
      # First layer in model: check that it is an input layer.
      if not isinstance(layer, InputLayer):
        # Create an input layer.
        # First, we need to infer its expected input shape and dtype.
        if isinstance(layer, (Model, Sequential)):
          # We were passed a model as first layer.
          # This requires a specific way to figure out the
          # input shape and dtype.
          if not layer.layers:
            raise ValueError('Cannot add an empty model '
                             'to a `Sequential` model.')
          # In case of nested models: recover the first layer
          # of the deepest model to infer input shape and dtype.
          first_layer = layer.layers[0]
          while isinstance(first_layer, (Model, Sequential)):
            first_layer = first_layer.layers[0]
          batch_shape = first_layer._batch_input_shape
          dtype = first_layer.dtype
        else:
          # We were passed a regular layer, and it should
          # know about its input shape. Otherwise, that's an error.
          if not hasattr(layer, '_batch_input_shape'):
            raise ValueError('The first layer in a '
                             'Sequential model must '
                             'get an `input_shape` argument.')
          batch_shape = layer._batch_input_shape
          dtype = layer.dtype
        # Instantiate the input layer.
        x = Input(
            batch_shape=batch_shape, dtype=dtype, name=layer.name + '_input')
        # This will build the current layer
        # and create the node connecting the current layer
        # to the input layer we just created.
        layer(x)

      if len(layer._inbound_nodes[-1].output_tensors) != 1:
        raise ValueError('All layers in a Sequential model '
                         'should have a single output tensor. '
                         'For multi-output layers, '
                         'use the functional API.')

      self.outputs = [layer._inbound_nodes[-1].output_tensors[0]]
      self.inputs = network.get_source_inputs(self.outputs[0])

      # We create an input node, which we will keep updated
      # as we add more layers
      base_layer.Node(
          outbound_layer=self,
          inbound_layers=[],
          node_indices=[],
          tensor_indices=[],
          input_tensors=self.inputs,
          output_tensors=self.outputs)
    else:
      output_tensor = layer(self.outputs[0])
      if isinstance(output_tensor, list):
        raise TypeError('All layers in a Sequential model '
                        'should have a single output tensor. '
                        'For multi-output layers, '
                        'use the functional API.')
      self.outputs = [output_tensor]
      # update self._inbound_nodes
      self._inbound_nodes[0].output_tensors = self.outputs
      self._inbound_nodes[0].output_shapes = [K.int_shape(self.outputs[0])]

    self._layers.append(layer)
    self.built = False

  def pop(self):
    """Removes the last layer in the model.

    Raises:
        TypeError: if there are no layers in the model.
    """
    if not self.layers:
      raise TypeError('There are no layers in the model.')

    self.layers.pop()
    if not self.layers:
      self.outputs = []
      self._inbound_nodes = []
      self._outbound_nodes = []
    else:
      self.layers[-1]._outbound_nodes = []
      self.outputs = [self.layers[-1].output]
      # update self._inbound_nodes
      self._inbound_nodes[0].output_tensors = self.outputs
      self._inbound_nodes[0].output_shapes = [K.int_shape(self.outputs[0])]
    self.built = False

  def get_layer(self, name=None, index=None):
    """Retrieve a layer that is part of the model.

    Returns a layer based on either its name (unique)
    or its index in the graph. Indices are based on
    order of horizontal graph traversal (bottom-up).

    Arguments:
        name: string, name of layer.
        index: integer, index of layer.

    Returns:
        A layer instance.
    """
    if not self.built:
      self.build()
    return self.model.get_layer(name, index)

  def call(self, inputs, **kwargs):
    if not self.built:
      self.build()
    return self.model.call(inputs, **kwargs)

  def build(self, input_shape=None):
    if not self.inputs or not self.outputs:
      raise TypeError('Sequential model cannot be built: model is empty.'
                      ' Add some layers first.')
    # actually create the model
    self.model = Model(self.inputs, self.outputs[0], name=self.name + '_model')
    self.model.trainable = self.trainable

    # mirror model attributes
    self.supports_masking = self.model.supports_masking
    self._output_mask_cache = self.model._output_mask_cache
    self._output_tensor_cache = self.model._output_tensor_cache
    self._output_shape_cache = self.model._output_shape_cache
    self._input_layers = self.model._input_layers
    self._output_layers = self.model._output_layers
    self._input_coordinates = self.model._input_coordinates
    self._output_coordinates = self.model._output_coordinates
    self._nodes_by_depth = self.model._nodes_by_depth
    self._network_nodes = self.model._network_nodes
    self.output_names = self.model.output_names
    self.input_names = self.model.input_names
    self._feed_input_names = self.model._feed_input_names
    self._feed_inputs = self.model._feed_inputs

    # Make sure child model callbacks
    # will call the parent Sequential model.
    self.model.callback_model = self

    self.built = True

  @property
  def uses_learning_phase(self):
    if not self.built:
      self.build()
    return self.model.uses_learning_phase

  def _gather_list_attr(self, attr):
    all_attrs = []
    for layer in self.layers:
      all_attrs += getattr(layer, attr, [])
    return all_attrs

  def _make_train_function(self):
    self.model._make_train_function()

  def _make_test_function(self):
    self.model._make_test_function()

  def _make_predict_function(self):
    self.model._make_predict_function()

  @property
  def trainable(self):
    return self._trainable

  @trainable.setter
  def trainable(self, value):
    if self.model:
      self.model.trainable = value
    self._trainable = value

  @property
  def trainable_weights(self):
    if not self.trainable:
      return []
    return self._gather_list_attr('trainable_weights')

  @property
  def non_trainable_weights(self):
    weights = self._gather_list_attr('non_trainable_weights')
    if not self.trainable:
      trainable_weights = self._gather_list_attr('trainable_weights')
      return trainable_weights + weights
    return weights

  @property
  def regularizers(self):
    if not self.built:
      self.build()
    return self.model.regularizers

  def get_weights(self):
    """Retrieves the weights of the model.

    Returns:
        A flat list of Numpy arrays
        (one array per model weight).
    """
    if not self.built:
      self.build()
    return self.model.get_weights()

  def set_weights(self, weights):
    """Sets the weights of the model.

    Arguments:
        weights: Should be a list
            of Numpy arrays with shapes and types matching
            the output of `model.get_weights()`.
    """
    if not self.built:
      self.build()
    self.model.set_weights(weights)

  def load_weights(self, filepath, by_name=False):
    if h5py is None:
      raise ImportError('`load_weights` requires h5py.')
    f = h5py.File(filepath, mode='r')
    if 'layer_names' not in f.attrs and 'model_weights' in f:
      f = f['model_weights']
    layers = self.layers
    if by_name:
      saving.load_weights_from_hdf5_group_by_name(f, layers)
    else:
      saving.load_weights_from_hdf5_group(f, layers)
    if hasattr(f, 'close'):
      f.close()

  def save_weights(self, filepath, overwrite=True):
    if h5py is None:
      raise ImportError('`save_weights` requires h5py.')
    # If file exists and should not be overwritten:
    if not overwrite and os.path.isfile(filepath):
      proceed = ask_to_proceed_with_overwrite(filepath)
      if not proceed:
        return
    layers = self.layers
    f = h5py.File(filepath, 'w')
    saving.save_weights_to_hdf5_group(f, layers)
    f.flush()
    f.close()

  def compile(self,
              optimizer,
              loss,
              metrics=None,
              sample_weight_mode=None,
              weighted_metrics=None,
              target_tensors=None,
              **kwargs):
    """Configures the model for training.

    Arguments:
        optimizer: String (name of optimizer) or optimizer object.
            See [optimizers](/optimizers).
        loss: String (name of objective function) or objective function.
            See [losses](/losses).
            If the model has multiple outputs, you can use a different loss
            on each output by passing a dictionary or a list of losses.
            The loss value that will be minimized by the model
            will then be the sum of all individual losses.
        metrics: List of metrics to be evaluated by the model
            during training and testing.
            Typically you will use `metrics=['accuracy']`.
            To specify different metrics for different outputs of a
            multi-output model, you could also pass a dictionary,
            such as `metrics={'output_a': 'accuracy'}`.
        sample_weight_mode: If you need to do timestep-wise
            sample weighting (2D weights), set this to `"temporal"`.
            `None` defaults to sample-wise weights (1D).
            If the model has multiple outputs, you can use a different
            `sample_weight_mode` on each output by passing a
            dictionary or a list of modes.
        weighted_metrics: list of metrics to be evaluated and weighted
             by `sample_weight` or `class_weight` during training and testing.
        target_tensors: By default, Keras will create a placeholder for the
            model's target, which will be fed with the target data during
            training. If instead you would like to use your own
            target tensor (in turn, Keras will not expect external
            Numpy data for these targets at training time), you
            can specify them via the `target_tensors` argument.
            It should be a single tensor
            (for a single-output `Sequential` model).
        **kwargs: These arguments are passed into `tf.Session.run`.

    Example:
        ```python
            model = Sequential()
            model.add(Dense(32, input_shape=(500,)))
            model.add(Dense(10, activation='softmax'))
            model.compile(optimizer='rmsprop',
                          loss='categorical_crossentropy',
                          metrics=['accuracy'])
        ```
    """
    # create the underlying model
    self.build()
    # call compile method of Model class
    self.model.compile(
        optimizer,
        loss,
        metrics=metrics,
        sample_weight_mode=sample_weight_mode,
        weighted_metrics=weighted_metrics,
        target_tensors=target_tensors,
        **kwargs)
    self.optimizer = self.model.optimizer
    self.loss = self.model.loss
    self.metrics = self.model.metrics
    self.loss_weights = self.model.loss_weights
    self.sample_weight_mode = self.model.sample_weight_mode
    self.weighted_metrics = self.model.weighted_metrics
    self.targets = self.model.targets
    self.metrics_tensors = self.model.metrics_tensors
    self.metrics_names = self.model.metrics_names
    self.sample_weights = self.model.sample_weights
    self.total_loss = self.model.total_loss

  def fit(self,
          x=None,
          y=None,
          batch_size=None,
          epochs=1,
          verbose=1,
          callbacks=None,
          validation_split=0.,
          validation_data=None,
          shuffle=True,
          class_weight=None,
          sample_weight=None,
          initial_epoch=0,
          steps_per_epoch=None,
          validation_steps=None,
          **kwargs):
    """Trains the model for a fixed number of epochs.

    Arguments:
        x: Numpy array of training data.
            If the input layer in the model is named, you can also pass a
            dictionary mapping the input name to a Numpy array.
            `x` can be `None` (default) if feeding from
            TensorFlow data tensors.
        y: Numpy array of target (label) data.
            If the output layer in the model is named, you can also pass a
            dictionary mapping the output name to a Numpy array.
            `y` can be `None` (default) if feeding from
            TensorFlow data tensors.
        batch_size: Integer or `None`.
            Number of samples per gradient update.
            If unspecified, it will default to 32.
        epochs: Integer. Number of epochs to train the model.
            An epoch is an iteration over the entire `x` and `y`
            data provided.
            Note that in conjunction with `initial_epoch`,
            `epochs` is to be understood as "final epoch".
            The model is not trained for a number of iterations
            given by `epochs`, but merely until the epoch
            of index `epochs` is reached.
        verbose: 0, 1, or 2. Verbosity mode.
            0 = silent, 1 = progress bar, 2 = one line per epoch.
        callbacks: List of `keras.callbacks.Callback` instances.
            List of callbacks to apply during training.
            See [callbacks](/callbacks).
        validation_split: Float between 0 and 1:
            Fraction of the training data to be used as validation data.
            The model will set apart this fraction of the training data,
            will not train on it, and will evaluate
            the loss and any model metrics
            on this data at the end of each epoch.
            The validation data is selected from the last samples
            in the `x` and `y` data provided, before shuffling.
        validation_data: tuple `(x_val, y_val)` or tuple
            `(x_val, y_val, val_sample_weights)` on which to evaluate
            the loss and any model metrics at the end of each epoch.
            The model will not be trained on this data.
            This will override `validation_split`.
        shuffle: Boolean (whether to shuffle the training data
            before each epoch) or str (for 'batch').
            'batch' is a special option for dealing with the
            limitations of HDF5 data; it shuffles in batch-sized chunks.
            Has no effect when `steps_per_epoch` is not `None`.
        class_weight: Optional dictionary mapping class indices (integers)
            to a weight (float) value, used for weighting the loss function
            (during training only).
            This can be useful to tell the model to
            "pay more attention" to samples from
            an under-represented class.
        sample_weight: Optional Numpy array of weights for
            the training samples, used for weighting the loss function
            (during training only). You can either pass a flat (1D)
            Numpy array with the same length as the input samples
            (1:1 mapping between weights and samples),
            or in the case of temporal data,
            you can pass a 2D array with shape
            `(samples, sequence_length)`,
            to apply a different weight to every timestep of every sample.
            In this case you should make sure to specify
            `sample_weight_mode="temporal"` in `compile()`.
        initial_epoch: Epoch at which to start training
            (useful for resuming a previous training run).
        steps_per_epoch: Total number of steps (batches of samples)
            before declaring one epoch finished and starting the
            next epoch. When training with input tensors such as
            TensorFlow data tensors, the default `None` is equal to
            the number of unique samples in your dataset divided by
            the batch size, or 1 if that cannot be determined.
        validation_steps: Only relevant if `steps_per_epoch`
            is specified. Total number of steps (batches of samples)
            to validate before stopping.
        **kwargs: Used for backwards compatibility support.

    Returns:
        A `History` object. Its `History.history` attribute is
        a record of training loss values and metrics values
        at successive epochs, as well as validation loss values
        and validation metrics values (if applicable).

    Raises:
        RuntimeError: If the model was never compiled.
        ValueError: In case of mismatch between the provided input data
            and what the model expects.
    """
    if not self.built:
      raise RuntimeError('The model needs to be compiled before being used.')
    return self.model.fit(
        x,
        y,
        batch_size=batch_size,
        epochs=epochs,
        verbose=verbose,
        callbacks=callbacks,
        validation_split=validation_split,
        validation_data=validation_data,
        shuffle=shuffle,
        class_weight=class_weight,
        sample_weight=sample_weight,
        initial_epoch=initial_epoch,
        steps_per_epoch=steps_per_epoch,
        validation_steps=validation_steps)

  def evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None):
    """Computes the loss on some input data, batch by batch.

    Arguments:
        x: input data, as a Numpy array or list of Numpy arrays
            (if the model has multiple inputs).
        y: labels, as a Numpy array.
        batch_size: integer. Number of samples per gradient update.
        verbose: verbosity mode, 0 or 1.
        sample_weight: sample weights, as a Numpy array.

    Returns:
        Scalar test loss (if the model has no metrics)
        or list of scalars (if the model computes other metrics).
        The attribute `model.metrics_names` will give you
        the display labels for the scalar outputs.

    Raises:
        RuntimeError: if the model was never compiled.
    """
    if not self.built:
      raise RuntimeError('The model needs to be compiled before being used.')
    return self.model.evaluate(
        x,
        y,
        batch_size=batch_size,
        verbose=verbose,
        sample_weight=sample_weight)

  def predict(self, x, batch_size=32, verbose=0):
    """Generates output predictions for the input samples.

    The input samples are processed batch by batch.

    Arguments:
        x: the input data, as a Numpy array.
        batch_size: integer.
        verbose: verbosity mode, 0 or 1.

    Returns:
        A Numpy array of predictions.
    """
    if not self.built:
      self.build()
    return self.model.predict(x, batch_size=batch_size, verbose=verbose)

  def predict_on_batch(self, x):
    """Returns predictions for a single batch of samples.

    Arguments:
        x: input data, as a Numpy array or list of Numpy arrays
            (if the model has multiple inputs).

    Returns:
        A Numpy array of predictions.
    """
    if not self.built:
      self.build()
    return self.model.predict_on_batch(x)

  def train_on_batch(self, x, y, class_weight=None, sample_weight=None):
    """Single gradient update over one batch of samples.

    Arguments:
        x: input data, as a Numpy array or list of Numpy arrays
            (if the model has multiple inputs).
        y: labels, as a Numpy array.
        class_weight: dictionary mapping classes to a weight value,
            used for scaling the loss function (during training only).
        sample_weight: sample weights, as a Numpy array.

    Returns:
        Scalar training loss (if the model has no metrics)
        or list of scalars (if the model computes other metrics).
        The attribute `model.metrics_names` will give you
        the display labels for the scalar outputs.

    Raises:
        RuntimeError: if the model was never compiled.
    """
    if not self.built:
      raise RuntimeError('The model needs to be compiled before being used.')
    return self.model.train_on_batch(
        x, y, sample_weight=sample_weight, class_weight=class_weight)

  def test_on_batch(self, x, y, sample_weight=None):
    """Evaluates the model over a single batch of samples.

    Arguments:
        x: input data, as a Numpy array or list of Numpy arrays
            (if the model has multiple inputs).
        y: labels, as a Numpy array.
        sample_weight: sample weights, as a Numpy array.

    Returns:
        Scalar test loss (if the model has no metrics)
        or list of scalars (if the model computes other metrics).
        The attribute `model.metrics_names` will give you
        the display labels for the scalar outputs.

    Raises:
        RuntimeError: if the model was never compiled.
    """
    if not self.built:
      raise RuntimeError('The model needs to be compiled before being used.')
    return self.model.test_on_batch(x, y, sample_weight=sample_weight)

  def predict_proba(self, x, batch_size=32, verbose=0):
    """Generates class probability predictions for the input samples.

    The input samples are processed batch by batch.

    Arguments:
        x: input data, as a Numpy array or list of Numpy arrays
            (if the model has multiple inputs).
        batch_size: integer.
        verbose: verbosity mode, 0 or 1.

    Returns:
        A Numpy array of probability predictions.
    """
    preds = self.predict(x, batch_size, verbose)
    if preds.min() < 0. or preds.max() > 1.:
      logging.warning('Network returning invalid probability values. '
                      'The last layer might not normalize predictions '
                      'into probabilities '
                      '(like softmax or sigmoid would).')
    return preds

  def predict_classes(self, x, batch_size=32, verbose=0):
    """Generate class predictions for the input samples.

    The input samples are processed batch by batch.

    Arguments:
        x: input data, as a Numpy array or list of Numpy arrays
            (if the model has multiple inputs).
        batch_size: integer.
        verbose: verbosity mode, 0 or 1.

    Returns:
        A numpy array of class predictions.
    """
    proba = self.predict(x, batch_size=batch_size, verbose=verbose)
    if proba.shape[-1] > 1:
      return proba.argmax(axis=-1)
    else:
      return (proba > 0.5).astype('int32')

  def fit_generator(self,
                    generator,
                    steps_per_epoch=None,
                    epochs=1,
                    verbose=1,
                    callbacks=None,
                    validation_data=None,
                    validation_steps=None,
                    class_weight=None,
                    max_queue_size=10,
                    workers=1,
                    use_multiprocessing=False,
                    shuffle=True,
                    initial_epoch=0,
                    **kwargs):
    """Fits the model on data generated batch-by-batch by a Python generator.

    The generator is run in parallel to the model, for efficiency.
    For instance, this allows you to do real-time data augmentation
    on images on CPU in parallel to training your model on GPU.

    Arguments:
        generator: A generator.
            The output of the generator must be either
            - a tuple (inputs, targets)
            - a tuple (inputs, targets, sample_weights).
            All arrays should contain the same number of samples.
            The generator is expected to loop over its data
            indefinitely. An epoch finishes when `steps_per_epoch`
            batches have been seen by the model.
        steps_per_epoch: Total number of steps (batches of samples)
            to yield from `generator` before declaring one epoch
            finished and starting the next epoch. It should typically
            be equal to the number of samples of your dataset
            divided by the batch size.
            Optional for `Sequence`: if unspecified, will use
            the `len(generator)` as a number of steps.
        epochs: Integer, total number of iterations on the data.
            Note that in conjunction with initial_epoch, the parameter
            epochs is to be understood as "final epoch". The model is
            not trained for n steps given by epochs, but until the
            epoch epochs is reached.
        verbose: Verbosity mode, 0, 1, or 2.
        callbacks: List of callbacks to be called during training.
        validation_data: This can be either
            - A generator for the validation data
            - A tuple (inputs, targets)
            - A tuple (inputs, targets, sample_weights).
        validation_steps: Only relevant if `validation_data`
            is a generator.
            Number of steps to yield from validation generator
            at the end of every epoch. It should typically
            be equal to the number of samples of your
            validation dataset divided by the batch size.
            Optional for `Sequence`: if unspecified, will use
            the `len(validation_data)` as a number of steps.
        class_weight: Dictionary mapping class indices to a weight
            for the class.
        max_queue_size: Maximum size for the generator queue
        workers: Maximum number of processes to spin up
        use_multiprocessing: If True, use process based threading.
            Note that because
            this implementation relies on multiprocessing,
            you should not pass
            non picklable arguments to the generator
            as they can't be passed
            easily to children processes.
       shuffle: Whether to shuffle the order of the batches at
              the beginning of each epoch. Only used with instances
              of `Sequence` (keras.utils.Sequence).
        initial_epoch: Epoch at which to start training
            (useful for resuming a previous training run)
        **kwargs: support for legacy arguments.

    Returns:
        A `History` object.

    Raises:
        RuntimeError: if the model was never compiled.
        ValueError: In case the generator yields
            data in an invalid format.

    Example:

    ```python
        def generate_arrays_from_file(path):
            while 1:
                f = open(path)
                for line in f:
                    # create Numpy arrays of input data
                    # and labels, from each line in the file
                    x, y = process_line(line)
                    yield (x, y)
                    f.close()

        model.fit_generator(generate_arrays_from_file('/my_file.txt'),
                            steps_per_epoch=1000, epochs=10)
    ```
    """
    # Legacy support
    if 'max_q_size' in kwargs:
      max_queue_size = kwargs.pop('max_q_size')
      logging.warning('The argument `max_q_size` has been renamed '
                      '`max_queue_size`. Update your method calls accordingly.')
    if 'pickle_safe' in kwargs:
      use_multiprocessing = kwargs.pop('pickle_safe')
      logging.warning('The argument `pickle_safe` has been renamed '
                      '`use_multiprocessing`. '
                      'Update your method calls accordingly.')
    if kwargs:
      raise ValueError('Unrecognized keyword arguments: ' + str(kwargs))

    if not self.built:
      raise RuntimeError('The model needs to be compiled before being used.')
    return self.model.fit_generator(
        generator,
        steps_per_epoch,
        epochs,
        verbose=verbose,
        callbacks=callbacks,
        validation_data=validation_data,
        validation_steps=validation_steps,
        class_weight=class_weight,
        max_queue_size=max_queue_size,
        workers=workers,
        use_multiprocessing=use_multiprocessing,
        shuffle=shuffle,
        initial_epoch=initial_epoch)

  def evaluate_generator(self,
                         generator,
                         steps=None,
                         max_queue_size=10,
                         workers=1,
                         use_multiprocessing=False,
                         **kwargs):
    """Evaluates the model on a data generator.

    The generator should return the same kind of data
    as accepted by `test_on_batch`.

    Arguments:
        generator: Generator yielding tuples (inputs, targets)
            or (inputs, targets, sample_weights)
        steps: Total number of steps (batches of samples)
            to yield from `generator` before stopping.
            Optional for `Sequence`: if unspecified, will use
            the `len(generator)` as a number of steps.
        max_queue_size: maximum size for the generator queue
        workers: maximum number of processes to spin up
        use_multiprocessing: if True, use process based threading.
            Note that because this implementation
            relies on multiprocessing, you should not pass
            non picklable arguments to the generator
            as they can't be passed easily to children processes.
        **kwargs: support for legacy arguments.

    Returns:
        Scalar test loss (if the model has no metrics)
        or list of scalars (if the model computes other metrics).
        The attribute `model.metrics_names` will give you
        the display labels for the scalar outputs.

    Raises:
        RuntimeError: if the model was never compiled.
        ValueError: In case the generator yields
            data in an invalid format.
    """
    # Legacy support
    if 'max_q_size' in kwargs:
      max_queue_size = kwargs.pop('max_q_size')
      logging.warning('The argument `max_q_size` has been renamed '
                      '`max_queue_size`. Update your method calls accordingly.')
    if 'pickle_safe' in kwargs:
      use_multiprocessing = kwargs.pop('pickle_safe')
      logging.warning('The argument `pickle_safe` has been renamed '
                      '`use_multiprocessing`. '
                      'Update your method calls accordingly.')
    if kwargs:
      raise ValueError('Unrecognized keyword arguments: ' + str(kwargs))

    if not self.built:
      raise RuntimeError('The model needs to be compiled before being used.')
    return self.model.evaluate_generator(
        generator,
        steps,
        max_queue_size=max_queue_size,
        workers=workers,
        use_multiprocessing=use_multiprocessing)

  def predict_generator(self,
                        generator,
                        steps=None,
                        max_queue_size=10,
                        workers=1,
                        use_multiprocessing=False,
                        verbose=0,
                        **kwargs):
    """Generates predictions for the input samples from a data generator.

    The generator should return the same kind of data as accepted by
    `predict_on_batch`.

    Arguments:
        generator: generator yielding batches of input samples.
        steps: Total number of steps (batches of samples)
            to yield from `generator` before stopping.
            Optional for `Sequence`: if unspecified, will use
            the `len(generator)` as a number of steps.
        max_queue_size: maximum size for the generator queue
        workers: maximum number of processes to spin up
        use_multiprocessing: if True, use process based threading.
            Note that because this implementation
            relies on multiprocessing, you should not pass
            non picklable arguments to the generator
            as they can't be passed easily to children processes.
        verbose: verbosity mode, 0 or 1.
        **kwargs: support for legacy arguments.

    Returns:
        A Numpy array of predictions.

    Raises:
        ValueError: In case the generator yields
            data in an invalid format.
    """
    # Legacy support
    if 'max_q_size' in kwargs:
      max_queue_size = kwargs.pop('max_q_size')
      logging.warning('The argument `max_q_size` has been renamed '
                      '`max_queue_size`. Update your method calls accordingly.')
    if 'pickle_safe' in kwargs:
      use_multiprocessing = kwargs.pop('pickle_safe')
      logging.warning('The argument `pickle_safe` has been renamed '
                      '`use_multiprocessing`. '
                      'Update your method calls accordingly.')
    if kwargs:
      raise ValueError('Unrecognized keyword arguments: ' + str(kwargs))

    if not self.built:
      self.build()
    return self.model.predict_generator(
        generator,
        steps,
        max_queue_size=max_queue_size,
        workers=workers,
        use_multiprocessing=use_multiprocessing,
        verbose=verbose)

  def get_config(self):
    config = []
    for layer in self.layers:
      config.append({
          'class_name': layer.__class__.__name__,
          'config': layer.get_config()
      })
    return copy.deepcopy(config)

  @classmethod
  def from_config(cls, config, custom_objects=None):
    model = cls()
    for conf in config:
      layer = layer_module.deserialize(conf, custom_objects=custom_objects)
      model.add(layer)
    return model