def __call__(self, inputs, initial_state=None, constants=None, **kwargs):
    inputs, initial_state, constants = _standardize_args(
        inputs, initial_state, constants, self._num_constants)

    if initial_state is None and constants is None:
      return super(ConvRNN2D, self).__call__(inputs, **kwargs)

    # If any of `initial_state` or `constants` are specified and are Keras
    # tensors, then add them to the inputs and temporarily modify the
    # input_spec to include them.

    additional_inputs = []
    additional_specs = []
    if initial_state is not None:
      kwargs['initial_state'] = initial_state
      additional_inputs += initial_state
      self.state_spec = []
      for state in initial_state:
        shape = K.int_shape(state)
        self.state_spec.append(InputSpec(shape=shape))

      additional_specs += self.state_spec
    if constants is not None:
      kwargs['constants'] = constants
      additional_inputs += constants
      self.constants_spec = [InputSpec(shape=K.int_shape(constant))
                             for constant in constants]
      self._num_constants = len(constants)
      additional_specs += self.constants_spec
    # at this point additional_inputs cannot be empty
    for tensor in additional_inputs:
      if K.is_keras_tensor(tensor) != K.is_keras_tensor(additional_inputs[0]):
        raise ValueError('The initial state or constants of an RNN'
                         ' layer cannot be specified with a mix of'
                         ' Keras tensors and non-Keras tensors')

    if K.is_keras_tensor(additional_inputs[0]):
      # Compute the full input spec, including state and constants
      full_input = [inputs] + additional_inputs
      full_input_spec = self.input_spec + additional_specs
      # Perform the call with temporarily replaced input_spec
      original_input_spec = self.input_spec
      self.input_spec = full_input_spec
      output = super(ConvRNN2D, self).__call__(full_input, **kwargs)
      self.input_spec = original_input_spec
      return output
    else:
      return super(ConvRNN2D, self).__call__(inputs, **kwargs)
예제 #2
0
def _clone_sequential_model(model, input_tensors=None):
  """Clone a `Sequential` model instance.

  Model cloning is similar to calling a model on new inputs,
  except that it creates new layers (and thus new weights) instead
  of sharing the weights of the existing layers.

  Arguments:
      model: Instance of `Sequential`.
      input_tensors: optional list of input tensors
          to build the model upon. If not provided,
          placeholders will be created.

  Returns:
      An instance of `Sequential` reproducing the behavior
      of the original model, on top of new inputs tensors,
      using newly instantiated weights.

  Raises:
      ValueError: in case of invalid `model` argument value.
  """
  if not isinstance(model, Sequential):
    raise ValueError('Expected `model` argument '
                     'to be a `Sequential` model instance, '
                     'but got:', model)

  def clone(layer):
    return layer.__class__.from_config(layer.get_config())

  # Use model._layers to ensure that all layers are cloned. The model's layers
  # property will exclude the initial InputLayer (if it exists) in the model,
  # resulting in a different Sequential model structure.
  layers = [clone(layer) for layer in model._layers]
  if input_tensors is None:
    return Sequential(layers=layers, name=model.name)
  else:
    # If input tensors are provided, the original model's InputLayer is
    # overwritten with a different InputLayer.
    if isinstance(layers[0], InputLayer):
      layers = layers[1:]
    if len(generic_utils.to_list(input_tensors)) != 1:
      raise ValueError('To clone a `Sequential` model, we expect '
                       ' at most one tensor '
                       'as part of `input_tensors`.')

    if isinstance(input_tensors, tuple):
      input_tensors = list(input_tensors)
    x = generic_utils.to_list(input_tensors)[0]
    if K.is_keras_tensor(x):
      origin_layer = x._keras_history[0]
      if isinstance(origin_layer, InputLayer):
        return Sequential(layers=[origin_layer] + layers, name=model.name)
      else:
        raise ValueError('Cannot clone a `Sequential` model on top '
                         'of a tensor that comes from a Keras layer '
                         'other than an `InputLayer`. '
                         'Use the functional API instead.')
    input_tensor = Input(tensor=x, name='input_wrapper_for_' + str(x.name))
    input_layer = input_tensor._keras_history[0]
    return Sequential(layers=[input_layer] + layers, name=model.name)
예제 #3
0
def InceptionResNetV2(include_top=True,
                      weights='imagenet',
                      input_tensor=None,
                      input_shape=None,
                      pooling=None,
                      classes=1000):
  """Instantiates the Inception-ResNet v2 architecture.

  Optionally loads weights pre-trained on ImageNet.
  Note that when using TensorFlow, for best performance you should
  set `"image_data_format": "channels_last"` in your Keras config
  at `~/.keras/keras.json`.

  The model and the weights are compatible with TensorFlow, Theano and
  CNTK backends. The data format convention used by the model is
  the one specified in your Keras config file.

  Note that the default input image size for this model is 299x299, instead
  of 224x224 as in the VGG16 and ResNet models. Also, the input preprocessing
  function is different (i.e., do not use `imagenet_utils.preprocess_input()`
  with this model. Use `preprocess_input()` defined in this module instead).

  Arguments:
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization),
            'imagenet' (pre-training on ImageNet),
            or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is `False` (otherwise the input shape
          has to be `(299, 299, 3)` (with `'channels_last'` data format)
          or `(3, 299, 299)` (with `'channels_first'` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 139.
          E.g. `(150, 150, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the last convolutional layer.
          - `'avg'` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `'max'` means that global max pooling will be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is `True`, and
          if no `weights` argument is specified.

  Returns:
      A Keras `Model` instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
  if not (weights in {'imagenet', None} or os.path.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as imagenet with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=299,
      min_size=139,
      data_format=K.image_data_format(),
      require_flatten=False,
      weights=weights)

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    if not K.is_keras_tensor(input_tensor):
      img_input = Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  # Stem block: 35 x 35 x 192
  x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid')
  x = conv2d_bn(x, 32, 3, padding='valid')
  x = conv2d_bn(x, 64, 3)
  x = MaxPooling2D(3, strides=2)(x)
  x = conv2d_bn(x, 80, 1, padding='valid')
  x = conv2d_bn(x, 192, 3, padding='valid')
  x = MaxPooling2D(3, strides=2)(x)

  # Mixed 5b (Inception-A block): 35 x 35 x 320
  branch_0 = conv2d_bn(x, 96, 1)
  branch_1 = conv2d_bn(x, 48, 1)
  branch_1 = conv2d_bn(branch_1, 64, 5)
  branch_2 = conv2d_bn(x, 64, 1)
  branch_2 = conv2d_bn(branch_2, 96, 3)
  branch_2 = conv2d_bn(branch_2, 96, 3)
  branch_pool = AveragePooling2D(3, strides=1, padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 64, 1)
  branches = [branch_0, branch_1, branch_2, branch_pool]
  channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
  x = Concatenate(axis=channel_axis, name='mixed_5b')(branches)

  # 10x block35 (Inception-ResNet-A block): 35 x 35 x 320
  for block_idx in range(1, 11):
    x = inception_resnet_block(
        x, scale=0.17, block_type='block35', block_idx=block_idx)

  # Mixed 6a (Reduction-A block): 17 x 17 x 1088
  branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='valid')
  branch_1 = conv2d_bn(x, 256, 1)
  branch_1 = conv2d_bn(branch_1, 256, 3)
  branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='valid')
  branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
  branches = [branch_0, branch_1, branch_pool]
  x = Concatenate(axis=channel_axis, name='mixed_6a')(branches)

  # 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088
  for block_idx in range(1, 21):
    x = inception_resnet_block(
        x, scale=0.1, block_type='block17', block_idx=block_idx)

  # Mixed 7a (Reduction-B block): 8 x 8 x 2080
  branch_0 = conv2d_bn(x, 256, 1)
  branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='valid')
  branch_1 = conv2d_bn(x, 256, 1)
  branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='valid')
  branch_2 = conv2d_bn(x, 256, 1)
  branch_2 = conv2d_bn(branch_2, 288, 3)
  branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='valid')
  branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
  branches = [branch_0, branch_1, branch_2, branch_pool]
  x = Concatenate(axis=channel_axis, name='mixed_7a')(branches)

  # 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080
  for block_idx in range(1, 10):
    x = inception_resnet_block(
        x, scale=0.2, block_type='block8', block_idx=block_idx)
  x = inception_resnet_block(
      x, scale=1., activation=None, block_type='block8', block_idx=10)

  # Final convolution block: 8 x 8 x 1536
  x = conv2d_bn(x, 1536, 1, name='conv_7b')

  if include_top:
    # Classification block
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`
  if input_tensor is not None:
    inputs = layer_utils.get_source_inputs(input_tensor)
  else:
    inputs = img_input

  # Create model
  model = Model(inputs, x, name='inception_resnet_v2')

  # Load weights
  if weights == 'imagenet':
    if include_top:
      fname = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5'
      weights_path = get_file(
          fname,
          BASE_WEIGHT_URL + fname,
          cache_subdir='models',
          file_hash='e693bd0210a403b3192acc6073ad2e96')
    else:
      fname = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5'
      weights_path = get_file(
          fname,
          BASE_WEIGHT_URL + fname,
          cache_subdir='models',
          file_hash='d19885ff4a710c122648d3b5c3b684e4')
    model.load_weights(weights_path)
  elif weights is not None:
    model.load_weights(weights)

  return model
예제 #4
0
def InceptionResNetV2(include_top=True,
                      weights='imagenet',
                      input_tensor=None,
                      input_shape=None,
                      pooling=None,
                      classes=1000,
                      classifier_activation='softmax',
                      **kwargs):
    """Instantiates the Inception-ResNet v2 architecture.

  Reference:
  - [Inception-v4, Inception-ResNet and the Impact of
     Residual Connections on Learning](https://arxiv.org/abs/1602.07261)
    (AAAI 2017)

  Optionally loads weights pre-trained on ImageNet.
  Note that the data format convention used by the model is
  the one specified in your Keras config at `~/.keras/keras.json`.

  Note: each Keras Application expects a specific kind of input preprocessing.
  For InceptionResNetV2, call
  `tf.keras.applications.inception_resnet_v2.preprocess_input`
  on your inputs before passing them to the model.

  Args:
    include_top: whether to include the fully-connected
      layer at the top of the network.
    weights: one of `None` (random initialization),
      'imagenet' (pre-training on ImageNet),
      or the path to the weights file to be loaded.
    input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
      to use as image input for the model.
    input_shape: optional shape tuple, only to be specified
      if `include_top` is `False` (otherwise the input shape
      has to be `(299, 299, 3)` (with `'channels_last'` data format)
      or `(3, 299, 299)` (with `'channels_first'` data format).
      It should have exactly 3 inputs channels,
      and width and height should be no smaller than 75.
      E.g. `(150, 150, 3)` would be one valid value.
    pooling: Optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` means that the output of the model will be
          the 4D tensor output of the last convolutional block.
      - `'avg'` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a 2D tensor.
      - `'max'` means that global max pooling will be applied.
    classes: optional number of classes to classify images
      into, only to be specified if `include_top` is `True`, and
      if no `weights` argument is specified.
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.
    **kwargs: For backwards compatibility only.

  Returns:
    A `keras.Model` instance.

  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape.
    ValueError: if `classifier_activation` is not `softmax` or `None` when
      using a pretrained top layer.
  """
    global layers
    if 'layers' in kwargs:
        layers = kwargs.pop('layers')
    else:
        layers = VersionAwareLayers()
    if kwargs:
        raise ValueError('Unknown argument(s): %s' % (kwargs, ))
    if not (weights in {'imagenet', None} or file_io.file_exists_v2(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=299,
        min_size=75,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # Stem block: 35 x 35 x 192
    x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid')
    x = conv2d_bn(x, 32, 3, padding='valid')
    x = conv2d_bn(x, 64, 3)
    x = layers.MaxPooling2D(3, strides=2)(x)
    x = conv2d_bn(x, 80, 1, padding='valid')
    x = conv2d_bn(x, 192, 3, padding='valid')
    x = layers.MaxPooling2D(3, strides=2)(x)

    # Mixed 5b (Inception-A block): 35 x 35 x 320
    branch_0 = conv2d_bn(x, 96, 1)
    branch_1 = conv2d_bn(x, 48, 1)
    branch_1 = conv2d_bn(branch_1, 64, 5)
    branch_2 = conv2d_bn(x, 64, 1)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_pool = layers.AveragePooling2D(3, strides=1, padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    channel_axis = 1 if backend.image_data_format() == 'channels_first' else 3
    x = layers.Concatenate(axis=channel_axis, name='mixed_5b')(branches)

    # 10x block35 (Inception-ResNet-A block): 35 x 35 x 320
    for block_idx in range(1, 11):
        x = inception_resnet_block(x,
                                   scale=0.17,
                                   block_type='block35',
                                   block_idx=block_idx)

    # Mixed 6a (Reduction-A block): 17 x 17 x 1088
    branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='valid')
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 256, 3)
    branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='valid')
    branch_pool = layers.MaxPooling2D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_pool]
    x = layers.Concatenate(axis=channel_axis, name='mixed_6a')(branches)

    # 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088
    for block_idx in range(1, 21):
        x = inception_resnet_block(x,
                                   scale=0.1,
                                   block_type='block17',
                                   block_idx=block_idx)

    # Mixed 7a (Reduction-B block): 8 x 8 x 2080
    branch_0 = conv2d_bn(x, 256, 1)
    branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='valid')
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='valid')
    branch_2 = conv2d_bn(x, 256, 1)
    branch_2 = conv2d_bn(branch_2, 288, 3)
    branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='valid')
    branch_pool = layers.MaxPooling2D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    x = layers.Concatenate(axis=channel_axis, name='mixed_7a')(branches)

    # 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080
    for block_idx in range(1, 10):
        x = inception_resnet_block(x,
                                   scale=0.2,
                                   block_type='block8',
                                   block_idx=block_idx)
    x = inception_resnet_block(x,
                               scale=1.,
                               activation=None,
                               block_type='block8',
                               block_idx=10)

    # Final convolution block: 8 x 8 x 1536
    x = conv2d_bn(x, 1536, 1, name='conv_7b')

    if include_top:
        # Classification block
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs, x, name='inception_resnet_v2')

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            fname = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5'
            weights_path = data_utils.get_file(
                fname,
                BASE_WEIGHT_URL + fname,
                cache_subdir='models',
                file_hash='e693bd0210a403b3192acc6073ad2e96')
        else:
            fname = ('inception_resnet_v2_weights_'
                     'tf_dim_ordering_tf_kernels_notop.h5')
            weights_path = data_utils.get_file(
                fname,
                BASE_WEIGHT_URL + fname,
                cache_subdir='models',
                file_hash='d19885ff4a710c122648d3b5c3b684e4')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
예제 #5
0
def ResNet(stack_fn,
           preact,
           use_bias,
           model_name='resnet',
           include_top=True,
           weights='imagenet',
           input_tensor=None,
           input_shape=None,
           pooling=None,
           classes=1000,
           **kwargs):
  """Instantiates the ResNet, ResNetV2, and ResNeXt architecture.
  Optionally loads weights pre-trained on ImageNet.
  Note that the data format convention used by the model is
  the one specified in your Keras config at `~/.keras/keras.json`.
  Arguments:
    stack_fn: a function that returns output tensor for the
      stacked residual blocks.
    preact: whether to use pre-activation or not
      (True for ResNetV2, False for ResNet and ResNeXt).
    use_bias: whether to use biases for convolutional layers or not
      (True for ResNet and ResNetV2, False for ResNeXt).
    model_name: string, model name.
    include_top: whether to include the fully-connected
      layer at the top of the network.
    weights: one of `None` (random initialization),
      'imagenet' (pre-training on ImageNet),
      or the path to the weights file to be loaded.
    input_tensor: optional Keras tensor
      (i.e. output of `layers.Input()`)
      to use as image input for the model.
    input_shape: optional shape tuple, only to be specified
      if `include_top` is False (otherwise the input shape
      has to be `(224, 224, 3)` (with `channels_last` data format)
      or `(3, 224, 224)` (with `channels_first` data format).
      It should have exactly 3 inputs channels.
    pooling: optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` means that the output of the model will be
          the 4D tensor output of the
          last convolutional layer.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional layer, and thus
          the output of the model will be a 2D tensor.
      - `max` means that global max pooling will
          be applied.
    classes: optional number of classes to classify images
      into, only to be specified if `include_top` is True, and
      if no `weights` argument is specified.
    **kwargs: For backwards compatibility only.
  Returns:
    A Keras model instance.
  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape.
  """
  if 'layers' in kwargs:
    global layers
    layers = kwargs.pop('layers')
  if kwargs:
    raise ValueError('Unknown argument(s): %s' % (kwargs,))
  if not (weights in {'imagenet', None} or os.path.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape =obtain_input_shape(
      input_shape,
      default_size=224,
      min_size=32,
      data_format=backend.image_data_format(),
      require_flatten=include_top,
      weights=weights)

  if input_tensor is None:
    img_input = layers.Input(shape=input_shape)
  else:
    if not backend.is_keras_tensor(input_tensor):
      img_input = layers.Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1

  x = layers.ZeroPadding2D(
      padding=((3, 3), (3, 3)), name='conv1_pad')(img_input)
  x = layers.Conv2D(64, 7, strides=2, use_bias=use_bias, name='conv1_conv')(x)

  if not preact:
    x = layers.BatchNormalization(
        axis=bn_axis, epsilon=1.001e-5, name='conv1_bn')(x)
    x = layers.Activation('relu', name='conv1_relu')(x)

  x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name='pool1_pad')(x)
  x = layers.MaxPooling2D(3, strides=2, name='pool1_pool')(x)

  x = stack_fn(x)

  if preact:
    x = layers.BatchNormalization(
        axis=bn_axis, epsilon=1.001e-5, name='post_bn')(x)
    x = layers.Activation('relu', name='post_relu')(x)

  if include_top:
    x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
    x = layers.Dense(classes, activation='softmax', name='probs')(x)
  else:
    if pooling == 'avg':
      x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
    elif pooling == 'max':
      x = layers.GlobalMaxPooling2D(name='max_pool')(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = layer_utils.get_source_inputs(input_tensor)
  else:
    inputs = img_input

  # Create model.
  model = training.Model(inputs, x, name=model_name)

  # Load weights.
  if (weights == 'imagenet') and (model_name in WEIGHTS_HASHES):
    if include_top:
      file_name = model_name + '_weights_tf_dim_ordering_tf_kernels.h5'
      file_hash = WEIGHTS_HASHES[model_name][0]
    else:
      file_name = model_name + '_weights_tf_dim_ordering_tf_kernels_notop.h5'
      file_hash = WEIGHTS_HASHES[model_name][1]
    weights_path = data_utils.get_file(
        file_name,
        BASE_WEIGHTS_PATH + file_name,
        cache_subdir='models',
        file_hash=file_hash)
    model.load_weights(weights_path)
  elif weights is not None:
    model.load_weights(weights)

  return model
예제 #6
0
def _clone_sequential_model(model, input_tensors=None, layer_fn=_clone_layer):
    """Clone a `Sequential` model instance.

  Model cloning is similar to calling a model on new inputs,
  except that it creates new layers (and thus new weights) instead
  of sharing the weights of the existing layers.

  Arguments:
      model: Instance of `Sequential`.
      input_tensors: optional list of input tensors
          to build the model upon. If not provided,
          placeholders will be created.
      layer_fn: callable to be applied on non-input layers in the model. By
          default it clones the layer. Another example is to preserve the layer
          to share the weights. This is required when we create a per-replica
          copy of the model with distribution strategy; we want the weights to
          be shared but still feed inputs separately so we create new input
          layers.

  Returns:
      An instance of `Sequential` reproducing the behavior
      of the original model, on top of new inputs tensors,
      using newly instantiated weights.

  Raises:
      ValueError: in case of invalid `model` argument value or `layer_fn`
      argument value.
  """
    if not isinstance(model, Sequential):
        raise ValueError(
            'Expected `model` argument '
            'to be a `Sequential` model instance, '
            'but got:', model)

    if not callable(layer_fn):
        raise ValueError('Expected `layer_fn` argument to be a callable.')

    layers = []  # Layers needed to compute the model's outputs.
    layer_map = {}
    # Use model._layers to ensure that all layers are cloned. The model's layers
    # property will exclude the initial InputLayer (if it exists) in the model,
    # resulting in a different Sequential model structure.
    for layer in model._layers:
        if isinstance(layer, InputLayer) and input_tensors is not None:
            # If input tensors are provided, the original model's InputLayer is
            # overwritten with a different InputLayer.
            continue
        cloned_layer = (_clone_layer(layer)
                        if isinstance(layer, InputLayer) else layer_fn(layer))
        layers.append(cloned_layer)
        layer_map[layer] = cloned_layer
    layers, ancillary_layers = _remove_ancillary_layers(
        model, layer_map, layers)

    if input_tensors is None:
        cloned_model = Sequential(layers=layers, name=model.name)
    elif len(generic_utils.to_list(input_tensors)) != 1:
        raise ValueError('To clone a `Sequential` model, we expect '
                         ' at most one tensor '
                         'as part of `input_tensors`.')
    else:
        # Overwrite the original model's input layer.
        if isinstance(input_tensors, tuple):
            input_tensors = list(input_tensors)
        x = generic_utils.to_list(input_tensors)[0]
        if K.is_keras_tensor(x):
            origin_layer = x._keras_history.layer
            if isinstance(origin_layer, InputLayer):
                cloned_model = Sequential(layers=[origin_layer] + layers,
                                          name=model.name)
            else:
                raise ValueError('Cannot clone a `Sequential` model on top '
                                 'of a tensor that comes from a Keras layer '
                                 'other than an `InputLayer`. '
                                 'Use the functional API instead.')
        else:
            input_tensor = Input(tensor=x,
                                 name='input_wrapper_for_' + str(x.name))
            input_layer = input_tensor._keras_history.layer
            cloned_model = Sequential(layers=[input_layer] + layers,
                                      name=model.name)

    if not ancillary_layers:
        return cloned_model

    tensor_map = {}  # Maps tensors from `model` to those in `cloned_model`.
    for depth, cloned_nodes in cloned_model._nodes_by_depth.items():
        nodes = model._nodes_by_depth[depth]
        # This should be safe in a Sequential model. In an arbitrary network, you
        # need to sort using the outbound layer of the node as a key.
        for cloned_node, node in zip(cloned_nodes, nodes):
            if isinstance(cloned_node.output_tensors, list):
                for j, output_tensor in enumerate(cloned_node.output_tensors):
                    tensor_map[node.output_tensors[j]] = output_tensor
            else:
                tensor_map[node.output_tensors] = cloned_node.output_tensors
    # Ancillary nodes have negative depth.
    new_nodes = _make_new_nodes(
        {
            depth: nodes
            for depth, nodes in model._nodes_by_depth.items() if depth < 0
        }, layer_fn, layer_map, tensor_map)
    _insert_ancillary_layers(cloned_model, ancillary_layers,
                             model.metrics_names, new_nodes)
    return cloned_model
예제 #7
0
def _clone_sequential_model(model, input_tensors=None, layer_fn=_clone_layer):
  """Clone a `Sequential` model instance.

  Model cloning is similar to calling a model on new inputs,
  except that it creates new layers (and thus new weights) instead
  of sharing the weights of the existing layers.

  Arguments:
      model: Instance of `Sequential`.
      input_tensors: optional list of input tensors
          to build the model upon. If not provided,
          placeholders will be created.
      layer_fn: callable to be applied on non-input layers in the model. By
          default it clones the layer. Another example is to preserve the layer
          to share the weights. This is required when we create a per-replica
          copy of the model with distribution strategy; we want the weights to
          be shared but still feed inputs separately so we create new input
          layers.

  Returns:
      An instance of `Sequential` reproducing the behavior
      of the original model, on top of new inputs tensors,
      using newly instantiated weights.

  Raises:
      ValueError: in case of invalid `model` argument value or `layer_fn`
      argument value.
  """
  if not isinstance(model, Sequential):
    raise ValueError('Expected `model` argument '
                     'to be a `Sequential` model instance, '
                     'but got:', model)

  if not callable(layer_fn):
    raise ValueError('Expected `layer_fn` argument to be a callable.')

  # Use model._layers to ensure that all layers are cloned. The model's layers
  # property will exclude the initial InputLayer (if it exists) in the model,
  # resulting in a different Sequential model structure.
  if input_tensors is None:
    layers = []
    for layer in model._layers:
      if isinstance(layer, InputLayer):
        layers.append(_clone_layer(layer))
      else:
        layers.append(layer_fn(layer))
    return Sequential(layers=layers, name=model.name)
  else:
    # If input tensors are provided, the original model's InputLayer is
    # overwritten with a different InputLayer.
    layers = [
        layer_fn(layer)
        for layer in model._layers
        if not isinstance(layer, InputLayer)
    ]
    if len(generic_utils.to_list(input_tensors)) != 1:
      raise ValueError('To clone a `Sequential` model, we expect '
                       ' at most one tensor '
                       'as part of `input_tensors`.')

    if isinstance(input_tensors, tuple):
      input_tensors = list(input_tensors)
    x = generic_utils.to_list(input_tensors)[0]
    if K.is_keras_tensor(x):
      origin_layer = x._keras_history[0]
      if isinstance(origin_layer, InputLayer):
        return Sequential(layers=[origin_layer] + layers, name=model.name)
      else:
        raise ValueError('Cannot clone a `Sequential` model on top '
                         'of a tensor that comes from a Keras layer '
                         'other than an `InputLayer`. '
                         'Use the functional API instead.')
    input_tensor = Input(tensor=x, name='input_wrapper_for_' + str(x.name))
    input_layer = input_tensor._keras_history[0]
    return Sequential(layers=[input_layer] + layers, name=model.name)
예제 #8
0
def VGG19(include_top=True,
          weights='imagenet',
          input_tensor=None,
          input_shape=None,
          pooling=None,
          classes=1000):
  """Instantiates the VGG19 architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format='channels_last'` in your Keras config
  at ~/.keras/keras.json.

  The model and the weights are compatible with both
  TensorFlow and Theano. The data format
  convention used by the model is the one
  specified in your Keras config file.

  Arguments:
      include_top: whether to include the 3 fully-connected
          layers at the top of the network.
      weights: one of `None` (random initialization),
            'imagenet' (pre-training on ImageNet),
            or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or `(3, 224, 224)` (with `channels_first` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 48.
          E.g. `(200, 200, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
  if not (weights in {'imagenet', None} or os.path.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as imagenet with `include_top`'
                     ' as true, `classes` should be 1000')
  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=224,
      min_size=48,
      data_format=K.image_data_format(),
      require_flatten=include_top,
      weights=weights)

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    if not K.is_keras_tensor(input_tensor):
      img_input = Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor
  # Block 1
  x = Conv2D(
      64, (3, 3), activation='relu', padding='same', name='block1_conv1')(
          img_input)
  x = Conv2D(
      64, (3, 3), activation='relu', padding='same', name='block1_conv2')(
          x)
  x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

  # Block 2
  x = Conv2D(
      128, (3, 3), activation='relu', padding='same', name='block2_conv1')(
          x)
  x = Conv2D(
      128, (3, 3), activation='relu', padding='same', name='block2_conv2')(
          x)
  x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

  # Block 3
  x = Conv2D(
      256, (3, 3), activation='relu', padding='same', name='block3_conv1')(
          x)
  x = Conv2D(
      256, (3, 3), activation='relu', padding='same', name='block3_conv2')(
          x)
  x = Conv2D(
      256, (3, 3), activation='relu', padding='same', name='block3_conv3')(
          x)
  x = Conv2D(
      256, (3, 3), activation='relu', padding='same', name='block3_conv4')(
          x)
  x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

  # Block 4
  x = Conv2D(
      512, (3, 3), activation='relu', padding='same', name='block4_conv1')(
          x)
  x = Conv2D(
      512, (3, 3), activation='relu', padding='same', name='block4_conv2')(
          x)
  x = Conv2D(
      512, (3, 3), activation='relu', padding='same', name='block4_conv3')(
          x)
  x = Conv2D(
      512, (3, 3), activation='relu', padding='same', name='block4_conv4')(
          x)
  x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

  # Block 5
  x = Conv2D(
      512, (3, 3), activation='relu', padding='same', name='block5_conv1')(
          x)
  x = Conv2D(
      512, (3, 3), activation='relu', padding='same', name='block5_conv2')(
          x)
  x = Conv2D(
      512, (3, 3), activation='relu', padding='same', name='block5_conv3')(
          x)
  x = Conv2D(
      512, (3, 3), activation='relu', padding='same', name='block5_conv4')(
          x)
  x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

  if include_top:
    # Classification block
    x = Flatten(name='flatten')(x)
    x = Dense(4096, activation='relu', name='fc1')(x)
    x = Dense(4096, activation='relu', name='fc2')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = get_source_inputs(input_tensor)
  else:
    inputs = img_input
  # Create model.
  model = Model(inputs, x, name='vgg19')

  # load weights
  if weights == 'imagenet':
    if include_top:
      weights_path = get_file(
          'vgg19_weights_tf_dim_ordering_tf_kernels.h5',
          WEIGHTS_PATH,
          cache_subdir='models',
          file_hash='cbe5617147190e668d6c5d5026f83318')
    else:
      weights_path = get_file(
          'vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5',
          WEIGHTS_PATH_NO_TOP,
          cache_subdir='models',
          file_hash='253f8cb515780f3b799900260a226db6')
    model.load_weights(weights_path)

  elif weights is not None:
    model.load_weights(weights)

  return model
예제 #9
0
def _clone_functional_model(model, input_tensors=None, share_weights=False):
    """Clone a functional `Model` instance.

  Model cloning is similar to calling a model on new inputs,
  except that it creates new layers (and thus new weights) instead
  of sharing the weights of the existing layers.

  Arguments:
      model: Instance of `Model`.
      input_tensors: optional list of input tensors
          to build the model upon. If not provided,
          placeholders will be created.
      share_weights: flag to enable sharing of non-input layers between the
          cloned and original model. Note this still clones the input layers.
          This is required when we create a per-replica copy of the model with
          distribution strategy; we want the weights to be shared but still
          feed inputs separately so we create new input layers.

  Returns:
      An instance of `Model` reproducing the behavior
      of the original model, on top of new inputs tensors,
      using newly instantiated weights.

  Raises:
      ValueError: in case of invalid `model` argument value.
  """
    if not isinstance(model, Model):
        raise ValueError(
            'Expected `model` argument '
            'to be a `Model` instance, got ', model)
    if isinstance(model, Sequential):
        raise ValueError(
            'Expected `model` argument '
            'to be a functional `Model` instance, '
            'got a `Sequential` instance instead:', model)

    layer_map = {}  # Cache for created layers.
    tensor_map = {}  # Map {reference_tensor: corresponding_tensor}
    if input_tensors is None:
        # Create placeholders to build the model on top of.
        input_tensors = []
        for layer in model._input_layers:
            input_tensor = Input(batch_shape=layer._batch_input_shape,
                                 dtype=layer.dtype,
                                 sparse=layer.sparse,
                                 name=layer.name)
            input_tensors.append(input_tensor)
            # Cache newly created input layer.
            newly_created_input_layer = input_tensor._keras_history[0]
            layer_map[layer] = newly_created_input_layer
    else:
        # Make sure that all input tensors come from a Keras layer.
        # If tensor comes from an input layer: cache the input layer.
        input_tensors = nest.flatten(input_tensors)
        input_tensors_ = []
        for i in range(len(input_tensors)):
            input_tensor = input_tensors[i]
            if not K.is_keras_tensor(input_tensor):
                original_input_layer = model._input_layers[i]
                name = original_input_layer.name
                input_tensor = Input(tensor=input_tensor,
                                     name='input_wrapper_for_' + name)

                input_tensors_.append(input_tensor)
                # Cache newly created input layer.
                newly_created_input_layer = input_tensor._keras_history[0]
                layer_map[original_input_layer] = newly_created_input_layer
            else:
                input_tensors_.append(input_tensor)
        input_tensors = input_tensors_

    for x, y in zip(model.inputs, input_tensors):
        tensor_map[x] = y

    # Iterated over every node in the reference model, in depth order.
    depth_keys = list(model._nodes_by_depth.keys())
    depth_keys.sort(reverse=True)
    for depth in depth_keys:
        nodes = model._nodes_by_depth[depth]
        for node in nodes:
            # Recover the corresponding layer.
            layer = node.outbound_layer

            # Get or create layer.
            if layer not in layer_map:
                if not share_weights:
                    # Clone layer.
                    new_layer = _clone_layer(layer)
                    layer_map[layer] = new_layer
                    layer = new_layer
            else:
                # Reuse previously cloned layer.
                layer = layer_map[layer]
                # Don't call InputLayer multiple times.
                if isinstance(layer, InputLayer):
                    continue

            # If all previous input tensors are available in tensor_map,
            # then call node.inbound_layer on them.
            if all(tensor in tensor_map
                   for tensor in nest.flatten(node.input_tensors)):
                computed_tensors = nest.map_structure(lambda t: tensor_map[t],
                                                      node.input_tensors)
                # Call layer.
                kwargs = node.arguments or {}
                output_tensors = layer(computed_tensors, **kwargs)

                for x, y in zip(nest.flatten(node.output_tensors),
                                nest.flatten(output_tensors)):
                    tensor_map[x] = y

    # Check that we did compute the model outputs,
    # then instantiate a new model from inputs and outputs.
    output_tensors = []
    for x in model.outputs:
        assert x in tensor_map, 'Could not compute output ' + str(x)
        output_tensors.append(tensor_map[x])

    input_tensors = nest.pack_sequence_as(model._nested_inputs, input_tensors)
    output_tensors = nest.pack_sequence_as(model._nested_outputs,
                                           output_tensors)
    return Model(input_tensors, output_tensors, name=model.name)
예제 #10
0
def _clone_sequential_model(model, input_tensors=None, share_weights=False):
    """Clone a `Sequential` model instance.

  Model cloning is similar to calling a model on new inputs,
  except that it creates new layers (and thus new weights) instead
  of sharing the weights of the existing layers.

  Arguments:
      model: Instance of `Sequential`.
      input_tensors: optional list of input tensors
          to build the model upon. If not provided,
          placeholders will be created.
      share_weights: flag to enable sharing of non-input layers between the
          cloned and original model. Note this still clones the input layers.
          This is required when we create a per-replica copy of the model with
          distribution strategy; we want the weights to be shared but still
          feed inputs separately so we create new input layers.

  Returns:
      An instance of `Sequential` reproducing the behavior
      of the original model, on top of new inputs tensors,
      using newly instantiated weights.

  Raises:
      ValueError: in case of invalid `model` argument value.
  """
    if not isinstance(model, Sequential):
        raise ValueError(
            'Expected `model` argument '
            'to be a `Sequential` model instance, '
            'but got:', model)

    # Use model._layers to ensure that all layers are cloned. The model's layers
    # property will exclude the initial InputLayer (if it exists) in the model,
    # resulting in a different Sequential model structure.
    if input_tensors is None:
        if share_weights:
            # In preserve weights case we still want the input layers to be cloned.
            layers = []
            for layer in model._layers:
                if isinstance(layer, InputLayer):
                    layers.append(_clone_layer(layer))
                else:
                    layers.append(layer)
        else:
            layers = [_clone_layer(layer) for layer in model._layers]
        return Sequential(layers=layers, name=model.name)
    else:
        # If input tensors are provided, the original model's InputLayer is
        # overwritten with a different InputLayer.
        layers = [
            layer for layer in model._layers
            if not isinstance(layer, InputLayer)
        ]
        if not share_weights:
            layers = [_clone_layer(layer) for layer in layers]
        if len(generic_utils.to_list(input_tensors)) != 1:
            raise ValueError('To clone a `Sequential` model, we expect '
                             ' at most one tensor '
                             'as part of `input_tensors`.')

        if isinstance(input_tensors, tuple):
            input_tensors = list(input_tensors)
        x = generic_utils.to_list(input_tensors)[0]
        if K.is_keras_tensor(x):
            origin_layer = x._keras_history[0]
            if isinstance(origin_layer, InputLayer):
                return Sequential(layers=[origin_layer] + layers,
                                  name=model.name)
            else:
                raise ValueError('Cannot clone a `Sequential` model on top '
                                 'of a tensor that comes from a Keras layer '
                                 'other than an `InputLayer`. '
                                 'Use the functional API instead.')
        input_tensor = Input(tensor=x, name='input_wrapper_for_' + str(x.name))
        input_layer = input_tensor._keras_history[0]
        return Sequential(layers=[input_layer] + layers, name=model.name)
예제 #11
0
def VGG19(
    include_top=True,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation='softmax',
):
    """Instantiates the VGG19 architecture.

  By default, it loads weights pre-trained on ImageNet. Check 'weights' for
  other options.

  This model can be built both with 'channels_first' data format
  (channels, height, width) or 'channels_last' data format
  (height, width, channels).

  The default input size for this model is 224x224.

  Caution: Be sure to properly pre-process your inputs to the application.
  Please see `applications.vgg19.preprocess_input` for an example.

  Arguments:
    include_top: whether to include the 3 fully-connected
      layers at the top of the network.
    weights: one of `None` (random initialization),
        'imagenet' (pre-training on ImageNet),
        or the path to the weights file to be loaded.
    input_tensor: optional Keras tensor
      (i.e. output of `layers.Input()`)
      to use as image input for the model.
    input_shape: optional shape tuple, only to be specified
      if `include_top` is False (otherwise the input shape
      has to be `(224, 224, 3)`
      (with `channels_last` data format)
      or `(3, 224, 224)` (with `channels_first` data format).
      It should have exactly 3 inputs channels,
      and width and height should be no smaller than 32.
      E.g. `(200, 200, 3)` would be one valid value.
    pooling: Optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` means that the output of the model will be
          the 4D tensor output of the
          last convolutional block.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a 2D tensor.
      - `max` means that global max pooling will
          be applied.
    classes: optional number of classes to classify images
      into, only to be specified if `include_top` is True, and
      if no `weights` argument is specified.
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.

  Returns:
    A `keras.Model` instance.

  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape.
    ValueError: if `classifier_activation` is not `softmax` or `None` when
      using a pretrained top layer.
  """
    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')
    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=224,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    # Block 1
    x = layers.Conv2D(64, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block1_conv1')(img_input)
    x = layers.Conv2D(64, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block1_conv2')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = layers.Conv2D(128, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block2_conv1')(x)
    x = layers.Conv2D(128, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block2_conv2')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv1')(x)
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv2')(x)
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv3')(x)
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv4')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv1')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv2')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv3')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv4')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv1')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv2')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv3')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv4')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

    if include_top:
        # Classification block
        x = layers.Flatten(name='flatten')(x)
        x = layers.Dense(4096, activation='relu', name='fc1')(x)
        x = layers.Dense(4096, activation='relu', name='fc2')(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = training.Model(inputs, x, name='vgg19')

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            weights_path = data_utils.get_file(
                'vgg19_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models',
                file_hash='cbe5617147190e668d6c5d5026f83318')
        else:
            weights_path = data_utils.get_file(
                'vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models',
                file_hash='253f8cb515780f3b799900260a226db6')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
예제 #12
0
def _clone_functional_model(model, input_tensors=None):
    """Clone a functional `Model` instance.

  Model cloning is similar to calling a model on new inputs,
  except that it creates new layers (and thus new weights) instead
  of sharing the weights of the existing layers.

  Arguments:
      model: Instance of `Model`.
      input_tensors: optional list of input tensors
          to build the model upon. If not provided,
          placeholders will be created.

  Returns:
      An instance of `Model` reproducing the behavior
      of the original model, on top of new inputs tensors,
      using newly instantiated weights.

  Raises:
      ValueError: in case of invalid `model` argument value.
  """
    if not isinstance(model, Model):
        raise ValueError(
            'Expected `model` argument '
            'to be a `Model` instance, got ', model)
    if isinstance(model, Sequential):
        raise ValueError(
            'Expected `model` argument '
            'to be a functional `Model` instance, '
            'got a `Sequential` instance instead:', model)

    layer_map = {}  # Cache for created layers.
    tensor_map = {}  # Map {reference_tensor: corresponding_tensor}
    if input_tensors is None:
        # Create placeholders to build the model on top of.
        input_layers = []
        input_tensors = []
        for layer in model._input_layers:
            input_tensor = Input(batch_shape=layer._batch_input_shape,
                                 dtype=layer.dtype,
                                 sparse=layer.sparse,
                                 name=layer.name)
            input_tensors.append(input_tensor)
            # Cache newly created input layer.
            newly_created_input_layer = input_tensor._keras_history[0]
            layer_map[layer] = newly_created_input_layer
        for original_input_layer, cloned_input_layer in zip(
                model._input_layers, input_layers):
            layer_map[original_input_layer] = cloned_input_layer
    else:
        # Make sure that all input tensors come from a Keras layer.
        # If tensor comes from an input layer: cache the input layer.
        input_tensors = generic_utils.to_list(input_tensors)
        input_tensors_ = []
        for i, x in enumerate(input_tensors):
            if not K.is_keras_tensor(x):
                name = model._input_layers[i].name
                input_tensor = Input(tensor=x,
                                     name='input_wrapper_for_' + name)
                input_tensors_.append(input_tensor)
                # Cache newly created input layer.
                original_input_layer = x._keras_history[0]
                newly_created_input_layer = input_tensor._keras_history[0]
                layer_map[original_input_layer] = newly_created_input_layer
            else:
                input_tensors_.append(x)
        input_tensors = input_tensors_

    for x, y in zip(model.inputs, input_tensors):
        tensor_map[x] = y

    # Iterated over every node in the reference model, in depth order.
    depth_keys = list(model._nodes_by_depth.keys())
    depth_keys.sort(reverse=True)
    for depth in depth_keys:
        nodes = model._nodes_by_depth[depth]
        for node in nodes:
            # Recover the corresponding layer.
            layer = node.outbound_layer

            # Get or create layer.
            if layer not in layer_map:
                # Clone layer.
                new_layer = layer.__class__.from_config(layer.get_config())
                layer_map[layer] = new_layer
                layer = new_layer
            else:
                # Reuse previously cloned layer.
                layer = layer_map[layer]
                # Don't call InputLayer multiple times.
                if isinstance(layer, InputLayer):
                    continue

            # Gather inputs to call the new layer.
            reference_input_tensors = node.input_tensors
            reference_output_tensors = node.output_tensors

            # If all previous input tensors are available in tensor_map,
            # then call node.inbound_layer on them.
            computed_tensors = []
            for x in reference_input_tensors:
                if x in tensor_map:
                    computed_tensors.append(tensor_map[x])

            if len(computed_tensors) == len(reference_input_tensors):
                # Call layer.
                if node.arguments:
                    kwargs = node.arguments
                else:
                    kwargs = {}
                if len(computed_tensors) == 1:
                    computed_tensor = computed_tensors[0]
                    output_tensors = generic_utils.to_list(
                        layer(computed_tensor, **kwargs))
                    computed_tensors = [computed_tensor]
                else:
                    computed_tensors = computed_tensors
                    output_tensors = generic_utils.to_list(
                        layer(computed_tensors, **kwargs))

                for x, y in zip(reference_output_tensors, output_tensors):
                    tensor_map[x] = y

    # Check that we did compute the model outputs,
    # then instantiate a new model from inputs and outputs.
    output_tensors = []
    for x in model.outputs:
        assert x in tensor_map, 'Could not compute output ' + str(x)
        output_tensors.append(tensor_map[x])
    return Model(input_tensors, output_tensors, name=model.name)
예제 #13
0
def DenseNetFCN(input_shape,
                nb_dense_block=5,
                growth_rate=16,
                nb_layers_per_block=4,
                reduction=0.0,
                dropout_rate=0.0,
                weight_decay=1e-4,
                init_conv_filters=48,
                include_top=True,
                weights=None,
                input_tensor=None,
                classes=1,
                activation='softmax',
                upsampling_conv=128,
                upsampling_type='deconv'):
    '''Instantiate the DenseNet FCN architecture.
        Note that when using TensorFlow,
        for best performance you should set
        `image_data_format='channels_last'` in your Keras config
        at ~/.keras/keras.json.
        # Arguments
            nb_dense_block: number of dense blocks to add to end (generally = 3)
            growth_rate: number of filters to add per dense block
            nb_layers_per_block: number of layers in each dense block.
                Can be a positive integer or a list.
                If positive integer, a set number of layers per dense block.
                If list, nb_layer is used as provided. Note that list size must
                be (nb_dense_block + 1)
            reduction: reduction factor of transition blocks.
                Note : reduction value is inverted to compute compression.
            dropout_rate: dropout rate
            init_conv_filters: number of layers in the initial convolution layer
            include_top: whether to include the fully-connected
                layer at the top of the network.
            weights: one of `None` (random initialization) or
                'cifar10' (pre-training on CIFAR-10)..
            input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
                to use as image input for the model.
            input_shape: optional shape tuple, only to be specified
                if `include_top` is False (otherwise the input shape
                has to be `(32, 32, 3)` (with `channels_last` dim ordering)
                or `(3, 32, 32)` (with `channels_first` dim ordering).
                It should have exactly 3 inputs channels,
                and width and height should be no smaller than 8.
                E.g. `(200, 200, 3)` would be one valid value.
            classes: optional number of classes to classify images
                into, only to be specified if `include_top` is True, and
                if no `weights` argument is specified.
            activation: Type of activation at the top layer. Can be one of 'softmax' or 'sigmoid'.
                Note that if sigmoid is used, classes must be 1.
            upsampling_conv: number of convolutional layers in upsampling via subpixel convolution
            upsampling_type: Can be one of 'upsampling', 'deconv' and
                'subpixel'. Defines type of upsampling algorithm used.
            batchsize: Fixed batch size. This is a temporary requirement for
                computation of output shape in the case of Deconvolution2D layers.
                Parameter will be removed in next iteration of Keras, which infers
                output shape of deconvolution layers automatically.
        # Returns
            A Keras model instance.
    '''

    if weights not in {None}:
        raise ValueError('The `weights` argument should be '
                         '`None` (random initialization) as no '
                         'model weights are provided.')

    upsampling_type = upsampling_type.lower()

    if upsampling_type not in ['upsampling', 'deconv', 'subpixel']:
        raise ValueError(
            'Parameter "upsampling_type" must be one of "upsampling", '
            '"deconv" or "subpixel".')

    if input_shape is None:
        raise ValueError(
            'For fully convolutional models, input shape must be supplied.')

    if type(nb_layers_per_block) is not list and nb_dense_block < 1:
        raise ValueError(
            'Number of dense layers per block must be greater than 1. Argument '
            'value was %d.' % (nb_layers_per_block))

    if activation not in ['softmax', 'sigmoid']:
        raise ValueError('activation must be one of "softmax" or "sigmoid"')

    if activation == 'sigmoid' and classes != 1:
        raise ValueError(
            'sigmoid activation can only be used when classes = 1')

    # Determine proper input shape
    min_size = 2**nb_dense_block

    if K.image_data_format() == 'channels_first':
        if input_shape is not None:
            if ((input_shape[1] is not None and input_shape[1] < min_size) or
                (input_shape[2] is not None and input_shape[2] < min_size)):
                raise ValueError('Input size must be at least ' +
                                 str(min_size) + 'x' + str(min_size) + ', got '
                                 '`input_shape=' + str(input_shape) + '`')
        else:
            input_shape = (classes, None, None)
    else:
        if input_shape is not None:
            if ((input_shape[0] is not None and input_shape[0] < min_size) or
                (input_shape[1] is not None and input_shape[1] < min_size)):
                raise ValueError('Input size must be at least ' +
                                 str(min_size) + 'x' + str(min_size) + ', got '
                                 '`input_shape=' + str(input_shape) + '`')
        else:
            input_shape = (None, None, classes)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    x = __create_fcn_dense_net(classes, img_input, include_top, nb_dense_block,
                               growth_rate, reduction, dropout_rate,
                               weight_decay, nb_layers_per_block,
                               upsampling_conv, upsampling_type,
                               init_conv_filters, input_shape, activation)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    inputs = img_input
    # Create model.
    model = Model(inputs, x, name='fcn-densenet')

    return model
예제 #14
0
def MobileNetV2(input_shape=None,
                alpha=1.0,
                include_top=True,
                weights='imagenet',
                input_tensor=None,
                pooling=None,
                classes=1000,
                classifier_activation='softmax',
                **kwargs):
  """Instantiates the MobileNetV2 architecture.

  Reference:
  - [MobileNetV2: Inverted Residuals and Linear Bottlenecks](
      https://arxiv.org/abs/1801.04381) (CVPR 2018)

  Optionally loads weights pre-trained on ImageNet.

  Note: each Keras Application expects a specific kind of input preprocessing.
  For MobileNetV2, call `tf.keras.applications.mobilenet_v2.preprocess_input`
  on your inputs before passing them to the model.

  Arguments:
    input_shape: Optional shape tuple, to be specified if you would
      like to use a model with an input image resolution that is not
      (224, 224, 3).
      It should have exactly 3 inputs channels (224, 224, 3).
      You can also omit this option if you would like
      to infer input_shape from an input_tensor.
      If you choose to include both input_tensor and input_shape then
      input_shape will be used if they match, if the shapes
      do not match then we will throw an error.
      E.g. `(160, 160, 3)` would be one valid value.
    alpha: Float between 0 and 1. controls the width of the network.
      This is known as the width multiplier in the MobileNetV2 paper,
      but the name is kept for consistency with `applications.MobileNetV1`
      model in Keras.
      - If `alpha` < 1.0, proportionally decreases the number
          of filters in each layer.
      - If `alpha` > 1.0, proportionally increases the number
          of filters in each layer.
      - If `alpha` = 1, default number of filters from the paper
          are used at each layer.
    include_top: Boolean, whether to include the fully-connected
      layer at the top of the network. Defaults to `True`.
    weights: String, one of `None` (random initialization),
      'imagenet' (pre-training on ImageNet),
      or the path to the weights file to be loaded.
    input_tensor: Optional Keras tensor (i.e. output of
      `layers.Input()`)
      to use as image input for the model.
    pooling: String, optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` means that the output of the model
          will be the 4D tensor output of the
          last convolutional block.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a
          2D tensor.
      - `max` means that global max pooling will
          be applied.
    classes: Integer, optional number of classes to classify images
      into, only to be specified if `include_top` is True, and
      if no `weights` argument is specified.
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.
    **kwargs: For backwards compatibility only.

  Returns:
    A `keras.Model` instance.

  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape or invalid alpha, rows when
      weights='imagenet'
    ValueError: if `classifier_activation` is not `softmax` or `None` when
      using a pretrained top layer.
  """
  global layers
  if 'layers' in kwargs:
    layers = kwargs.pop('layers')
  else:
    layers = VersionAwareLayers()
  if kwargs:
    raise ValueError('Unknown argument(s): %s' % (kwargs,))
  if not (weights in {'imagenet', None} or file_io.file_exists_v2(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as `"imagenet"` with `include_top` '
                     'as true, `classes` should be 1000')

  # Determine proper input shape and default size.
  # If both input_shape and input_tensor are used, they should match
  if input_shape is not None and input_tensor is not None:
    try:
      is_input_t_tensor = backend.is_keras_tensor(input_tensor)
    except ValueError:
      try:
        is_input_t_tensor = backend.is_keras_tensor(
            layer_utils.get_source_inputs(input_tensor))
      except ValueError:
        raise ValueError('input_tensor: ', input_tensor,
                         'is not type input_tensor')
    if is_input_t_tensor:
      if backend.image_data_format == 'channels_first':
        if backend.int_shape(input_tensor)[1] != input_shape[1]:
          raise ValueError('input_shape: ', input_shape, 'and input_tensor: ',
                           input_tensor,
                           'do not meet the same shape requirements')
      else:
        if backend.int_shape(input_tensor)[2] != input_shape[1]:
          raise ValueError('input_shape: ', input_shape, 'and input_tensor: ',
                           input_tensor,
                           'do not meet the same shape requirements')
    else:
      raise ValueError('input_tensor specified: ', input_tensor,
                       'is not a keras tensor')

  # If input_shape is None, infer shape from input_tensor
  if input_shape is None and input_tensor is not None:

    try:
      backend.is_keras_tensor(input_tensor)
    except ValueError:
      raise ValueError('input_tensor: ', input_tensor, 'is type: ',
                       type(input_tensor), 'which is not a valid type')

    if input_shape is None and not backend.is_keras_tensor(input_tensor):
      default_size = 224
    elif input_shape is None and backend.is_keras_tensor(input_tensor):
      if backend.image_data_format() == 'channels_first':
        rows = backend.int_shape(input_tensor)[2]
        cols = backend.int_shape(input_tensor)[3]
      else:
        rows = backend.int_shape(input_tensor)[1]
        cols = backend.int_shape(input_tensor)[2]

      if rows == cols and rows in [96, 128, 160, 192, 224]:
        default_size = rows
      else:
        default_size = 224

  # If input_shape is None and no input_tensor
  elif input_shape is None:
    default_size = 224

  # If input_shape is not None, assume default size
  else:
    if backend.image_data_format() == 'channels_first':
      rows = input_shape[1]
      cols = input_shape[2]
    else:
      rows = input_shape[0]
      cols = input_shape[1]

    if rows == cols and rows in [96, 128, 160, 192, 224]:
      default_size = rows
    else:
      default_size = 224

  input_shape = imagenet_utils.obtain_input_shape(
      input_shape,
      default_size=default_size,
      min_size=32,
      data_format=backend.image_data_format(),
      require_flatten=include_top,
      weights=weights)

  if backend.image_data_format() == 'channels_last':
    row_axis, col_axis = (0, 1)
  else:
    row_axis, col_axis = (1, 2)
  rows = input_shape[row_axis]
  cols = input_shape[col_axis]

  if weights == 'imagenet':
    if alpha not in [0.35, 0.50, 0.75, 1.0, 1.3, 1.4]:
      raise ValueError('If imagenet weights are being loaded, '
                       'alpha can be one of `0.35`, `0.50`, `0.75`, '
                       '`1.0`, `1.3` or `1.4` only.')

    if rows != cols or rows not in [96, 128, 160, 192, 224]:
      rows = 224
      logging.warning('`input_shape` is undefined or non-square, '
                      'or `rows` is not in [96, 128, 160, 192, 224].'
                      ' Weights for input shape (224, 224) will be'
                      ' loaded as the default.')

  if input_tensor is None:
    img_input = layers.Input(shape=input_shape)
  else:
    if not backend.is_keras_tensor(input_tensor):
      img_input = layers.Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1

  first_block_filters = _make_divisible(32 * alpha, 8)
  x = layers.Conv2D(
      first_block_filters,
      kernel_size=3,
      strides=(2, 2),
      padding='same',
      use_bias=False,
      name='Conv1')(img_input)
  x = layers.BatchNormalization(
      axis=channel_axis, epsilon=1e-3, momentum=0.999, name='bn_Conv1')(
          x)
  x = layers.ReLU(6., name='Conv1_relu')(x)

  x = _inverted_res_block(
      x, filters=16, alpha=alpha, stride=1, expansion=1, block_id=0)

  x = _inverted_res_block(
      x, filters=24, alpha=alpha, stride=2, expansion=6, block_id=1)
  x = _inverted_res_block(
      x, filters=24, alpha=alpha, stride=1, expansion=6, block_id=2)

  x = _inverted_res_block(
      x, filters=32, alpha=alpha, stride=2, expansion=6, block_id=3)
  x = _inverted_res_block(
      x, filters=32, alpha=alpha, stride=1, expansion=6, block_id=4)
  x = _inverted_res_block(
      x, filters=32, alpha=alpha, stride=1, expansion=6, block_id=5)

  x = _inverted_res_block(
      x, filters=64, alpha=alpha, stride=2, expansion=6, block_id=6)
  x = _inverted_res_block(
      x, filters=64, alpha=alpha, stride=1, expansion=6, block_id=7)
  x = _inverted_res_block(
      x, filters=64, alpha=alpha, stride=1, expansion=6, block_id=8)
  x = _inverted_res_block(
      x, filters=64, alpha=alpha, stride=1, expansion=6, block_id=9)

  x = _inverted_res_block(
      x, filters=96, alpha=alpha, stride=1, expansion=6, block_id=10)
  x = _inverted_res_block(
      x, filters=96, alpha=alpha, stride=1, expansion=6, block_id=11)
  x = _inverted_res_block(
      x, filters=96, alpha=alpha, stride=1, expansion=6, block_id=12)

  x = _inverted_res_block(
      x, filters=160, alpha=alpha, stride=2, expansion=6, block_id=13)
  x = _inverted_res_block(
      x, filters=160, alpha=alpha, stride=1, expansion=6, block_id=14)
  x = _inverted_res_block(
      x, filters=160, alpha=alpha, stride=1, expansion=6, block_id=15)

  x = _inverted_res_block(
      x, filters=320, alpha=alpha, stride=1, expansion=6, block_id=16)

  # no alpha applied to last conv as stated in the paper:
  # if the width multiplier is greater than 1 we
  # increase the number of output channels
  if alpha > 1.0:
    last_block_filters = _make_divisible(1280 * alpha, 8)
  else:
    last_block_filters = 1280

  x = layers.Conv2D(
      last_block_filters, kernel_size=1, use_bias=False, name='Conv_1')(
          x)
  x = layers.BatchNormalization(
      axis=channel_axis, epsilon=1e-3, momentum=0.999, name='Conv_1_bn')(
          x)
  x = layers.ReLU(6., name='out_relu')(x)

  if include_top:
    x = layers.GlobalAveragePooling2D()(x)
    imagenet_utils.validate_activation(classifier_activation, weights)
    x = layers.Dense(classes, activation=classifier_activation,
                     name='predictions')(x)

  else:
    if pooling == 'avg':
      x = layers.GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = layers.GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = layer_utils.get_source_inputs(input_tensor)
  else:
    inputs = img_input

  # Create model.
  model = training.Model(inputs, x, name='mobilenetv2_%0.2f_%s' % (alpha, rows))

  # Load weights.
  if weights == 'imagenet':
    if include_top:
      model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
                    str(alpha) + '_' + str(rows) + '.h5')
      weight_path = BASE_WEIGHT_PATH + model_name
      weights_path = data_utils.get_file(
          model_name, weight_path, cache_subdir='models')
    else:
      model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
                    str(alpha) + '_' + str(rows) + '_no_top' + '.h5')
      weight_path = BASE_WEIGHT_PATH + model_name
      weights_path = data_utils.get_file(
          model_name, weight_path, cache_subdir='models')
    model.load_weights(weights_path)
  elif weights is not None:
    model.load_weights(weights)

  return model
예제 #15
0
def ResNet50(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000,
             **kwargs):
    """Instantiates the ResNet50 architecture.
    Optionally loads weights pre-trained on ImageNet.
    Note that the data format convention used by the model is
    the one specified in your Keras config at `~/.keras/keras.json`.
    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 224)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 32.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional block.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional block, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.
    # Returns
        A Keras model instance.
    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    # global backend, layers, models, keras_utils
    # backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)

    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=32,
                                      data_format=backend.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    with tf.name_scope("input_layer") as scope:
        if input_tensor is None:
            img_input = layers.Input(shape=input_shape)
        else:
            if not backend.is_keras_tensor(input_tensor):
                img_input = layers.Input(tensor=input_tensor,
                                         shape=input_shape)
            else:
                img_input = input_tensor
        if backend.image_data_format() == 'channels_last':
            bn_axis = 3
        else:
            bn_axis = 1

    with tf.name_scope("resnet") as scope:
        x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(img_input)
        x = layers.Conv2D(64, (7, 7),
                          strides=(2, 2),
                          padding='valid',
                          kernel_initializer='he_normal',
                          name='conv1')(x)
        x = layers.BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
        x = layers.Activation('relu')(x)
        x = layers.ZeroPadding2D(padding=(1, 1), name='pool1_pad')(x)
        x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)

        with tf.name_scope("module_0") as scope:
            x = conv_block(x,
                           3, [64, 64, 256],
                           stage=2,
                           block='a',
                           strides=(1, 1))
            x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
            x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

        with tf.name_scope("module_1") as scope:
            x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
            x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
            x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
            x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

        with tf.name_scope("module_2") as scope:
            x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
            x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
            x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
            x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
            x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
            x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

        with tf.name_scope("module_3") as scope:
            x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
            x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
            x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

        with tf.name_scope("top_layer") as scope:
            if include_top:
                x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
                x = layers.Dense(classes, activation='softmax',
                                 name='fc1000')(x)
            else:
                if pooling == 'avg':
                    x = layers.GlobalAveragePooling2D()(x)
                elif pooling == 'max':
                    x = layers.GlobalMaxPooling2D()(x)
                else:
                    warnings.warn(
                        'The output shape of `ResNet50(include_top=False)` '
                        'has been changed since Keras 2.2.0.')

        with tf.name_scope("input_layer") as scope:
            # Ensure that the model takes into account
            # any potential predecessors of `input_tensor`.
            if input_tensor is not None:
                inputs = keras_utils.get_source_inputs(input_tensor)
            else:
                inputs = img_input

    # Create model.
    model = models.Model(inputs, x, name='resnet50')

    # Load weights.
    # if weights == 'imagenet':
    #     if include_top:
    #         weights_path = keras_utils.get_file(
    #             'resnet50_weights_tf_dim_ordering_tf_kernels.h5',
    #             WEIGHTS_PATH,
    #             cache_subdir='models',
    #             md5_hash='a7b3fe01876f51b976af0dea6bc144eb')
    #     else:
    #         weights_path = keras_utils.get_file(
    #             'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
    #             WEIGHTS_PATH_NO_TOP,
    #             cache_subdir='models',
    #             md5_hash='a268eb855778b3df3c7506639542a6af')
    #     model.load_weights(weights_path)
    #     if backend.backend() == 'theano':
    #         keras_utils.convert_all_kernels_in_model(model)
    # elif weights is not None:
    #     model.load_weights(weights)

    return model
예제 #16
0
def DenseNetFCN(input_shape, nb_dense_block=5, growth_rate=16, nb_layers_per_block=4,
                reduction=0.0, dropout_rate=0.0, weight_decay=1e-4, init_conv_filters=48,
                include_top=True, weights=None, input_tensor=None, classes=1, activation='softmax',
                upsampling_conv=128, upsampling_type='deconv'):
    '''Instantiate the DenseNet FCN architecture.
        Note that when using TensorFlow,
        for best performance you should set
        `image_data_format='channels_last'` in your Keras config
        at ~/.keras/keras.json.
        # Arguments
            nb_dense_block: number of dense blocks to add to end (generally = 3)
            growth_rate: number of filters to add per dense block
            nb_layers_per_block: number of layers in each dense block.
                Can be a positive integer or a list.
                If positive integer, a set number of layers per dense block.
                If list, nb_layer is used as provided. Note that list size must
                be (nb_dense_block + 1)
            reduction: reduction factor of transition blocks.
                Note : reduction value is inverted to compute compression.
            dropout_rate: dropout rate
            init_conv_filters: number of layers in the initial convolution layer
            include_top: whether to include the fully-connected
                layer at the top of the network.
            weights: one of `None` (random initialization) or
                'cifar10' (pre-training on CIFAR-10)..
            input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
                to use as image input for the model.
            input_shape: optional shape tuple, only to be specified
                if `include_top` is False (otherwise the input shape
                has to be `(32, 32, 3)` (with `channels_last` dim ordering)
                or `(3, 32, 32)` (with `channels_first` dim ordering).
                It should have exactly 3 inputs channels,
                and width and height should be no smaller than 8.
                E.g. `(200, 200, 3)` would be one valid value.
            classes: optional number of classes to classify images
                into, only to be specified if `include_top` is True, and
                if no `weights` argument is specified.
            activation: Type of activation at the top layer. Can be one of 'softmax' or 'sigmoid'.
                Note that if sigmoid is used, classes must be 1.
            upsampling_conv: number of convolutional layers in upsampling via subpixel convolution
            upsampling_type: Can be one of 'upsampling', 'deconv' and
                'subpixel'. Defines type of upsampling algorithm used.
            batchsize: Fixed batch size. This is a temporary requirement for
                computation of output shape in the case of Deconvolution2D layers.
                Parameter will be removed in next iteration of Keras, which infers
                output shape of deconvolution layers automatically.
        # Returns
            A Keras model instance.
    '''

    if weights not in {None}:
        raise ValueError('The `weights` argument should be '
                         '`None` (random initialization) as no '
                         'model weights are provided.')

    upsampling_type = upsampling_type.lower()

    if upsampling_type not in ['upsampling', 'deconv', 'subpixel']:
        raise ValueError('Parameter "upsampling_type" must be one of "upsampling", '
                         '"deconv" or "subpixel".')

    if input_shape is None:
        raise ValueError('For fully convolutional models, input shape must be supplied.')

    if type(nb_layers_per_block) is not list and nb_dense_block < 1:
        raise ValueError('Number of dense layers per block must be greater than 1. Argument '
                         'value was %d.' % (nb_layers_per_block))

    if activation not in ['softmax', 'sigmoid']:
        raise ValueError('activation must be one of "softmax" or "sigmoid"')

    if activation == 'sigmoid' and classes != 1:
        raise ValueError('sigmoid activation can only be used when classes = 1')

    # Determine proper input shape
    min_size = 2 ** nb_dense_block

    if K.image_data_format() == 'channels_first':
        if input_shape is not None:
            if ((input_shape[1] is not None and input_shape[1] < min_size) or
                    (input_shape[2] is not None and input_shape[2] < min_size)):
                raise ValueError('Input size must be at least ' +
                                 str(min_size) + 'x' + str(min_size) + ', got '
                                                                       '`input_shape=' + str(input_shape) + '`')
        else:
            input_shape = (classes, None, None)
    else:
        if input_shape is not None:
            if ((input_shape[0] is not None and input_shape[0] < min_size) or
                    (input_shape[1] is not None and input_shape[1] < min_size)):
                raise ValueError('Input size must be at least ' +
                                 str(min_size) + 'x' + str(min_size) + ', got '
                                                                       '`input_shape=' + str(input_shape) + '`')
        else:
            input_shape = (None, None, classes)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    x = __create_fcn_dense_net(classes, img_input, include_top, nb_dense_block,
                               growth_rate, reduction, dropout_rate, weight_decay,
                               nb_layers_per_block, upsampling_conv, upsampling_type,
                               init_conv_filters, input_shape, activation)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    inputs = img_input
    # Create model.
    model = Model(inputs, x, name='fcn-densenet')

    return model
예제 #17
0
def DenseNet(blocks,
             include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000):
  """Instantiates the DenseNet architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format='channels_last'` in your Keras config
  at ~/.keras/keras.json.

  The model and the weights are compatible with
  TensorFlow, Theano, and CNTK. The data format
  convention used by the model is the one
  specified in your Keras config file.

  Arguments:
      blocks: numbers of building blocks for the four dense layers.
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization),
            'imagenet' (pre-training on ImageNet),
            or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or `(3, 224, 224)` (with `channels_first` data format).
          It should have exactly 3 inputs channels.
      pooling: optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
  if not (weights in {'imagenet', None} or os.path.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as imagenet with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=224,
      min_size=221,
      data_format=K.image_data_format(),
      require_flatten=include_top,
      weights=weights)

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    if not K.is_keras_tensor(input_tensor):
      img_input = Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  bn_axis = 3 if K.image_data_format() == 'channels_last' else 1

  x = ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input)
  x = Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x)
  x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='conv1/bn')(x)
  x = Activation('relu', name='conv1/relu')(x)
  x = ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
  x = MaxPooling2D(3, strides=2, name='pool1')(x)

  x = dense_block(x, blocks[0], name='conv2')
  x = transition_block(x, 0.5, name='pool2')
  x = dense_block(x, blocks[1], name='conv3')
  x = transition_block(x, 0.5, name='pool3')
  x = dense_block(x, blocks[2], name='conv4')
  x = transition_block(x, 0.5, name='pool4')
  x = dense_block(x, blocks[3], name='conv5')

  x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='bn')(x)

  if include_top:
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='fc1000')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D(name='avg_pool')(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D(name='max_pool')(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = layer_utils.get_source_inputs(input_tensor)
  else:
    inputs = img_input

  # Create model.
  if blocks == [6, 12, 24, 16]:
    model = Model(inputs, x, name='densenet121')
  elif blocks == [6, 12, 32, 32]:
    model = Model(inputs, x, name='densenet169')
  elif blocks == [6, 12, 48, 32]:
    model = Model(inputs, x, name='densenet201')
  else:
    model = Model(inputs, x, name='densenet')

  # Load weights.
  if weights == 'imagenet':
    if include_top:
      if blocks == [6, 12, 24, 16]:
        weights_path = get_file(
            'densenet121_weights_tf_dim_ordering_tf_kernels.h5',
            DENSENET121_WEIGHT_PATH,
            cache_subdir='models',
            file_hash='0962ca643bae20f9b6771cb844dca3b0')
      elif blocks == [6, 12, 32, 32]:
        weights_path = get_file(
            'densenet169_weights_tf_dim_ordering_tf_kernels.h5',
            DENSENET169_WEIGHT_PATH,
            cache_subdir='models',
            file_hash='bcf9965cf5064a5f9eb6d7dc69386f43')
      elif blocks == [6, 12, 48, 32]:
        weights_path = get_file(
            'densenet201_weights_tf_dim_ordering_tf_kernels.h5',
            DENSENET201_WEIGHT_PATH,
            cache_subdir='models',
            file_hash='7bb75edd58cb43163be7e0005fbe95ef')
    else:
      if blocks == [6, 12, 24, 16]:
        weights_path = get_file(
            'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5',
            DENSENET121_WEIGHT_PATH_NO_TOP,
            cache_subdir='models',
            file_hash='4912a53fbd2a69346e7f2c0b5ec8c6d3')
      elif blocks == [6, 12, 32, 32]:
        weights_path = get_file(
            'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5',
            DENSENET169_WEIGHT_PATH_NO_TOP,
            cache_subdir='models',
            file_hash='50662582284e4cf834ce40ab4dfa58c6')
      elif blocks == [6, 12, 48, 32]:
        weights_path = get_file(
            'densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5',
            DENSENET201_WEIGHT_PATH_NO_TOP,
            cache_subdir='models',
            file_hash='1c2de60ee40562448dbac34a0737e798')
    model.load_weights(weights_path)
  elif weights is not None:
    model.load_weights(weights)

  return model
예제 #18
0
def DenseNet(blocks,
             include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000):
    """Instantiates the DenseNet architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format='channels_last'` in your Keras config
  at ~/.keras/keras.json.

  The model and the weights are compatible with
  TensorFlow, Theano, and CNTK. The data format
  convention used by the model is the one
  specified in your Keras config file.

  Arguments:
      blocks: numbers of building blocks for the four dense layers.
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization),
            'imagenet' (pre-training on ImageNet),
            or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or `(3, 224, 224)` (with `channels_first` data format).
          It should have exactly 3 inputs channels.
      pooling: optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=221,
                                      data_format=K.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    bn_axis = 3 if K.image_data_format() == 'channels_last' else 1

    x = ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input)
    x = Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x)
    x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='conv1/bn')(x)
    x = Activation('relu', name='conv1/relu')(x)
    x = ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
    x = MaxPooling2D(3, strides=2, name='pool1')(x)

    x = dense_block(x, blocks[0], name='conv2')
    x = transition_block(x, 0.5, name='pool2')
    x = dense_block(x, blocks[1], name='conv3')
    x = transition_block(x, 0.5, name='pool3')
    x = dense_block(x, blocks[2], name='conv4')
    x = transition_block(x, 0.5, name='pool4')
    x = dense_block(x, blocks[3], name='conv5')

    x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='bn')(x)

    if include_top:
        x = GlobalAveragePooling2D(name='avg_pool')(x)
        x = Dense(classes, activation='softmax', name='fc1000')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D(name='avg_pool')(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D(name='max_pool')(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    if blocks == [6, 12, 24, 16]:
        model = Model(inputs, x, name='densenet121')
    elif blocks == [6, 12, 32, 32]:
        model = Model(inputs, x, name='densenet169')
    elif blocks == [6, 12, 48, 32]:
        model = Model(inputs, x, name='densenet201')
    else:
        model = Model(inputs, x, name='densenet')

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            if blocks == [6, 12, 24, 16]:
                weights_path = get_file(
                    'densenet121_weights_tf_dim_ordering_tf_kernels.h5',
                    DENSENET121_WEIGHT_PATH,
                    cache_subdir='models',
                    file_hash='0962ca643bae20f9b6771cb844dca3b0')
            elif blocks == [6, 12, 32, 32]:
                weights_path = get_file(
                    'densenet169_weights_tf_dim_ordering_tf_kernels.h5',
                    DENSENET169_WEIGHT_PATH,
                    cache_subdir='models',
                    file_hash='bcf9965cf5064a5f9eb6d7dc69386f43')
            elif blocks == [6, 12, 48, 32]:
                weights_path = get_file(
                    'densenet201_weights_tf_dim_ordering_tf_kernels.h5',
                    DENSENET201_WEIGHT_PATH,
                    cache_subdir='models',
                    file_hash='7bb75edd58cb43163be7e0005fbe95ef')
        else:
            if blocks == [6, 12, 24, 16]:
                weights_path = get_file(
                    'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5',
                    DENSENET121_WEIGHT_PATH_NO_TOP,
                    cache_subdir='models',
                    file_hash='4912a53fbd2a69346e7f2c0b5ec8c6d3')
            elif blocks == [6, 12, 32, 32]:
                weights_path = get_file(
                    'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5',
                    DENSENET169_WEIGHT_PATH_NO_TOP,
                    cache_subdir='models',
                    file_hash='50662582284e4cf834ce40ab4dfa58c6')
            elif blocks == [6, 12, 48, 32]:
                weights_path = get_file(
                    'densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5',
                    DENSENET201_WEIGHT_PATH_NO_TOP,
                    cache_subdir='models',
                    file_hash='1c2de60ee40562448dbac34a0737e798')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
예제 #19
0
def MobileNet(input_shape=None,
              alpha=1.0,
              depth_multiplier=1,
              dropout=1e-3,
              include_top=True,
              weights='imagenet',
              input_tensor=None,
              pooling=None,
              classes=1000):
  """Instantiates the MobileNet architecture.

  To load a MobileNet model via `load_model`, import the custom
  objects `relu6` and pass them to the `custom_objects` parameter.
  E.g.
  model = load_model('mobilenet.h5', custom_objects={
                     'relu6': mobilenet.relu6})

  Arguments:
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or (3, 224, 224) (with `channels_first` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 32.
          E.g. `(200, 200, 3)` would be one valid value.
      alpha: controls the width of the network.
          - If `alpha` < 1.0, proportionally decreases the number
              of filters in each layer.
          - If `alpha` > 1.0, proportionally increases the number
              of filters in each layer.
          - If `alpha` = 1, default number of filters from the paper
               are used at each layer.
      depth_multiplier: depth multiplier for depthwise convolution
          (also called the resolution multiplier)
      dropout: dropout rate
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization),
            'imagenet' (pre-training on ImageNet),
            or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor (i.e. output of
          `layers.Input()`)
          to use as image input for the model.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model
              will be the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a
              2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
      RuntimeError: If attempting to run this model with a
          backend that does not support separable convolutions.
  """

  if not (weights in {'imagenet', None} or os.path.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as ImageNet with `include_top` '
                     'as true, `classes` should be 1000')

  # Determine proper input shape and default size.
  if input_shape is None:
    default_size = 224
  else:
    if K.image_data_format() == 'channels_first':
      rows = input_shape[1]
      cols = input_shape[2]
    else:
      rows = input_shape[0]
      cols = input_shape[1]

    if rows == cols and rows in [128, 160, 192, 224]:
      default_size = rows
    else:
      default_size = 224

  input_shape = _obtain_input_shape(
      input_shape,
      default_size=default_size,
      min_size=32,
      data_format=K.image_data_format(),
      require_flatten=include_top,
      weights=weights)

  if K.image_data_format() == 'channels_last':
    row_axis, col_axis = (0, 1)
  else:
    row_axis, col_axis = (1, 2)
  rows = input_shape[row_axis]
  cols = input_shape[col_axis]

  if weights == 'imagenet':
    if depth_multiplier != 1:
      raise ValueError('If imagenet weights are being loaded, '
                       'depth multiplier must be 1')

    if alpha not in [0.25, 0.50, 0.75, 1.0]:
      raise ValueError('If imagenet weights are being loaded, '
                       'alpha can be one of'
                       '`0.25`, `0.50`, `0.75` or `1.0` only.')

    if rows != cols or rows not in [128, 160, 192, 224]:
      if rows is None:
        rows = 224
        logging.warning('MobileNet shape is undefined.'
                        ' Weights for input shape (224, 224) will be loaded.')
      else:
        raise ValueError('If imagenet weights are being loaded, '
                         'input must have a static square shape (one of '
                         '(128, 128), (160, 160), (192, 192), or (224, 224)).'
                         ' Input shape provided = %s' % (input_shape,))

  if K.image_data_format() != 'channels_last':
    logging.warning('The MobileNet family of models is only available '
                    'for the input data format "channels_last" '
                    '(width, height, channels). '
                    'However your settings specify the default '
                    'data format "channels_first" (channels, width, height).'
                    ' You should set `image_data_format="channels_last"` '
                    'in your Keras config located at ~/.keras/keras.json. '
                    'The model being returned right now will expect inputs '
                    'to follow the "channels_last" data format.')
    K.set_image_data_format('channels_last')
    old_data_format = 'channels_first'
  else:
    old_data_format = None

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    if not K.is_keras_tensor(input_tensor):
      img_input = Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  x = _conv_block(img_input, 32, alpha, strides=(2, 2))
  x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)

  x = _depthwise_conv_block(
      x, 128, alpha, depth_multiplier, strides=(2, 2), block_id=2)
  x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)

  x = _depthwise_conv_block(
      x, 256, alpha, depth_multiplier, strides=(2, 2), block_id=4)
  x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)

  x = _depthwise_conv_block(
      x, 512, alpha, depth_multiplier, strides=(2, 2), block_id=6)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)

  x = _depthwise_conv_block(
      x, 1024, alpha, depth_multiplier, strides=(2, 2), block_id=12)
  x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)

  if include_top:
    if K.image_data_format() == 'channels_first':
      shape = (int(1024 * alpha), 1, 1)
    else:
      shape = (1, 1, int(1024 * alpha))

    x = GlobalAveragePooling2D()(x)
    x = Reshape(shape, name='reshape_1')(x)
    x = Dropout(dropout, name='dropout')(x)
    x = Conv2D(classes, (1, 1), padding='same', name='conv_preds')(x)
    x = Activation('softmax', name='act_softmax')(x)
    x = Reshape((classes,), name='reshape_2')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = get_source_inputs(input_tensor)
  else:
    inputs = img_input

  # Create model.
  model = Model(inputs, x, name='mobilenet_%0.2f_%s' % (alpha, rows))

  # load weights
  if weights == 'imagenet':
    if K.image_data_format() == 'channels_first':
      raise ValueError('Weights for "channels_first" format '
                       'are not available.')
    if alpha == 1.0:
      alpha_text = '1_0'
    elif alpha == 0.75:
      alpha_text = '7_5'
    elif alpha == 0.50:
      alpha_text = '5_0'
    else:
      alpha_text = '2_5'

    if include_top:
      model_name = 'mobilenet_%s_%d_tf.h5' % (alpha_text, rows)
      weigh_path = BASE_WEIGHT_PATH + model_name
      weights_path = get_file(model_name, weigh_path, cache_subdir='models')
    else:
      model_name = 'mobilenet_%s_%d_tf_no_top.h5' % (alpha_text, rows)
      weigh_path = BASE_WEIGHT_PATH + model_name
      weights_path = get_file(model_name, weigh_path, cache_subdir='models')
    model.load_weights(weights_path)
  elif weights is not None:
    model.load_weights(weights)

  if old_data_format:
    K.set_image_data_format(old_data_format)
  return model
예제 #20
0
def NASNet(input_shape=None,
           penultimate_filters=4032,
           num_blocks=6,
           stem_block_filters=96,
           skip_reduction=True,
           filter_multiplier=2,
           include_top=True,
           weights=None,
           input_tensor=None,
           pooling=None,
           classes=1000,
           default_size=None,
           classifier_activation='softmax'):
    """Instantiates a NASNet model.

  Reference:
  - [Learning Transferable Architectures for Scalable Image Recognition](
      https://arxiv.org/abs/1707.07012) (CVPR 2018)

  Optionally loads weights pre-trained on ImageNet.
  Note that the data format convention used by the model is
  the one specified in your Keras config at `~/.keras/keras.json`.

  Caution: Be sure to properly pre-process your inputs to the application.
  Please see `applications.nasnet.preprocess_input` for an example.

  Arguments:
    input_shape: Optional shape tuple, the input shape
      is by default `(331, 331, 3)` for NASNetLarge and
      `(224, 224, 3)` for NASNetMobile.
      It should have exactly 3 input channels,
      and width and height should be no smaller than 32.
      E.g. `(224, 224, 3)` would be one valid value.
    penultimate_filters: Number of filters in the penultimate layer.
      NASNet models use the notation `NASNet (N @ P)`, where:
          -   N is the number of blocks
          -   P is the number of penultimate filters
    num_blocks: Number of repeated blocks of the NASNet model.
      NASNet models use the notation `NASNet (N @ P)`, where:
          -   N is the number of blocks
          -   P is the number of penultimate filters
    stem_block_filters: Number of filters in the initial stem block
    skip_reduction: Whether to skip the reduction step at the tail
      end of the network.
    filter_multiplier: Controls the width of the network.
      - If `filter_multiplier` < 1.0, proportionally decreases the number
          of filters in each layer.
      - If `filter_multiplier` > 1.0, proportionally increases the number
          of filters in each layer.
      - If `filter_multiplier` = 1, default number of filters from the
           paper are used at each layer.
    include_top: Whether to include the fully-connected
      layer at the top of the network.
    weights: `None` (random initialization) or
        `imagenet` (ImageNet weights)
    input_tensor: Optional Keras tensor (i.e. output of
      `layers.Input()`)
      to use as image input for the model.
    pooling: Optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` means that the output of the model
          will be the 4D tensor output of the
          last convolutional block.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a
          2D tensor.
      - `max` means that global max pooling will
          be applied.
    classes: Optional number of classes to classify images
      into, only to be specified if `include_top` is True, and
      if no `weights` argument is specified.
    default_size: Specifies the default image size of the model
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.

  Returns:
    A `keras.Model` instance.

  Raises:
    ValueError: In case of invalid argument for `weights`,
      invalid input shape or invalid `penultimate_filters` value.
    ValueError: if `classifier_activation` is not `softmax` or `None` when
      using a pretrained top layer.
  """
    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top` '
            'as true, `classes` should be 1000')

    if (isinstance(input_shape, tuple) and None in input_shape
            and weights == 'imagenet'):
        raise ValueError('When specifying the input shape of a NASNet'
                         ' and loading `ImageNet` weights, '
                         'the input_shape argument must be static '
                         '(no None entries). Got: `input_shape=' +
                         str(input_shape) + '`.')

    if default_size is None:
        default_size = 331

    # Determine proper input shape and default size.
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=default_size,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=True,
        weights=weights)

    if backend.image_data_format() != 'channels_last':
        logging.warning(
            'The NASNet family of models is only available '
            'for the input data format "channels_last" '
            '(width, height, channels). '
            'However your settings specify the default '
            'data format "channels_first" (channels, width, height).'
            ' You should set `image_data_format="channels_last"` '
            'in your Keras config located at ~/.keras/keras.json. '
            'The model being returned right now will expect inputs '
            'to follow the "channels_last" data format.')
        backend.set_image_data_format('channels_last')
        old_data_format = 'channels_first'
    else:
        old_data_format = None

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    if penultimate_filters % (24 * (filter_multiplier**2)) != 0:
        raise ValueError(
            'For NASNet-A models, the `penultimate_filters` must be a multiple '
            'of 24 * (`filter_multiplier` ** 2). Current value: %d' %
            penultimate_filters)

    channel_dim = 1 if backend.image_data_format() == 'channels_first' else -1
    filters = penultimate_filters // 24

    x = layers.Conv2D(stem_block_filters, (3, 3),
                      strides=(2, 2),
                      padding='valid',
                      use_bias=False,
                      name='stem_conv1',
                      kernel_initializer='he_normal')(img_input)

    x = layers.BatchNormalization(axis=channel_dim,
                                  momentum=0.9997,
                                  epsilon=1e-3,
                                  name='stem_bn1')(x)

    p = None
    x, p = _reduction_a_cell(x,
                             p,
                             filters // (filter_multiplier**2),
                             block_id='stem_1')
    x, p = _reduction_a_cell(x,
                             p,
                             filters // filter_multiplier,
                             block_id='stem_2')

    for i in range(num_blocks):
        x, p = _normal_a_cell(x, p, filters, block_id='%d' % (i))

    x, p0 = _reduction_a_cell(x,
                              p,
                              filters * filter_multiplier,
                              block_id='reduce_%d' % (num_blocks))

    p = p0 if not skip_reduction else p

    for i in range(num_blocks):
        x, p = _normal_a_cell(x,
                              p,
                              filters * filter_multiplier,
                              block_id='%d' % (num_blocks + i + 1))

    x, p0 = _reduction_a_cell(x,
                              p,
                              filters * filter_multiplier**2,
                              block_id='reduce_%d' % (2 * num_blocks))

    p = p0 if not skip_reduction else p

    for i in range(num_blocks):
        x, p = _normal_a_cell(x,
                              p,
                              filters * filter_multiplier**2,
                              block_id='%d' % (2 * num_blocks + i + 1))

    x = layers.Activation('relu')(x)

    if include_top:
        x = layers.GlobalAveragePooling2D()(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    model = training.Model(inputs, x, name='NASNet')

    # Load weights.
    if weights == 'imagenet':
        if default_size == 224:  # mobile version
            if include_top:
                weights_path = data_utils.get_file(
                    'nasnet_mobile.h5',
                    NASNET_MOBILE_WEIGHT_PATH,
                    cache_subdir='models',
                    file_hash='020fb642bf7360b370c678b08e0adf61')
            else:
                weights_path = data_utils.get_file(
                    'nasnet_mobile_no_top.h5',
                    NASNET_MOBILE_WEIGHT_PATH_NO_TOP,
                    cache_subdir='models',
                    file_hash='1ed92395b5b598bdda52abe5c0dbfd63')
            model.load_weights(weights_path)
        elif default_size == 331:  # large version
            if include_top:
                weights_path = data_utils.get_file(
                    'nasnet_large.h5',
                    NASNET_LARGE_WEIGHT_PATH,
                    cache_subdir='models',
                    file_hash='11577c9a518f0070763c2b964a382f17')
            else:
                weights_path = data_utils.get_file(
                    'nasnet_large_no_top.h5',
                    NASNET_LARGE_WEIGHT_PATH_NO_TOP,
                    cache_subdir='models',
                    file_hash='d81d89dc07e6e56530c4e77faddd61b5')
            model.load_weights(weights_path)
        else:
            raise ValueError(
                'ImageNet weights can only be loaded with NASNetLarge'
                ' or NASNetMobile')
    elif weights is not None:
        model.load_weights(weights)

    if old_data_format:
        backend.set_image_data_format(old_data_format)

    return model
예제 #21
0
def ResNet50(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000):
  """Instantiates the ResNet50 architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format='channels_last'` in your Keras config
  at ~/.keras/keras.json.

  The model and the weights are compatible with both
  TensorFlow and Theano. The data format
  convention used by the model is the one
  specified in your Keras config file.

  Arguments:
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization),
            'imagenet' (pre-training on ImageNet),
            or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or `(3, 224, 224)` (with `channels_first` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 197.
          E.g. `(200, 200, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
  if not (weights in {'imagenet', None} or os.path.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as imagenet with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=224,
      min_size=197,
      data_format=K.image_data_format(),
      require_flatten=include_top,
      weights=weights)

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    if not K.is_keras_tensor(input_tensor):
      img_input = Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor
  if K.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1

  x = Conv2D(
      64, (7, 7), strides=(2, 2), padding='same', name='conv1')(img_input)
  x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
  x = Activation('relu')(x)
  x = MaxPooling2D((3, 3), strides=(2, 2))(x)

  x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
  x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
  x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

  x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

  x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

  x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
  x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
  x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

  x = AveragePooling2D((7, 7), name='avg_pool')(x)

  if include_top:
    x = Flatten()(x)
    x = Dense(classes, activation='softmax', name='fc1000')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = get_source_inputs(input_tensor)
  else:
    inputs = img_input
  # Create model.
  model = Model(inputs, x, name='resnet50')

  # load weights
  if weights == 'imagenet':
    if include_top:
      weights_path = get_file(
          'resnet50_weights_tf_dim_ordering_tf_kernels.h5',
          WEIGHTS_PATH,
          cache_subdir='models',
          md5_hash='a7b3fe01876f51b976af0dea6bc144eb')
    else:
      weights_path = get_file(
          'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
          WEIGHTS_PATH_NO_TOP,
          cache_subdir='models',
          md5_hash='a268eb855778b3df3c7506639542a6af')
    model.load_weights(weights_path)
  elif weights is not None:
    model.load_weights(weights)

  return model
예제 #22
0
def SqueezeNet(include_top=True,
               weights='imagenet',
               input_tensor=None,
               input_shape=None,
               pooling=None,
               classes=1000):
    """Instantiates the SqueezeNet architecture.
    """

    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    input_shape = _obtain_input_shape(input_shape,
                                      default_size=227,
                                      min_size=48,
                                      data_format=K.image_data_format(),
                                      require_flatten=include_top)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    x = Convolution2D(64, (3, 3),
                      strides=(2, 2),
                      padding='valid',
                      name='conv1')(img_input)
    x = Activation('relu', name='relu_conv1')(x)
    x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='pool1')(x)

    x = fire_module(x, fire_id=2, squeeze=16, expand=64)
    x = fire_module(x, fire_id=3, squeeze=16, expand=64)
    x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='pool3')(x)

    x = fire_module(x, fire_id=4, squeeze=32, expand=128)
    x = fire_module(x, fire_id=5, squeeze=32, expand=128)
    x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), name='pool5')(x)

    x = fire_module(x, fire_id=6, squeeze=48, expand=192)
    x = fire_module(x, fire_id=7, squeeze=48, expand=192)
    x = fire_module(x, fire_id=8, squeeze=64, expand=256)
    x = fire_module(x, fire_id=9, squeeze=64, expand=256)

    if include_top:
        # It's not obvious where to cut the network...
        # Could do the 8th or 9th layer... some work recommends cutting earlier layers.

        x = Dropout(0.5, name='drop9')(x)

        x = Convolution2D(classes, (1, 1), padding='valid', name='conv10')(x)
        x = Activation('relu', name='relu_conv10')(x)
        x = GlobalAveragePooling2D()(x)
        x = Activation('softmax', name='loss')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)
        elif pooling == None:
            pass
        else:
            raise ValueError("Unknown argument for 'pooling'=" + pooling)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = tensorflow.keras.utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    model = Model(inputs, x, name='squeezenet')

    # load weights
    if weights == 'imagenet':
        if include_top:
            # weights_path = '/tmp/squeezenet_weights_tf_dim_ordering_tf_kernels.h5'
            weights_path = get_file(
                'squeezenet_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_dir='/tmp/')
        else:
            weights_path = get_file(
                'squeezenet_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_dir='/tmp/')

        model.load_weights(weights_path)
        if K.backend() == 'theano':
            layer_utils.convert_all_kernels_in_model(model)

        if K.image_data_format() == 'channels_first':
            pass
    return model
예제 #23
0
def SEInceptionResNetV2(include_top=True,
                        weights=None,
                        input_tensor=None,
                        input_shape=None,
                        pooling=None,
                        classes=1000):
    """Instantiates the SE-Inception-ResNet v2 architecture.
    Optionally loads weights pre-trained on ImageNet.
    Note that when using TensorFlow, for best performance you should
    set `"image_data_format": "channels_last"` in your Keras config
    at `~/.keras/keras.json`.
    The weights and the weights are compatible with both TensorFlow and Theano
    backends (but not CNTK). The insight_data format convention used by the weights is
    the one specified in your Keras config file.
    Note that the default input image size for this weights is 299x299, instead
    of 224x224 as in the VGG16 and ResNet models. Also, the input preprocessing
    function is different (i.e., do not use `imagenet_utils.preprocess_input()`
    with this weights. Use `preprocess_input()` defined in this module instead).
    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization)
            or `'imagenet'` (pre-training on ImageNet).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the weights.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is `False` (otherwise the input shape
            has to be `(299, 299, 3)` (with `'channels_last'` insight_data format)
            or `(3, 299, 299)` (with `'channels_first'` insight_data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 139.
            E.g. `(150, 150, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the weights will be
                the 4D tensor output of the last convolutional layer.
            - `'avg'` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the weights will be a 2D tensor.
            - `'max'` means that global max pooling will be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is `True`, and
            if no `weights` argument is specified.
    # Returns
        A Keras `Model` instance.
    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
        RuntimeError: If attempting to run this weights with an unsupported backend.
    """
    if K.backend() in {'cntk'}:
        raise RuntimeError(
            '{backend} backend is currently unsupported for this weights.'.
            format(backend=K.backend()))

    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=299,
                                      min_size=139,
                                      data_format=K.image_data_format(),
                                      require_flatten=False,
                                      weights=weights)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # Stem block: 35 x 35 x 192
    x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid')
    x = conv2d_bn(x, 32, 3, padding='valid')
    x = conv2d_bn(x, 64, 3)
    x = MaxPooling2D(3, strides=2)(x)
    x = conv2d_bn(x, 80, 1, padding='valid')
    x = conv2d_bn(x, 192, 3, padding='valid')
    x = MaxPooling2D(3, strides=2)(x)

    # Mixed 5b (Inception-A block): 35 x 35 x 320
    branch_0 = conv2d_bn(x, 96, 1)
    branch_1 = conv2d_bn(x, 48, 1)
    branch_1 = conv2d_bn(branch_1, 64, 5)
    branch_2 = conv2d_bn(x, 64, 1)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_pool = AveragePooling2D(3, strides=1, padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
    x = Concatenate(axis=channel_axis, name='mixed_5b')(branches)

    # squeeze and excite block
    x = squeeze_excite_block(x)

    # 10x block35 (Inception-ResNet-A block): 35 x 35 x 320
    for block_idx in range(1, 11):
        x = inception_resnet_block(x,
                                   scale=0.17,
                                   block_type='block35',
                                   block_idx=block_idx)

    # Mixed 6a (Reduction-A block): 17 x 17 x 1088
    branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='valid')
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 256, 3)
    branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='valid')
    branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_pool]
    x = Concatenate(axis=channel_axis, name='mixed_6a')(branches)

    # squeeze and excite block
    x = squeeze_excite_block(x)

    # 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088
    for block_idx in range(1, 21):
        x = inception_resnet_block(x,
                                   scale=0.1,
                                   block_type='block17',
                                   block_idx=block_idx)

    # Mixed 7a (Reduction-B block): 8 x 8 x 2080
    branch_0 = conv2d_bn(x, 256, 1)
    branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='valid')
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='valid')
    branch_2 = conv2d_bn(x, 256, 1)
    branch_2 = conv2d_bn(branch_2, 288, 3)
    branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='valid')
    branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    x = Concatenate(axis=channel_axis, name='mixed_7a')(branches)

    # squeeze and excite block
    x = squeeze_excite_block(x)

    # 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080
    for block_idx in range(1, 10):
        x = inception_resnet_block(x,
                                   scale=0.2,
                                   block_type='block8',
                                   block_idx=block_idx)
    x = inception_resnet_block(x,
                               scale=1.,
                               activation=None,
                               block_type='block8',
                               block_idx=10)

    # squeeze and excite block
    x = squeeze_excite_block(x)

    # Final convolution block: 8 x 8 x 1536
    x = conv2d_bn(x, 1536, 1, name='conv_7b')

    if include_top:
        # Classification block
        x = GlobalAveragePooling2D(name='avg_pool')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the weights takes into account
    # any potential predecessors of `input_tensor`
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create weights
    model = Model(inputs, x, name='se_inception_resnet_v2')
    return model
예제 #24
0
def MobileNet(input_shape=None,
              alpha=1.0,
              depth_multiplier=1,
              dropout=1e-3,
              include_top=True,
              weights='imagenet',
              input_tensor=None,
              pooling=None,
              classes=1000,
              classifier_activation='softmax',
              **kwargs):
    global layers
    if 'layers' in kwargs:
        layers = kwargs.pop('layers')
    else:
        layers = VersionAwareLayers()
    if kwargs:
        raise ValueError('Unknown argument(s): %s' % (kwargs, ))
    if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top` '
            'as true, `classes` should be 1000')

    # Determine proper input shape and default size.
    if input_shape is None:
        default_size = 224
    else:
        if backend.image_data_format() == 'channels_first':
            rows = input_shape[1]
            cols = input_shape[2]
        else:
            rows = input_shape[0]
            cols = input_shape[1]

        if rows == cols and rows in [128, 160, 192, 224]:
            default_size = rows
        else:
            default_size = 224

    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=default_size,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if backend.image_data_format() == 'channels_last':
        row_axis, col_axis = (0, 1)
    else:
        row_axis, col_axis = (1, 2)
    rows = input_shape[row_axis]
    cols = input_shape[col_axis]

    if weights == 'imagenet':
        if depth_multiplier != 1:
            raise ValueError('If imagenet weights are being loaded, '
                             'depth multiplier must be 1')

        if alpha not in [0.25, 0.50, 0.75, 1.0]:
            raise ValueError('If imagenet weights are being loaded, '
                             'alpha can be one of'
                             '`0.25`, `0.50`, `0.75` or `1.0` only.')

        if rows != cols or rows not in [128, 160, 192, 224]:
            rows = 224
            logging.warning('`input_shape` is undefined or non-square, '
                            'or `rows` is not in [128, 160, 192, 224]. '
                            'Weights for input shape (224, 224) will be'
                            ' loaded as the default.')

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    x = _conv_block(img_input, 32, alpha, strides=(2, 2))
    x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)

    x = _depthwise_conv_block(x,
                              128,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=2)
    x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)

    x = _depthwise_conv_block(x,
                              256,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=4)
    x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)

    x = _depthwise_conv_block(x,
                              512,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=6)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)

    x = _depthwise_conv_block(x,
                              1024,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=12)
    x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)

    if include_top:
        if backend.image_data_format() == 'channels_first':
            shape = (int(1024 * alpha), 1, 1)
        else:
            shape = (1, 1, int(1024 * alpha))

        x = layers.GlobalAveragePooling2D()(x)
        x = layers.Reshape(shape, name='reshape_1')(x)
        x = layers.Dropout(dropout, name='dropout')(x)
        x = layers.Conv2D(classes, (1, 1), padding='same',
                          name='conv_preds')(x)
        x = layers.Reshape((classes, ), name='reshape_2')(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Activation(activation=classifier_activation,
                              name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs,
                           x,
                           name='mobilenet_%0.2f_%s' % (alpha, rows))

    # Load weights.
    if weights == 'imagenet':
        if alpha == 1.0:
            alpha_text = '1_0'
        elif alpha == 0.75:
            alpha_text = '7_5'
        elif alpha == 0.50:
            alpha_text = '5_0'
        else:
            alpha_text = '2_5'

        if include_top:
            model_name = 'mobilenet_%s_%d_tf.h5' % (alpha_text, rows)
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = data_utils.get_file(model_name,
                                               weight_path,
                                               cache_subdir='models')
        else:
            model_name = 'mobilenet_%s_%d_tf_no_top.h5' % (alpha_text, rows)
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = data_utils.get_file(model_name,
                                               weight_path,
                                               cache_subdir='models')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
예제 #25
0
def EfficientNet(width_coefficient,
                 depth_coefficient,
                 default_resolution,
                 dropout_rate=0.2,
                 drop_connect_rate=0.2,
                 depth_divisor=8,
                 blocks_args=DEFAULT_BLOCKS_ARGS,
                 model_name='efficientnet',
                 include_top=True,
                 weights='imagenet',
                 input_tensor=None,
                 input_shape=None,
                 pooling=None,
                 classes=1000,
                 **kwargs):
    """Instantiates the EfficientNet architecture using given scaling coefficients.
    Optionally loads weights pre-trained on ImageNet.
    Note that the data format convention used by the model is
    the one specified in your Keras config at `~/.keras/keras.json`.
    # Arguments
        width_coefficient: float, scaling coefficient for network width.
        depth_coefficient: float, scaling coefficient for network depth.
        default_resolution: int, default input image size.
        dropout_rate: float, dropout rate before final classifier layer.
        drop_connect_rate: float, dropout rate at skip connections.
        depth_divisor: int.
        blocks_args: A list of BlockArgs to construct block modules.
        model_name: string, model name.
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor
            (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False.
            It should have exactly 3 inputs channels.
        pooling: optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.
    # Returns
        A Keras model instance.
    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    global backend, layers, models, keras_utils
    backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)

    if not (weights in {'imagenet', 'noisy-student', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=default_resolution,
                                      min_size=32,
                                      data_format=backend.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if backend.backend() == 'tensorflow':
            from tensorflow.python.keras.backend import is_keras_tensor
        else:
            is_keras_tensor = backend.is_keras_tensor
        if not is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1
    activation = get_swish(**kwargs)

    # Build stem
    x = img_input
    x = layers.Conv2D(round_filters(32, width_coefficient, depth_divisor), 3,
                      strides=(2, 2),
                      padding='same',
                      use_bias=False,
                      kernel_initializer=CONV_KERNEL_INITIALIZER,
                      name='stem_conv')(x)
    x = layers.BatchNormalization(axis=bn_axis, name='stem_bn')(x)
    x = layers.Activation(activation, name='stem_activation')(x)

    # Build blocks
    num_blocks_total = sum(block_args.num_repeat for block_args in blocks_args)
    block_num = 0
    for idx, block_args in enumerate(blocks_args):
        assert block_args.num_repeat > 0
        # Update block input and output filters based on depth multiplier.
        block_args = block_args._replace(
            input_filters=round_filters(block_args.input_filters,
                                        width_coefficient, depth_divisor),
            output_filters=round_filters(block_args.output_filters,
                                         width_coefficient, depth_divisor),
            num_repeat=round_repeats(block_args.num_repeat, depth_coefficient))

        # The first block needs to take care of stride and filter size increase.
        drop_rate = drop_connect_rate * float(block_num) / num_blocks_total
        x = mb_conv_block(x, block_args,
                          activation=activation,
                          drop_rate=drop_rate,
                          prefix='block{}a_'.format(idx + 1))
        block_num += 1
        if block_args.num_repeat > 1:
            # pylint: disable=protected-access
            block_args = block_args._replace(
                input_filters=block_args.output_filters, strides=[1, 1])
            # pylint: enable=protected-access
            for bidx in xrange(block_args.num_repeat - 1):
                drop_rate = drop_connect_rate * float(block_num) / num_blocks_total
                block_prefix = 'block{}{}_'.format(
                    idx + 1,
                    string.ascii_lowercase[bidx + 1]
                )
                x = mb_conv_block(x, block_args,
                                  activation=activation,
                                  drop_rate=drop_rate,
                                  prefix=block_prefix)
                block_num += 1

    # Build top
    x = layers.Conv2D(round_filters(1280, width_coefficient, depth_divisor), 1,
                      padding='same',
                      use_bias=False,
                      kernel_initializer=CONV_KERNEL_INITIALIZER,
                      name='top_conv')(x)
    x = layers.BatchNormalization(axis=bn_axis, name='top_bn')(x)
    x = layers.Activation(activation, name='top_activation')(x)
    if include_top:
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        if dropout_rate and dropout_rate > 0:
            x = layers.Dropout(dropout_rate, name='top_dropout')(x)
        x = layers.Dense(classes,
                         activation='softmax',
                         kernel_initializer=DENSE_KERNEL_INITIALIZER,
                         name='probs')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D(name='max_pool')(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = keras_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = models.Model(inputs, x, name=model_name)

    # Load weights.
    if weights == 'imagenet':

        if include_top:
            file_name = model_name + '_weights_tf_dim_ordering_tf_kernels_autoaugment.h5'
            file_hash = IMAGENET_WEIGHTS_HASHES[model_name][0]
        else:
            file_name = model_name + '_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5'
            file_hash = IMAGENET_WEIGHTS_HASHES[model_name][1]
        weights_path = keras_utils.get_file(
            file_name,
            IMAGENET_WEIGHTS_PATH + file_name,
            cache_subdir='models',
            file_hash=file_hash,
        )
        model.load_weights(weights_path)

    elif weights == 'noisy-student':

        if include_top:
            file_name = "{}_{}.h5".format(model_name, weights)
            file_hash = NS_WEIGHTS_HASHES[model_name][0]
        else:
            file_name = "{}_{}_notop.h5".format(model_name, weights)
            file_hash = NS_WEIGHTS_HASHES[model_name][1]
        weights_path = keras_utils.get_file(
            file_name,
            NS_WEIGHTS_PATH + file_name,
            cache_subdir='models',
            file_hash=file_hash,
        )
        model.load_weights(weights_path)

    elif weights is not None:
        model.load_weights(weights)

    return model
def InceptionResNetV2(include_top=True,
                      weights='imagenet',
                      input_tensor=None,
                      input_shape=None,
                      pooling=None,
                      classes=1000):
  """Instantiates the Inception-ResNet v2 architecture.

  Optionally loads weights pre-trained on ImageNet.
  Note that when using TensorFlow, for best performance you should
  set `"image_data_format": "channels_last"` in your Keras config
  at `~/.keras/keras.json`.

  The model and the weights are compatible with TensorFlow, Theano and
  CNTK backends. The data format convention used by the model is
  the one specified in your Keras config file.

  Note that the default input image size for this model is 299x299, instead
  of 224x224 as in the VGG16 and ResNet models. Also, the input preprocessing
  function is different (i.e., do not use `imagenet_utils.preprocess_input()`
  with this model. Use `preprocess_input()` defined in this module instead).

  Arguments:
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization),
            'imagenet' (pre-training on ImageNet),
            or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is `False` (otherwise the input shape
          has to be `(299, 299, 3)` (with `'channels_last'` data format)
          or `(3, 299, 299)` (with `'channels_first'` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 139.
          E.g. `(150, 150, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the last convolutional layer.
          - `'avg'` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `'max'` means that global max pooling will be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is `True`, and
          if no `weights` argument is specified.

  Returns:
      A Keras `Model` instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
  if not (weights in {'imagenet', None} or os.path.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as imagenet with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=299,
      min_size=139,
      data_format=K.image_data_format(),
      require_flatten=False,
      weights=weights)

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    if not K.is_keras_tensor(input_tensor):
      img_input = Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  # Stem block: 35 x 35 x 192
  x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid')
  x = conv2d_bn(x, 32, 3, padding='valid')
  x = conv2d_bn(x, 64, 3)
  x = MaxPooling2D(3, strides=2)(x)
  x = conv2d_bn(x, 80, 1, padding='valid')
  x = conv2d_bn(x, 192, 3, padding='valid')
  x = MaxPooling2D(3, strides=2)(x)

  # Mixed 5b (Inception-A block): 35 x 35 x 320
  branch_0 = conv2d_bn(x, 96, 1)
  branch_1 = conv2d_bn(x, 48, 1)
  branch_1 = conv2d_bn(branch_1, 64, 5)
  branch_2 = conv2d_bn(x, 64, 1)
  branch_2 = conv2d_bn(branch_2, 96, 3)
  branch_2 = conv2d_bn(branch_2, 96, 3)
  branch_pool = AveragePooling2D(3, strides=1, padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 64, 1)
  branches = [branch_0, branch_1, branch_2, branch_pool]
  channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
  x = Concatenate(axis=channel_axis, name='mixed_5b')(branches)

  # 10x block35 (Inception-ResNet-A block): 35 x 35 x 320
  for block_idx in range(1, 11):
    x = inception_resnet_block(
        x, scale=0.17, block_type='block35', block_idx=block_idx)

  # Mixed 6a (Reduction-A block): 17 x 17 x 1088
  branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='valid')
  branch_1 = conv2d_bn(x, 256, 1)
  branch_1 = conv2d_bn(branch_1, 256, 3)
  branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='valid')
  branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
  branches = [branch_0, branch_1, branch_pool]
  x = Concatenate(axis=channel_axis, name='mixed_6a')(branches)

  # 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088
  for block_idx in range(1, 21):
    x = inception_resnet_block(
        x, scale=0.1, block_type='block17', block_idx=block_idx)

  # Mixed 7a (Reduction-B block): 8 x 8 x 2080
  branch_0 = conv2d_bn(x, 256, 1)
  branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='valid')
  branch_1 = conv2d_bn(x, 256, 1)
  branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='valid')
  branch_2 = conv2d_bn(x, 256, 1)
  branch_2 = conv2d_bn(branch_2, 288, 3)
  branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='valid')
  branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
  branches = [branch_0, branch_1, branch_2, branch_pool]
  x = Concatenate(axis=channel_axis, name='mixed_7a')(branches)

  # 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080
  for block_idx in range(1, 10):
    x = inception_resnet_block(
        x, scale=0.2, block_type='block8', block_idx=block_idx)
  x = inception_resnet_block(
      x, scale=1., activation=None, block_type='block8', block_idx=10)

  # Final convolution block: 8 x 8 x 1536
  x = conv2d_bn(x, 1536, 1, name='conv_7b')

  if include_top:
    # Classification block
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)
    x = Flatten(name='custom')(x) ##DB

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`
  if input_tensor is not None:
    inputs = layer_utils.get_source_inputs(input_tensor)
  else:
    inputs = img_input

  # Create model
  model = Model(inputs, x, name='inception_resnet_v2')

  # Load weights
  if weights == 'imagenet':
    if include_top:
      fname = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5'
      weights_path = get_file(
          fname,
          BASE_WEIGHT_URL + fname,
          cache_subdir='models',
          file_hash='e693bd0210a403b3192acc6073ad2e96')
    else:
      fname = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5'
      weights_path = get_file(
          fname,
          BASE_WEIGHT_URL + fname,
          cache_subdir='models',
          file_hash='d19885ff4a710c122648d3b5c3b684e4')
    model.load_weights(weights_path)
  elif weights is not None:
    model.load_weights(weights)

  return model
예제 #27
0
def VGG19(
    include_top=True,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation='softmax',
    chosen_layer=0
):
  if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
                     ' as true, `classes` should be 1000')
  # Determine proper input shape
  input_shape = imagenet_utils.obtain_input_shape(
      input_shape,
      default_size=224,
      min_size=32,
      data_format=backend.image_data_format(),
      require_flatten=include_top,
      weights=weights)

  if input_tensor is None:
    img_input = layers.Input(shape=input_shape)
  else:
    if not backend.is_keras_tensor(input_tensor):
      img_input = layers.Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor
  # Block 1
  x = layers.Conv2D(
      64, (3, 3), activation='relu', padding='same', name='block1_conv1')(
          img_input)
  x = layers.Conv2D(
      64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
  x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

  # Block 2
  if chosen_layer in [2, 3 ,4, 5]:
      x = layers.Conv2D(
          128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
      x = layers.Conv2D(
          128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x)
      x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

  # Block 3
  if chosen_layer in [3, 4 ,5]:
      x = layers.Conv2D(
          256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
      x = layers.Conv2D(
          256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x)
      x = layers.Conv2D(
          256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x)
      x = layers.Conv2D(
          256, (3, 3), activation='relu', padding='same', name='block3_conv4')(x)
      x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

  # Block 4
  if chosen_layer in [4, 5]:
      x = layers.Conv2D(
          512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
      x = layers.Conv2D(
          512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x)
      x = layers.Conv2D(
          512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x)
      x = layers.Conv2D(
          512, (3, 3), activation='relu', padding='same', name='block4_conv4')(x)
      x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

  # Block 5
  if chosen_layer in [5]:
      x = layers.Conv2D(
          512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x)
      x = layers.Conv2D(
          512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x)
      x = layers.Conv2D(
          512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x)
      x = layers.Conv2D(
          512, (3, 3), activation='relu', padding='same', name='block5_conv4')(x)
      x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

  x = layers.GlobalAveragePooling2D()(x)
  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = layer_utils.get_source_inputs(input_tensor)
  else:
    inputs = img_input
  # Create model.
  model = training.Model(inputs, x, name='vgg19')

  # Load weights.
  model.load_weights(weights, by_name=True)

  return model
예제 #28
0
def InceptionV3(include_top=True,
                weights='imagenet',
                input_tensor=None,
                input_shape=None,
                pooling=None,
                classes=1000,
                classifier_activation='softmax'):
    """Instantiates the Inception v3 architecture.

  Reference:
  - [Rethinking the Inception Architecture for Computer Vision](
      http://arxiv.org/abs/1512.00567) (CVPR 2016)

  Optionally loads weights pre-trained on ImageNet.
  Note that the data format convention used by the model is
  the one specified in the `tf.keras.backend.image_data_format()`.

  Caution: Be sure to properly pre-process your inputs to the application.
  Please see `applications.inception_v3.preprocess_input` for an example.

  Arguments:
    include_top: Boolean, whether to include the fully-connected
      layer at the top, as the last layer of the network. Default to `True`.
    weights: One of `None` (random initialization),
      `imagenet` (pre-training on ImageNet),
      or the path to the weights file to be loaded. Default to `imagenet`.
    input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`)
      to use as image input for the model. `input_tensor` is useful for sharing
      inputs between multiple different networks. Default to None.
    input_shape: Optional shape tuple, only to be specified
      if `include_top` is False (otherwise the input shape
      has to be `(299, 299, 3)` (with `channels_last` data format)
      or `(3, 299, 299)` (with `channels_first` data format).
      It should have exactly 3 inputs channels,
      and width and height should be no smaller than 75.
      E.g. `(150, 150, 3)` would be one valid value.
      `input_shape` will be ignored if the `input_tensor` is provided.
    pooling: Optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` (default) means that the output of the model will be
          the 4D tensor output of the last convolutional block.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a 2D tensor.
      - `max` means that global max pooling will be applied.
    classes: optional number of classes to classify images
      into, only to be specified if `include_top` is True, and
      if no `weights` argument is specified. Default to 1000.
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.

  Returns:
    A `keras.Model` instance.

  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape.
    ValueError: if `classifier_activation` is not `softmax` or `None` when
      using a pretrained top layer.
  """
    if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=299,
        min_size=75,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    if backend.image_data_format() == 'channels_first':
        channel_axis = 1
    else:
        channel_axis = 3

    x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid')
    x = conv2d_bn(x, 32, 3, 3, padding='valid')
    x = conv2d_bn(x, 64, 3, 3)
    x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv2d_bn(x, 80, 1, 1, padding='valid')
    x = conv2d_bn(x, 192, 3, 3, padding='valid')
    x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)

    # mixed 0: 35 x 35 x 256
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = layers.AveragePooling2D((3, 3),
                                          strides=(1, 1),
                                          padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 32, 1, 1)
    x = layers.concatenate([branch1x1, branch5x5, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed0')

    # mixed 1: 35 x 35 x 288
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = layers.AveragePooling2D((3, 3),
                                          strides=(1, 1),
                                          padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate([branch1x1, branch5x5, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed1')

    # mixed 2: 35 x 35 x 288
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = layers.AveragePooling2D((3, 3),
                                          strides=(1, 1),
                                          padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate([branch1x1, branch5x5, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed2')

    # mixed 3: 17 x 17 x 768
    branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid')

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl,
                             96,
                             3,
                             3,
                             strides=(2, 2),
                             padding='valid')

    branch_pool = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate([branch3x3, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed3')

    # mixed 4: 17 x 17 x 768
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 128, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 128, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 128, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = layers.AveragePooling2D((3, 3),
                                          strides=(1, 1),
                                          padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate([branch1x1, branch7x7, branch7x7dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed4')

    # mixed 5, 6: 17 x 17 x 768
    for i in range(2):
        branch1x1 = conv2d_bn(x, 192, 1, 1)

        branch7x7 = conv2d_bn(x, 160, 1, 1)
        branch7x7 = conv2d_bn(branch7x7, 160, 1, 7)
        branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

        branch7x7dbl = conv2d_bn(x, 160, 1, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

        branch_pool = layers.AveragePooling2D((3, 3),
                                              strides=(1, 1),
                                              padding='same')(x)
        branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch7x7, branch7x7dbl, branch_pool],
            axis=channel_axis,
            name='mixed' + str(5 + i))

    # mixed 7: 17 x 17 x 768
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 192, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 192, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 192, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = layers.AveragePooling2D((3, 3),
                                          strides=(1, 1),
                                          padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate([branch1x1, branch7x7, branch7x7dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed7')

    # mixed 8: 8 x 8 x 1280
    branch3x3 = conv2d_bn(x, 192, 1, 1)
    branch3x3 = conv2d_bn(branch3x3,
                          320,
                          3,
                          3,
                          strides=(2, 2),
                          padding='valid')

    branch7x7x3 = conv2d_bn(x, 192, 1, 1)
    branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7)
    branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1)
    branch7x7x3 = conv2d_bn(branch7x7x3,
                            192,
                            3,
                            3,
                            strides=(2, 2),
                            padding='valid')

    branch_pool = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate([branch3x3, branch7x7x3, branch_pool],
                           axis=channel_axis,
                           name='mixed8')

    # mixed 9: 8 x 8 x 2048
    for i in range(2):
        branch1x1 = conv2d_bn(x, 320, 1, 1)

        branch3x3 = conv2d_bn(x, 384, 1, 1)
        branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3)
        branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1)
        branch3x3 = layers.concatenate([branch3x3_1, branch3x3_2],
                                       axis=channel_axis,
                                       name='mixed9_' + str(i))

        branch3x3dbl = conv2d_bn(x, 448, 1, 1)
        branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3)
        branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3)
        branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1)
        branch3x3dbl = layers.concatenate([branch3x3dbl_1, branch3x3dbl_2],
                                          axis=channel_axis)

        branch_pool = layers.AveragePooling2D((3, 3),
                                              strides=(1, 1),
                                              padding='same')(x)
        branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch3x3, branch3x3dbl, branch_pool],
            axis=channel_axis,
            name='mixed' + str(9 + i))
    if include_top:
        # Classification block
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = training.Model(inputs, x, name='inception_v3')

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            weights_path = data_utils.get_file(
                'inception_v3_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models',
                file_hash='9a0d58056eeedaa3f26cb7ebd46da564')
        else:
            weights_path = data_utils.get_file(
                'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models',
                file_hash='bcbd6486424b2319ff4ef7d526e38f63')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
예제 #29
0
    def __call__(self, inputs, initial_state=None, constants=None, **kwargs):
        """`Bidirectional.__call__` implements the same API as the wrapped `RNN`."""
        inputs, initial_state, constants = _standardize_args(
            inputs, initial_state, constants, self._num_constants)

        if isinstance(inputs, list):
            if len(inputs) > 1:
                initial_state = inputs[1:]
            inputs = inputs[0]

        if initial_state is None and constants is None:
            return super(Bidirectional, self).__call__(inputs, **kwargs)

        # Applies the same workaround as in `RNN.__call__`
        additional_inputs = []
        additional_specs = []
        if initial_state is not None:
            # Check if `initial_state` can be splitted into half
            num_states = len(initial_state)
            if num_states % 2 > 0:
                raise ValueError(
                    'When passing `initial_state` to a Bidirectional RNN, '
                    'the state should be a list containing the states of '
                    'the underlying RNNs. '
                    'Found: ' + str(initial_state))

            kwargs['initial_state'] = initial_state
            additional_inputs += initial_state
            state_specs = [
                InputSpec(shape=K.int_shape(state)) for state in initial_state
            ]
            self.forward_layer.state_spec = state_specs[:num_states // 2]
            self.backward_layer.state_spec = state_specs[num_states // 2:]
            additional_specs += state_specs
        if constants is not None:
            kwargs['constants'] = constants
            additional_inputs += constants
            constants_spec = [
                InputSpec(shape=K.int_shape(constant))
                for constant in constants
            ]
            self.forward_layer.constants_spec = constants_spec
            self.backward_layer.constants_spec = constants_spec
            additional_specs += constants_spec

            self._num_constants = len(constants)
            self.forward_layer._num_constants = self._num_constants
            self.backward_layer._num_constants = self._num_constants

        is_keras_tensor = K.is_keras_tensor(additional_inputs[0])
        for tensor in additional_inputs:
            if K.is_keras_tensor(tensor) != is_keras_tensor:
                raise ValueError('The initial state of a Bidirectional'
                                 ' layer cannot be specified with a mix of'
                                 ' Keras tensors and non-Keras tensors'
                                 ' (a "Keras tensor" is a tensor that was'
                                 ' returned by a Keras layer, or by `Input`)')

        if is_keras_tensor:
            # Compute the full input spec, including state
            full_input = [inputs] + additional_inputs
            # The original input_spec is None since there could be a nested tensor
            # input. Update the input_spec to match the inputs.
            full_input_spec = [None for _ in range(len(nest.flatten(inputs)))
                               ] + additional_specs
            # Removing kwargs since the value are passed with input list.
            kwargs['initial_state'] = None
            kwargs['constants'] = None

            # Perform the call with temporarily replaced input_spec
            original_input_spec = self.input_spec
            self.input_spec = full_input_spec
            output = super(Bidirectional, self).__call__(full_input, **kwargs)
            self.input_spec = original_input_spec
            return output
        else:
            return super(Bidirectional, self).__call__(inputs, **kwargs)
예제 #30
0
def ResNet50(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000):
    """Instantiates the ResNet50 architecture.

    Optionally loads weights pre-trained
    on ImageNet. Note that when using TensorFlow,
    for best performance you should set
    `image_data_format='channels_last'` in your Keras config
    at ~/.keras/keras.json.

    The model and the weights are compatible with both
    TensorFlow and Theano. The data format
    convention used by the model is the one
    specified in your Keras config file.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 224)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 197.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=197,
                                      data_format=K.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    x = ZeroPadding2D(padding=(3, 3), name='conv1_pad')(img_input)
    x = Conv2D(64, (7, 7), strides=(2, 2), padding='valid', name='conv1')(x)
    x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

    x = AveragePooling2D((7, 7), name='avg_pool')(x)

    if include_top:
        x = Flatten()(x)
        x = Dense(classes, activation='softmax', name='fc1000')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='resnet50')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = get_file(
                'resnet50_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models',
                md5_hash='a7b3fe01876f51b976af0dea6bc144eb')
        else:
            weights_path = get_file(
                'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models',
                md5_hash='a268eb855778b3df3c7506639542a6af')
        model.load_weights(weights_path)
        if K.backend() == 'theano':
            layer_utils.convert_all_kernels_in_model(model)
    elif weights is not None:
        model.load_weights(weights)

    return model
예제 #31
0
파일: models.py 프로젝트: zwcdp/tensorflow
def _clone_functional_model(model, input_tensors=None, layer_fn=_clone_layer):
    """Clone a functional `Model` instance.

  Model cloning is similar to calling a model on new inputs,
  except that it creates new layers (and thus new weights) instead
  of sharing the weights of the existing layers.

  Input layers are always cloned.

  Arguments:
      model: Instance of `Model`.
      input_tensors: optional list of input tensors
          to build the model upon. If not provided,
          placeholders will be created.
      layer_fn: callable to be applied on non-input layers in the model. By
          default it clones the layer. Another example is to preserve the layer
          to share the weights. This is required when we create a per-replica
          copy of the model with distribution strategy; we want the weights to
          be shared but still feed inputs separately so we create new input
          layers.

  Returns:
      An instance of `Model` reproducing the behavior
      of the original model, on top of new inputs tensors,
      using newly instantiated weights.

  Raises:
      ValueError: in case of invalid `model` argument value or `layer_fn`
      argument value.
  """
    if not isinstance(model, Model):
        raise ValueError(
            'Expected `model` argument '
            'to be a `Model` instance, got ', model)
    if isinstance(model, Sequential):
        raise ValueError(
            'Expected `model` argument '
            'to be a functional `Model` instance, '
            'got a `Sequential` instance instead:', model)
    if not model._is_graph_network:
        raise ValueError('Expected `model` argument '
                         'to be a functional `Model` instance, '
                         'but got a subclass model instead.')

    layer_map = {}  # Cache for created layers.
    tensor_map = {}  # Map {reference_tensor: corresponding_tensor}
    if input_tensors is None:
        # Create placeholders to build the model on top of.
        input_tensors = []
        for layer in model._input_layers:
            input_tensor = Input(**layer.get_config())
            input_tensors.append(input_tensor)
            # Cache newly created input layer.
            newly_created_input_layer = input_tensor._keras_history.layer
            layer_map[layer] = newly_created_input_layer
    else:
        # Make sure that all input tensors come from a Keras layer.
        # If tensor comes from an input layer: cache the input layer.
        input_tensors = nest.flatten(input_tensors)
        input_tensors_ = []
        for i, input_tensor in enumerate(input_tensors):
            if not K.is_keras_tensor(input_tensor):
                original_input_layer = model._input_layers[i]
                name = original_input_layer.name
                input_tensor = Input(tensor=input_tensor,
                                     name='input_wrapper_for_' + name)

                input_tensors_.append(input_tensor)
                # Cache newly created input layer.
                newly_created_input_layer = input_tensor._keras_history.layer
                layer_map[original_input_layer] = newly_created_input_layer
            else:
                input_tensors_.append(input_tensor)
        input_tensors = input_tensors_

    for x, y in zip(model.inputs, input_tensors):
        tensor_map[x] = y

    if not callable(layer_fn):
        raise ValueError('Expected `layer_fn` argument to be a callable.')

    # Has the side effect of filling out `layer_map` and `tensor_map`.
    new_nodes = _make_new_nodes(model._nodes_by_depth, layer_fn, layer_map,
                                tensor_map)
    # Check that we did compute the model outputs,
    # then instantiate a new model from inputs and outputs.
    output_tensors = []
    for x in model.outputs:
        assert x in tensor_map, 'Could not compute output ' + str(x)
        output_tensors.append(tensor_map[x])

    input_tensors = nest.pack_sequence_as(model._nested_inputs, input_tensors)
    output_tensors = nest.pack_sequence_as(model._nested_outputs,
                                           output_tensors)
    metrics_names = model.metrics_names
    model = Model(input_tensors, output_tensors, name=model.name)
    # Layers not directly tied to outputs of the Model, such as loss layers
    # created in `add_loss` and `add_metric`.
    ancillary_layers = [
        layer for layer in layer_map.values() if layer not in model.layers
    ]
    if ancillary_layers:
        _insert_ancillary_layers(model, ancillary_layers, metrics_names,
                                 new_nodes)
    return model
예제 #32
0
def MobileNet(input_shape=None,
              alpha=1.0,
              depth_multiplier=1,
              dropout=1e-3,
              include_top=True,
              weights='imagenet',
              input_tensor=None,
              pooling=None,
              classes=1000,
              classifier_activation='softmax',
              **kwargs):
  """Instantiates the MobileNet architecture.

  Reference:
  - [MobileNets: Efficient Convolutional Neural Networks
     for Mobile Vision Applications](
      https://arxiv.org/abs/1704.04861)

  This function returns a Keras image classification model,
  optionally loaded with weights pre-trained on ImageNet.

  For image classification use cases, see
  [this page for detailed examples](
    https://keras.io/api/applications/#usage-examples-for-image-classification-models).

  For transfer learning use cases, make sure to read the
  [guide to transfer learning & fine-tuning](
    https://keras.io/guides/transfer_learning/).

  Note: each Keras Application expects a specific kind of input preprocessing.
  For MobileNet, call `tf.keras.applications.mobilenet.preprocess_input`
  on your inputs before passing them to the model.
  `mobilenet.preprocess_input` will scale input pixels between -1 and 1.

  Args:
    input_shape: Optional shape tuple, only to be specified if `include_top`
      is False (otherwise the input shape has to be `(224, 224, 3)` (with
      `channels_last` data format) or (3, 224, 224) (with `channels_first`
      data format). It should have exactly 3 inputs channels, and width and
      height should be no smaller than 32. E.g. `(200, 200, 3)` would be one
      valid value. Default to `None`.
      `input_shape` will be ignored if the `input_tensor` is provided.
    alpha: Controls the width of the network. This is known as the width
      multiplier in the MobileNet paper. - If `alpha` < 1.0, proportionally
      decreases the number of filters in each layer. - If `alpha` > 1.0,
      proportionally increases the number of filters in each layer. - If
      `alpha` = 1, default number of filters from the paper are used at each
      layer. Default to 1.0.
    depth_multiplier: Depth multiplier for depthwise convolution. This is
      called the resolution multiplier in the MobileNet paper. Default to 1.0.
    dropout: Dropout rate. Default to 0.001.
    include_top: Boolean, whether to include the fully-connected layer at the
      top of the network. Default to `True`.
    weights: One of `None` (random initialization), 'imagenet' (pre-training
      on ImageNet), or the path to the weights file to be loaded. Default to
      `imagenet`.
    input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) to
      use as image input for the model. `input_tensor` is useful for sharing
      inputs between multiple different networks. Default to None.
    pooling: Optional pooling mode for feature extraction when `include_top`
      is `False`.
      - `None` (default) means that the output of the model will be
          the 4D tensor output of the last convolutional block.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a 2D tensor.
      - `max` means that global max pooling will be applied.
    classes: Optional number of classes to classify images into, only to be
      specified if `include_top` is True, and if no `weights` argument is
      specified. Defaults to 1000.
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.
      When loading pretrained weights, `classifier_activation` can only
      be `None` or `"softmax"`.
    **kwargs: For backwards compatibility only.
  Returns:
    A `keras.Model` instance.
  """
  global layers
  if 'layers' in kwargs:
    layers = kwargs.pop('layers')
  else:
    layers = VersionAwareLayers()
  if kwargs:
    raise ValueError('Unknown argument(s): %s' % (kwargs,))
  if not (weights in {'imagenet', None} or file_io.file_exists_v2(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as `"imagenet"` with `include_top` '
                     'as true, `classes` should be 1000')

  # Determine proper input shape and default size.
  if input_shape is None:
    default_size = 224
  else:
    if backend.image_data_format() == 'channels_first':
      rows = input_shape[1]
      cols = input_shape[2]
    else:
      rows = input_shape[0]
      cols = input_shape[1]

    if rows == cols and rows in [128, 160, 192, 224]:
      default_size = rows
    else:
      default_size = 224

  input_shape = imagenet_utils.obtain_input_shape(
      input_shape,
      default_size=default_size,
      min_size=32,
      data_format=backend.image_data_format(),
      require_flatten=include_top,
      weights=weights)

  if backend.image_data_format() == 'channels_last':
    row_axis, col_axis = (0, 1)
  else:
    row_axis, col_axis = (1, 2)
  rows = input_shape[row_axis]
  cols = input_shape[col_axis]

  if weights == 'imagenet':
    if depth_multiplier != 1:
      raise ValueError('If imagenet weights are being loaded, '
                       'depth multiplier must be 1')

    if alpha not in [0.25, 0.50, 0.75, 1.0]:
      raise ValueError('If imagenet weights are being loaded, '
                       'alpha can be one of'
                       '`0.25`, `0.50`, `0.75` or `1.0` only.')

    if rows != cols or rows not in [128, 160, 192, 224]:
      rows = 224
      logging.warning('`input_shape` is undefined or non-square, '
                      'or `rows` is not in [128, 160, 192, 224]. '
                      'Weights for input shape (224, 224) will be'
                      ' loaded as the default.')

  if input_tensor is None:
    img_input = layers.Input(shape=input_shape)
  else:
    if not backend.is_keras_tensor(input_tensor):
      img_input = layers.Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  x = _conv_block(img_input, 32, alpha, strides=(2, 2))
  x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)

  x = _depthwise_conv_block(
      x, 128, alpha, depth_multiplier, strides=(2, 2), block_id=2)
  x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)

  x = _depthwise_conv_block(
      x, 256, alpha, depth_multiplier, strides=(2, 2), block_id=4)
  x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)

  x = _depthwise_conv_block(
      x, 512, alpha, depth_multiplier, strides=(2, 2), block_id=6)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)

  x = _depthwise_conv_block(
      x, 1024, alpha, depth_multiplier, strides=(2, 2), block_id=12)
  x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)

  if include_top:
    if backend.image_data_format() == 'channels_first':
      shape = (int(1024 * alpha), 1, 1)
    else:
      shape = (1, 1, int(1024 * alpha))

    x = layers.GlobalAveragePooling2D()(x)
    x = layers.Reshape(shape, name='reshape_1')(x)
    x = layers.Dropout(dropout, name='dropout')(x)
    x = layers.Conv2D(classes, (1, 1), padding='same', name='conv_preds')(x)
    x = layers.Reshape((classes,), name='reshape_2')(x)
    imagenet_utils.validate_activation(classifier_activation, weights)
    x = layers.Activation(activation=classifier_activation,
                          name='predictions')(x)
  else:
    if pooling == 'avg':
      x = layers.GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = layers.GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = layer_utils.get_source_inputs(input_tensor)
  else:
    inputs = img_input

  # Create model.
  model = training.Model(inputs, x, name='mobilenet_%0.2f_%s' % (alpha, rows))

  # Load weights.
  if weights == 'imagenet':
    if alpha == 1.0:
      alpha_text = '1_0'
    elif alpha == 0.75:
      alpha_text = '7_5'
    elif alpha == 0.50:
      alpha_text = '5_0'
    else:
      alpha_text = '2_5'

    if include_top:
      model_name = 'mobilenet_%s_%d_tf.h5' % (alpha_text, rows)
      weight_path = BASE_WEIGHT_PATH + model_name
      weights_path = data_utils.get_file(
          model_name, weight_path, cache_subdir='models')
    else:
      model_name = 'mobilenet_%s_%d_tf_no_top.h5' % (alpha_text, rows)
      weight_path = BASE_WEIGHT_PATH + model_name
      weights_path = data_utils.get_file(
          model_name, weight_path, cache_subdir='models')
    model.load_weights(weights_path)
  elif weights is not None:
    model.load_weights(weights)

  return model
예제 #33
0
def _clone_functional_model(model, input_tensors=None, share_weights=False):
  """Clone a functional `Model` instance.

  Model cloning is similar to calling a model on new inputs,
  except that it creates new layers (and thus new weights) instead
  of sharing the weights of the existing layers.

  Arguments:
      model: Instance of `Model`.
      input_tensors: optional list of input tensors
          to build the model upon. If not provided,
          placeholders will be created.
      share_weights: flag to enable sharing of non-input layers between the
          cloned and original model. Note this still clones the input layers.
          This is required when we create a per-replica copy of the model with
          distribution strategy; we want the weights to be shared but still
          feed inputs separately so we create new input layers.

  Returns:
      An instance of `Model` reproducing the behavior
      of the original model, on top of new inputs tensors,
      using newly instantiated weights.

  Raises:
      ValueError: in case of invalid `model` argument value.
  """
  if not isinstance(model, Model):
    raise ValueError('Expected `model` argument '
                     'to be a `Model` instance, got ', model)
  if isinstance(model, Sequential):
    raise ValueError('Expected `model` argument '
                     'to be a functional `Model` instance, '
                     'got a `Sequential` instance instead:', model)

  layer_map = {}  # Cache for created layers.
  tensor_map = {}  # Map {reference_tensor: corresponding_tensor}
  if input_tensors is None:
    # Create placeholders to build the model on top of.
    input_layers = []
    input_tensors = []
    for layer in model._input_layers:
      input_tensor = Input(
          batch_shape=layer._batch_input_shape,
          dtype=layer.dtype,
          sparse=layer.sparse,
          name=layer.name)
      input_tensors.append(input_tensor)
      # Cache newly created input layer.
      newly_created_input_layer = input_tensor._keras_history[0]
      layer_map[layer] = newly_created_input_layer

    for original_input_layer, cloned_input_layer in zip(model._input_layers,
                                                        input_layers):
      layer_map[original_input_layer] = cloned_input_layer
  else:
    # Make sure that all input tensors come from a Keras layer.
    # If tensor comes from an input layer: cache the input layer.
    input_tensors = nest.flatten(input_tensors)
    input_tensors_ = []
    for i in range(len(input_tensors)):
      input_tensor = input_tensors[i]
      if not K.is_keras_tensor(input_tensor):
        original_input_layer = model._input_layers[i]
        name = original_input_layer.name
        input_tensor = Input(tensor=input_tensor,
                             name='input_wrapper_for_' + name)

        input_tensors_.append(input_tensor)
        # Cache newly created input layer.
        newly_created_input_layer = input_tensor._keras_history[0]
        layer_map[original_input_layer] = newly_created_input_layer
      else:
        input_tensors_.append(input_tensor)
    input_tensors = input_tensors_

  for x, y in zip(model.inputs, input_tensors):
    tensor_map[x] = y

  # Iterated over every node in the reference model, in depth order.
  depth_keys = list(model._nodes_by_depth.keys())
  depth_keys.sort(reverse=True)
  for depth in depth_keys:
    nodes = model._nodes_by_depth[depth]
    for node in nodes:
      # Recover the corresponding layer.
      layer = node.outbound_layer

      # Get or create layer.
      if layer not in layer_map:
        if not share_weights:
          # Clone layer.
          new_layer = _clone_layer(layer)
          layer_map[layer] = new_layer
          layer = new_layer
      else:
        # Reuse previously cloned layer.
        layer = layer_map[layer]
        # Don't call InputLayer multiple times.
        if isinstance(layer, InputLayer):
          continue

      # If all previous input tensors are available in tensor_map,
      # then call node.inbound_layer on them.
      if all(
          tensor in tensor_map for tensor in nest.flatten(node.input_tensors)):
        computed_tensors = nest.map_structure(lambda t: tensor_map[t],
                                              node.input_tensors)
        # Call layer.
        kwargs = node.arguments or {}
        output_tensors = layer(computed_tensors, **kwargs)

        for x, y in zip(
            nest.flatten(node.output_tensors), nest.flatten(output_tensors)):
          tensor_map[x] = y

  # Check that we did compute the model outputs,
  # then instantiate a new model from inputs and outputs.
  output_tensors = []
  for x in model.outputs:
    assert x in tensor_map, 'Could not compute output ' + str(x)
    output_tensors.append(tensor_map[x])

  input_tensors = nest.pack_sequence_as(model._nested_inputs, input_tensors)
  output_tensors = nest.pack_sequence_as(model._nested_outputs, output_tensors)
  return Model(input_tensors, output_tensors, name=model.name)
예제 #34
0
def DenseNet(
    blocks,
    include_top=True,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation='softmax',
):
    """Instantiates the DenseNet architecture.

  Optionally loads weights pre-trained on ImageNet.
  Note that the data format convention used by the model is
  the one specified in your Keras config at `~/.keras/keras.json`.

  Caution: Be sure to properly pre-process your inputs to the application.
  Please see `applications.densenet.preprocess_input` for an example.

  Arguments:
    blocks: numbers of building blocks for the four dense layers.
    include_top: whether to include the fully-connected
      layer at the top of the network.
    weights: one of `None` (random initialization),
      'imagenet' (pre-training on ImageNet),
      or the path to the weights file to be loaded.
    input_tensor: optional Keras tensor
      (i.e. output of `layers.Input()`)
      to use as image input for the model.
    input_shape: optional shape tuple, only to be specified
      if `include_top` is False (otherwise the input shape
      has to be `(224, 224, 3)` (with `'channels_last'` data format)
      or `(3, 224, 224)` (with `'channels_first'` data format).
      It should have exactly 3 inputs channels,
      and width and height should be no smaller than 32.
      E.g. `(200, 200, 3)` would be one valid value.
    pooling: optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` means that the output of the model will be
          the 4D tensor output of the
          last convolutional block.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a 2D tensor.
      - `max` means that global max pooling will
          be applied.
    classes: optional number of classes to classify images
      into, only to be specified if `include_top` is True, and
      if no `weights` argument is specified.
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.

  Returns:
    A `keras.Model` instance.

  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape.
    ValueError: if `classifier_activation` is not `softmax` or `None` when
      using a pretrained top layer.
  """
    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=224,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1

    x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input)
    x = layers.Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x)
    x = layers.BatchNormalization(axis=bn_axis,
                                  epsilon=1.001e-5,
                                  name='conv1/bn')(x)
    x = layers.Activation('relu', name='conv1/relu')(x)
    x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
    x = layers.MaxPooling2D(3, strides=2, name='pool1')(x)

    x = dense_block(x, blocks[0], name='conv2')
    x = transition_block(x, 0.5, name='pool2')
    x = dense_block(x, blocks[1], name='conv3')
    x = transition_block(x, 0.5, name='pool3')
    x = dense_block(x, blocks[2], name='conv4')
    x = transition_block(x, 0.5, name='pool4')
    x = dense_block(x, blocks[3], name='conv5')

    x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='bn')(x)
    x = layers.Activation('relu', name='relu')(x)

    if include_top:
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)

        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D(name='max_pool')(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    if blocks == [6, 12, 24, 16]:
        model = training.Model(inputs, x, name='densenet121')
    elif blocks == [6, 12, 32, 32]:
        model = training.Model(inputs, x, name='densenet169')
    elif blocks == [6, 12, 48, 32]:
        model = training.Model(inputs, x, name='densenet201')
    else:
        model = training.Model(inputs, x, name='densenet')

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            if blocks == [6, 12, 24, 16]:
                weights_path = data_utils.get_file(
                    'densenet121_weights_tf_dim_ordering_tf_kernels.h5',
                    DENSENET121_WEIGHT_PATH,
                    cache_subdir='models',
                    file_hash='9d60b8095a5708f2dcce2bca79d332c7')
            elif blocks == [6, 12, 32, 32]:
                weights_path = data_utils.get_file(
                    'densenet169_weights_tf_dim_ordering_tf_kernels.h5',
                    DENSENET169_WEIGHT_PATH,
                    cache_subdir='models',
                    file_hash='d699b8f76981ab1b30698df4c175e90b')
            elif blocks == [6, 12, 48, 32]:
                weights_path = data_utils.get_file(
                    'densenet201_weights_tf_dim_ordering_tf_kernels.h5',
                    DENSENET201_WEIGHT_PATH,
                    cache_subdir='models',
                    file_hash='1ceb130c1ea1b78c3bf6114dbdfd8807')
        else:
            if blocks == [6, 12, 24, 16]:
                weights_path = data_utils.get_file(
                    'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5',
                    DENSENET121_WEIGHT_PATH_NO_TOP,
                    cache_subdir='models',
                    file_hash='30ee3e1110167f948a6b9946edeeb738')
            elif blocks == [6, 12, 32, 32]:
                weights_path = data_utils.get_file(
                    'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5',
                    DENSENET169_WEIGHT_PATH_NO_TOP,
                    cache_subdir='models',
                    file_hash='b8c4d4c20dd625c148057b9ff1c1176b')
            elif blocks == [6, 12, 48, 32]:
                weights_path = data_utils.get_file(
                    'densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5',
                    DENSENET201_WEIGHT_PATH_NO_TOP,
                    cache_subdir='models',
                    file_hash='c13680b51ded0fb44dff2d8f86ac8bb1')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
예제 #35
0
def NASNet(input_shape=None,
           penultimate_filters=4032,
           num_blocks=6,
           stem_block_filters=96,
           skip_reduction=True,
           filter_multiplier=2,
           include_top=True,
           weights=None,
           input_tensor=None,
           pooling=None,
           classes=1000,
           default_size=None):
  """Instantiates a NASNet model.

  Note that only TensorFlow is supported for now,
  therefore it only works with the data format
  `image_data_format='channels_last'` in your Keras config
  at `~/.keras/keras.json`.

  Arguments:
      input_shape: Optional shape tuple, the input shape
          is by default `(331, 331, 3)` for NASNetLarge and
          `(224, 224, 3)` for NASNetMobile.
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 32.
          E.g. `(224, 224, 3)` would be one valid value.
      penultimate_filters: Number of filters in the penultimate layer.
          NASNet models use the notation `NASNet (N @ P)`, where:
              -   N is the number of blocks
              -   P is the number of penultimate filters
      num_blocks: Number of repeated blocks of the NASNet model.
          NASNet models use the notation `NASNet (N @ P)`, where:
              -   N is the number of blocks
              -   P is the number of penultimate filters
      stem_block_filters: Number of filters in the initial stem block
      skip_reduction: Whether to skip the reduction step at the tail
          end of the network. Set to `False` for CIFAR models.
      filter_multiplier: Controls the width of the network.
          - If `filter_multiplier` < 1.0, proportionally decreases the number
              of filters in each layer.
          - If `filter_multiplier` > 1.0, proportionally increases the number
              of filters in each layer.
          - If `filter_multiplier` = 1, default number of filters from the
               paper are used at each layer.
      include_top: Whether to include the fully-connected
          layer at the top of the network.
      weights: `None` (random initialization) or
          `imagenet` (ImageNet weights)
      input_tensor: Optional Keras tensor (i.e. output of
          `layers.Input()`)
          to use as image input for the model.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model
              will be the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a
              2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: Optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.
      default_size: Specifies the default image size of the model

  Returns:
      A Keras model instance.

  Raises:
      ValueError: In case of invalid argument for `weights`,
          invalid input shape or invalid `penultimate_filters` value.
      RuntimeError: If attempting to run this model with a
          backend that does not support separable convolutions.
  """
  if K.backend() != 'tensorflow':
    raise RuntimeError('Only Tensorflow backend is currently supported, '
                       'as other backends do not support '
                       'separable convolution.')

  if not (weights in {'imagenet', None} or os.path.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as ImageNet with `include_top` '
                     'as true, `classes` should be 1000')

  if (isinstance(input_shape, tuple) and None in input_shape and
      weights == 'imagenet'):
    raise ValueError('When specifying the input shape of a NASNet'
                     ' and loading `ImageNet` weights, '
                     'the input_shape argument must be static '
                     '(no None entries). Got: `input_shape=' +
                     str(input_shape) + '`.')

  if default_size is None:
    default_size = 331

  # Determine proper input shape and default size.
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=default_size,
      min_size=32,
      data_format=K.image_data_format(),
      require_flatten=False,
      weights=weights)

  if K.image_data_format() != 'channels_last':
    logging.warning('The NASNet family of models is only available '
                    'for the input data format "channels_last" '
                    '(width, height, channels). '
                    'However your settings specify the default '
                    'data format "channels_first" (channels, width, height).'
                    ' You should set `image_data_format="channels_last"` '
                    'in your Keras config located at ~/.keras/keras.json. '
                    'The model being returned right now will expect inputs '
                    'to follow the "channels_last" data format.')
    K.set_image_data_format('channels_last')
    old_data_format = 'channels_first'
  else:
    old_data_format = None

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    if not K.is_keras_tensor(input_tensor):
      img_input = Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  if penultimate_filters % 24 != 0:
    raise ValueError(
        'For NASNet-A models, the value of `penultimate_filters` '
        'needs to be divisible by 24. Current value: %d' % penultimate_filters)

  channel_dim = 1 if K.image_data_format() == 'channels_first' else -1
  filters = penultimate_filters // 24

  if not skip_reduction:
    x = Conv2D(
        stem_block_filters, (3, 3),
        strides=(2, 2),
        padding='valid',
        use_bias=False,
        name='stem_conv1',
        kernel_initializer='he_normal')(
            img_input)
  else:
    x = Conv2D(
        stem_block_filters, (3, 3),
        strides=(1, 1),
        padding='same',
        use_bias=False,
        name='stem_conv1',
        kernel_initializer='he_normal')(
            img_input)

  x = BatchNormalization(
      axis=channel_dim, momentum=0.9997, epsilon=1e-3, name='stem_bn1')(
          x)

  p = None
  if not skip_reduction:  # imagenet / mobile mode
    x, p = _reduction_a_cell(
        x, p, filters // (filter_multiplier**2), block_id='stem_1')
    x, p = _reduction_a_cell(
        x, p, filters // filter_multiplier, block_id='stem_2')

  for i in range(num_blocks):
    x, p = _normal_a_cell(x, p, filters, block_id='%d' % (i))

  x, p0 = _reduction_a_cell(
      x, p, filters * filter_multiplier, block_id='reduce_%d' % (num_blocks))

  p = p0 if not skip_reduction else p

  for i in range(num_blocks):
    x, p = _normal_a_cell(
        x, p, filters * filter_multiplier, block_id='%d' % (num_blocks + i + 1))

  x, p0 = _reduction_a_cell(
      x,
      p,
      filters * filter_multiplier**2,
      block_id='reduce_%d' % (2 * num_blocks))

  p = p0 if not skip_reduction else p

  for i in range(num_blocks):
    x, p = _normal_a_cell(
        x,
        p,
        filters * filter_multiplier**2,
        block_id='%d' % (2 * num_blocks + i + 1))

  x = Activation('relu')(x)

  if include_top:
    x = GlobalAveragePooling2D()(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = layer_utils.get_source_inputs(input_tensor)
  else:
    inputs = img_input

  model = Model(inputs, x, name='NASNet')

  # load weights
  if weights == 'imagenet':
    if default_size == 224:  # mobile version
      if include_top:
        weight_path = NASNET_MOBILE_WEIGHT_PATH
        model_name = 'nasnet_mobile.h5'
      else:
        weight_path = NASNET_MOBILE_WEIGHT_PATH_NO_TOP
        model_name = 'nasnet_mobile_no_top.h5'

      weights_file = get_file(model_name, weight_path, cache_subdir='models')
      model.load_weights(weights_file)

    elif default_size == 331:  # large version
      if include_top:
        weight_path = NASNET_LARGE_WEIGHT_PATH
        model_name = 'nasnet_large.h5'
      else:
        weight_path = NASNET_LARGE_WEIGHT_PATH_NO_TOP
        model_name = 'nasnet_large_no_top.h5'

      weights_file = get_file(model_name, weight_path, cache_subdir='models')
      model.load_weights(weights_file)
    else:
      raise ValueError('ImageNet weights can only be loaded with NASNetLarge'
                       ' or NASNetMobile')
  elif weights is not None:
    model.load_weights(weights)

  if old_data_format:
    K.set_image_data_format(old_data_format)

  return model
예제 #36
0
def EfficientNet(
    width_coefficient,
    depth_coefficient,
    default_size,
    dropout_rate=0.2,
    drop_connect_rate=0.2,
    depth_divisor=8,
    activation='swish',
    blocks_args='default',
    model_name='efficientnet',
    include_top=True,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation='softmax'):
  """Instantiates the EfficientNet architecture using given scaling coefficients.

  Reference paper:
  - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](
      https://arxiv.org/abs/1905.11946) (ICML 2019)

  Optionally loads weights pre-trained on ImageNet.
  Note that the data format convention used by the model is
  the one specified in your Keras config at `~/.keras/keras.json`.

  Arguments:
    width_coefficient: float, scaling coefficient for network width.
    depth_coefficient: float, scaling coefficient for network depth.
    default_size: integer, default input image size.
    dropout_rate: float, dropout rate before final classifier layer.
    drop_connect_rate: float, dropout rate at skip connections.
    depth_divisor: integer, a unit of network width.
    activation: activation function.
    blocks_args: list of dicts, parameters to construct block modules.
    model_name: string, model name.
    include_top: whether to include the fully-connected
        layer at the top of the network.
    weights: one of `None` (random initialization),
          'imagenet' (pre-training on ImageNet),
          or the path to the weights file to be loaded.
    input_tensor: optional Keras tensor
        (i.e. output of `layers.Input()`)
        to use as image input for the model.
    input_shape: optional shape tuple, only to be specified
        if `include_top` is False.
        It should have exactly 3 inputs channels.
    pooling: optional pooling mode for feature extraction
        when `include_top` is `False`.
        - `None` means that the output of the model will be
            the 4D tensor output of the
            last convolutional layer.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional layer, and thus
            the output of the model will be a 2D tensor.
        - `max` means that global max pooling will
            be applied.
    classes: optional number of classes to classify images
        into, only to be specified if `include_top` is True, and
        if no `weights` argument is specified.
    classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.

  Returns:
    A `keras.Model` instance.

  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape.
    ValueError: if `classifier_activation` is not `softmax` or `None` when
      using a pretrained top layer.
  """
  if blocks_args == 'default':
    blocks_args = DEFAULT_BLOCKS_ARGS

  if not (weights in {'imagenet', None} or os.path.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = imagenet_utils.obtain_input_shape(
      input_shape,
      default_size=default_size,
      min_size=32,
      data_format=backend.image_data_format(),
      require_flatten=include_top,
      weights=weights)

  if input_tensor is None:
    img_input = layers.Input(shape=input_shape)
  else:
    if not backend.is_keras_tensor(input_tensor):
      img_input = layers.Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1

  def round_filters(filters, divisor=depth_divisor):
    """Round number of filters based on depth multiplier."""
    filters *= width_coefficient
    new_filters = max(divisor, int(filters + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_filters < 0.9 * filters:
      new_filters += divisor
    return int(new_filters)

  def round_repeats(repeats):
    """Round number of repeats based on depth multiplier."""
    return int(math.ceil(depth_coefficient * repeats))

  # Build stem
  x = img_input
  x = layers.Rescaling(1. / 255.)(x)
  x = layers.Normalization(axis=bn_axis)(x)

  x = layers.ZeroPadding2D(
      padding=imagenet_utils.correct_pad(x, 3),
      name='stem_conv_pad')(x)
  x = layers.Conv2D(
      round_filters(32),
      3,
      strides=2,
      padding='valid',
      use_bias=False,
      kernel_initializer=CONV_KERNEL_INITIALIZER,
      name='stem_conv')(x)
  x = layers.BatchNormalization(axis=bn_axis, name='stem_bn')(x)
  x = layers.Activation(activation, name='stem_activation')(x)

  # Build blocks
  blocks_args = copy.deepcopy(blocks_args)

  b = 0
  blocks = float(sum(args['repeats'] for args in blocks_args))
  for (i, args) in enumerate(blocks_args):
    assert args['repeats'] > 0
    # Update block input and output filters based on depth multiplier.
    args['filters_in'] = round_filters(args['filters_in'])
    args['filters_out'] = round_filters(args['filters_out'])

    for j in range(round_repeats(args.pop('repeats'))):
      # The first block needs to take care of stride and filter size increase.
      if j > 0:
        args['strides'] = 1
        args['filters_in'] = args['filters_out']
      x = block(
          x,
          activation,
          drop_connect_rate * b / blocks,
          name='block{}{}_'.format(i + 1, chr(j + 97)),
          **args)
      b += 1

  # Build top
  x = layers.Conv2D(
      round_filters(1280),
      1,
      padding='same',
      use_bias=False,
      kernel_initializer=CONV_KERNEL_INITIALIZER,
      name='top_conv')(x)
  x = layers.BatchNormalization(axis=bn_axis, name='top_bn')(x)
  x = layers.Activation(activation, name='top_activation')(x)
  if include_top:
    x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
    if dropout_rate > 0:
      x = layers.Dropout(dropout_rate, name='top_dropout')(x)
    imagenet_utils.validate_activation(classifier_activation, weights)
    x = layers.Dense(
        classes,
        activation=classifier_activation,
        kernel_initializer=DENSE_KERNEL_INITIALIZER,
        name='predictions')(x)
  else:
    if pooling == 'avg':
      x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
    elif pooling == 'max':
      x = layers.GlobalMaxPooling2D(name='max_pool')(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = layer_utils.get_source_inputs(input_tensor)
  else:
    inputs = img_input

  # Create model.
  model = training.Model(inputs, x, name=model_name)

  # Load weights.
  if weights == 'imagenet':
    if include_top:
      file_suffix = '.h5'
      file_hash = WEIGHTS_HASHES[model_name[-2:]][0]
    else:
      file_suffix = '_notop.h5'
      file_hash = WEIGHTS_HASHES[model_name[-2:]][1]
    file_name = model_name + file_suffix
    weights_path = data_utils.get_file(
        file_name,
        BASE_WEIGHTS_PATH + file_name,
        cache_subdir='models',
        file_hash=file_hash)
    model.load_weights(weights_path)
  elif weights is not None:
    model.load_weights(weights)
  return model
예제 #37
0
def InceptionV3(include_top=True,
                weights='imagenet',
                input_tensor=None,
                input_shape=None,
                pooling=None,
                classes=1000):
  """Instantiates the Inception v3 architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format='channels_last'` in your Keras config
  at ~/.keras/keras.json.
  The model and the weights are compatible with both
  TensorFlow and Theano. The data format
  convention used by the model is the one
  specified in your Keras config file.
  Note that the default input image size for this model is 299x299.

  Arguments:
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization),
            'imagenet' (pre-training on ImageNet),
            or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(299, 299, 3)` (with `channels_last` data format)
          or `(3, 299, 299)` (with `channels_first` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 139.
          E.g. `(150, 150, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
  if not (weights in {'imagenet', None} or os.path.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as imagenet with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=299,
      min_size=139,
      data_format=K.image_data_format(),
      require_flatten=False,
      weights=weights)

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    if not K.is_keras_tensor(input_tensor):
      img_input = Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  if K.image_data_format() == 'channels_first':
    channel_axis = 1
  else:
    channel_axis = 3

  x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid')
  x = conv2d_bn(x, 32, 3, 3, padding='valid')
  x = conv2d_bn(x, 64, 3, 3)
  x = MaxPooling2D((3, 3), strides=(2, 2))(x)

  x = conv2d_bn(x, 80, 1, 1, padding='valid')
  x = conv2d_bn(x, 192, 3, 3, padding='valid')
  x = MaxPooling2D((3, 3), strides=(2, 2))(x)

  # mixed 0, 1, 2: 35 x 35 x 256
  branch1x1 = conv2d_bn(x, 64, 1, 1)

  branch5x5 = conv2d_bn(x, 48, 1, 1)
  branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 32, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch5x5, branch3x3dbl, branch_pool],
      axis=channel_axis,
      name='mixed0')

  # mixed 1: 35 x 35 x 256
  branch1x1 = conv2d_bn(x, 64, 1, 1)

  branch5x5 = conv2d_bn(x, 48, 1, 1)
  branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch5x5, branch3x3dbl, branch_pool],
      axis=channel_axis,
      name='mixed1')

  # mixed 2: 35 x 35 x 256
  branch1x1 = conv2d_bn(x, 64, 1, 1)

  branch5x5 = conv2d_bn(x, 48, 1, 1)
  branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch5x5, branch3x3dbl, branch_pool],
      axis=channel_axis,
      name='mixed2')

  # mixed 3: 17 x 17 x 768
  branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid')

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(
      branch3x3dbl, 96, 3, 3, strides=(2, 2), padding='valid')

  branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
  x = layers.concatenate(
      [branch3x3, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed3')

  # mixed 4: 17 x 17 x 768
  branch1x1 = conv2d_bn(x, 192, 1, 1)

  branch7x7 = conv2d_bn(x, 128, 1, 1)
  branch7x7 = conv2d_bn(branch7x7, 128, 1, 7)
  branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

  branch7x7dbl = conv2d_bn(x, 128, 1, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch7x7, branch7x7dbl, branch_pool],
      axis=channel_axis,
      name='mixed4')

  # mixed 5, 6: 17 x 17 x 768
  for i in range(2):
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 160, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 160, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 160, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch7x7, branch7x7dbl, branch_pool],
        axis=channel_axis,
        name='mixed' + str(5 + i))

  # mixed 7: 17 x 17 x 768
  branch1x1 = conv2d_bn(x, 192, 1, 1)

  branch7x7 = conv2d_bn(x, 192, 1, 1)
  branch7x7 = conv2d_bn(branch7x7, 192, 1, 7)
  branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

  branch7x7dbl = conv2d_bn(x, 192, 1, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch7x7, branch7x7dbl, branch_pool],
      axis=channel_axis,
      name='mixed7')

  # mixed 8: 8 x 8 x 1280
  branch3x3 = conv2d_bn(x, 192, 1, 1)
  branch3x3 = conv2d_bn(branch3x3, 320, 3, 3, strides=(2, 2), padding='valid')

  branch7x7x3 = conv2d_bn(x, 192, 1, 1)
  branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7)
  branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1)
  branch7x7x3 = conv2d_bn(
      branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid')

  branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
  x = layers.concatenate(
      [branch3x3, branch7x7x3, branch_pool], axis=channel_axis, name='mixed8')

  # mixed 9: 8 x 8 x 2048
  for i in range(2):
    branch1x1 = conv2d_bn(x, 320, 1, 1)

    branch3x3 = conv2d_bn(x, 384, 1, 1)
    branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3)
    branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1)
    branch3x3 = layers.concatenate(
        [branch3x3_1, branch3x3_2], axis=channel_axis, name='mixed9_' + str(i))

    branch3x3dbl = conv2d_bn(x, 448, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3)
    branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3)
    branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1)
    branch3x3dbl = layers.concatenate(
        [branch3x3dbl_1, branch3x3dbl_2], axis=channel_axis)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch3x3, branch3x3dbl, branch_pool],
        axis=channel_axis,
        name='mixed' + str(9 + i))
  if include_top:
    # Classification block
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = layer_utils.get_source_inputs(input_tensor)
  else:
    inputs = img_input
  # Create model.
  model = Model(inputs, x, name='inception_v3')

  # load weights
  if weights == 'imagenet':
    if include_top:
      weights_path = get_file(
          'inception_v3_weights_tf_dim_ordering_tf_kernels.h5',
          WEIGHTS_PATH,
          cache_subdir='models',
          file_hash='9a0d58056eeedaa3f26cb7ebd46da564')
    else:
      weights_path = get_file(
          'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5',
          WEIGHTS_PATH_NO_TOP,
          cache_subdir='models',
          file_hash='bcbd6486424b2319ff4ef7d526e38f63')
    model.load_weights(weights_path)
  elif weights is not None:
    model.load_weights(weights)

  return model
예제 #38
0
def MobileNetV3(stack_fn,
                last_point_ch,
                input_shape=None,
                alpha=1.0,
                model_type='large',
                minimalistic=False,
                include_top=True,
                weights='imagenet',
                input_tensor=None,
                classes=1000,
                pooling=None,
                dropout_rate=0.2,
                classifier_activation='softmax'):
    if not (weights in {'imagenet', None} or file_io.file_exists_v2(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top` '
            'as true, `classes` should be 1000')

    # Determine proper input shape and default size.
    # If both input_shape and input_tensor are used, they should match
    if input_shape is not None and input_tensor is not None:
        try:
            is_input_t_tensor = backend.is_keras_tensor(input_tensor)
        except ValueError:
            try:
                is_input_t_tensor = backend.is_keras_tensor(
                    layer_utils.get_source_inputs(input_tensor))
            except ValueError:
                raise ValueError('input_tensor: ', input_tensor,
                                 'is not type input_tensor')
        if is_input_t_tensor:
            if backend.image_data_format() == 'channels_first':
                if backend.int_shape(input_tensor)[1] != input_shape[1]:
                    raise ValueError(
                        'input_shape: ', input_shape, 'and input_tensor: ',
                        input_tensor,
                        'do not meet the same shape requirements')
            else:
                if backend.int_shape(input_tensor)[2] != input_shape[1]:
                    raise ValueError(
                        'input_shape: ', input_shape, 'and input_tensor: ',
                        input_tensor,
                        'do not meet the same shape requirements')
        else:
            raise ValueError('input_tensor specified: ', input_tensor,
                             'is not a keras tensor')

    # If input_shape is None, infer shape from input_tensor
    if input_shape is None and input_tensor is not None:

        try:
            backend.is_keras_tensor(input_tensor)
        except ValueError:
            raise ValueError('input_tensor: ', input_tensor, 'is type: ',
                             type(input_tensor), 'which is not a valid type')

        if backend.is_keras_tensor(input_tensor):
            if backend.image_data_format() == 'channels_first':
                rows = backend.int_shape(input_tensor)[2]
                cols = backend.int_shape(input_tensor)[3]
                input_shape = (3, cols, rows)
            else:
                rows = backend.int_shape(input_tensor)[1]
                cols = backend.int_shape(input_tensor)[2]
                input_shape = (cols, rows, 3)
    # If input_shape is None and input_tensor is None using standart shape
    if input_shape is None and input_tensor is None:
        input_shape = (None, None, 3)

    if backend.image_data_format() == 'channels_last':
        row_axis, col_axis = (0, 1)
    else:
        row_axis, col_axis = (1, 2)
    rows = input_shape[row_axis]
    cols = input_shape[col_axis]
    if rows and cols and (rows < 32 or cols < 32):
        raise ValueError(
            'Input size must be at least 32x32; got `input_shape=' +
            str(input_shape) + '`')
    if weights == 'imagenet':
        if (not minimalistic and alpha not in [0.75, 1.0]
                or minimalistic and alpha != 1.0):
            raise ValueError(
                'If imagenet weights are being loaded, '
                'alpha can be one of `0.75`, `1.0` for non minimalistic'
                ' or `1.0` for minimalistic only.')

        if rows != cols or rows != 224:
            logging.warning('`input_shape` is undefined or non-square, '
                            'or `rows` is not 224.'
                            ' Weights for input shape (224, 224) will be'
                            ' loaded as the default.')

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1

    if minimalistic:
        kernel = 3
        activation = relu
        se_ratio = None
    else:
        kernel = 5
        activation = hard_swish
        se_ratio = 0.25

    x = img_input
    x = layers.Rescaling(scale=1. / 127.5, offset=-1.)(x)
    x = layers.Conv2D(16,
                      kernel_size=3,
                      strides=(2, 2),
                      padding='same',
                      use_bias=False,
                      name='Conv')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  epsilon=1e-3,
                                  momentum=0.999,
                                  name='Conv/BatchNorm')(x)
    x = activation(x)

    x = stack_fn(x, kernel, activation, se_ratio)

    last_conv_ch = _depth(backend.int_shape(x)[channel_axis] * 6)

    # if the width multiplier is greater than 1 we
    # increase the number of output channels
    if alpha > 1.0:
        last_point_ch = _depth(last_point_ch * alpha)
    x = layers.Conv2D(last_conv_ch,
                      kernel_size=1,
                      padding='same',
                      use_bias=False,
                      name='Conv_1')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  epsilon=1e-3,
                                  momentum=0.999,
                                  name='Conv_1/BatchNorm')(x)
    x = activation(x)
    x = layers.Conv2D(last_point_ch,
                      kernel_size=1,
                      padding='same',
                      use_bias=True,
                      name='Conv_2')(x)
    x = activation(x)

    if include_top:
        x = layers.GlobalAveragePooling2D()(x)
        if channel_axis == 1:
            x = layers.Reshape((last_point_ch, 1, 1))(x)
        else:
            x = layers.Reshape((1, 1, last_point_ch))(x)
        if dropout_rate > 0:
            x = layers.Dropout(dropout_rate)(x)
        x = layers.Conv2D(classes,
                          kernel_size=1,
                          padding='same',
                          name='Logits')(x)
        x = layers.Flatten()(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Activation(activation=classifier_activation,
                              name='Predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D(name='max_pool')(x)
    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = models.Model(inputs, x, name='MobilenetV3' + model_type)

    # Load weights.
    if weights == 'imagenet':
        model_name = '{}{}_224_{}_float'.format(
            model_type, '_minimalistic' if minimalistic else '', str(alpha))
        if include_top:
            file_name = 'weights_mobilenet_v3_' + model_name + '.h5'
            file_hash = WEIGHTS_HASHES[model_name][0]
        else:
            file_name = 'weights_mobilenet_v3_' + model_name + '_no_top.h5'
            file_hash = WEIGHTS_HASHES[model_name][1]
        weights_path = data_utils.get_file(file_name,
                                           BASE_WEIGHT_PATH + file_name,
                                           cache_subdir='models',
                                           file_hash=file_hash)
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
예제 #39
0
def Xception(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000):
  """Instantiates the Xception architecture.

  Optionally loads weights pre-trained
  on ImageNet. This model is available for TensorFlow only,
  and can only be used with inputs following the TensorFlow
  data format `(width, height, channels)`.
  You should set `image_data_format='channels_last'` in your Keras config
  located at ~/.keras/keras.json.

  Note that the default input image size for this model is 299x299.

  Arguments:
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization),
            'imagenet' (pre-training on ImageNet),
            or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(299, 299, 3)`.
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 71.
          E.g. `(150, 150, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
      RuntimeError: If attempting to run this model with a
          backend that does not support separable convolutions.
  """
  if not (weights in {'imagenet', None} or os.path.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as imagenet with `include_top`'
                     ' as true, `classes` should be 1000')

  if K.image_data_format() != 'channels_last':
    logging.warning(
        'The Xception model is only available for the '
        'input data format "channels_last" '
        '(width, height, channels). '
        'However your settings specify the default '
        'data format "channels_first" (channels, width, height). '
        'You should set `image_data_format="channels_last"` in your Keras '
        'config located at ~/.keras/keras.json. '
        'The model being returned right now will expect inputs '
        'to follow the "channels_last" data format.')
    K.set_image_data_format('channels_last')
    old_data_format = 'channels_first'
  else:
    old_data_format = None

  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=299,
      min_size=71,
      data_format=K.image_data_format(),
      require_flatten=False,
      weights=weights)

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    if not K.is_keras_tensor(input_tensor):
      img_input = Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  x = Conv2D(
      32, (3, 3), strides=(2, 2), use_bias=False, name='block1_conv1')(
          img_input)
  x = BatchNormalization(name='block1_conv1_bn')(x)
  x = Activation('relu', name='block1_conv1_act')(x)
  x = Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x)
  x = BatchNormalization(name='block1_conv2_bn')(x)
  x = Activation('relu', name='block1_conv2_act')(x)

  residual = Conv2D(
      128, (1, 1), strides=(2, 2), padding='same', use_bias=False)(
          x)
  residual = BatchNormalization()(residual)

  x = SeparableConv2D(
      128, (3, 3), padding='same', use_bias=False, name='block2_sepconv1')(
          x)
  x = BatchNormalization(name='block2_sepconv1_bn')(x)
  x = Activation('relu', name='block2_sepconv2_act')(x)
  x = SeparableConv2D(
      128, (3, 3), padding='same', use_bias=False, name='block2_sepconv2')(
          x)
  x = BatchNormalization(name='block2_sepconv2_bn')(x)

  x = MaxPooling2D(
      (3, 3), strides=(2, 2), padding='same', name='block2_pool')(
          x)
  x = layers.add([x, residual])

  residual = Conv2D(
      256, (1, 1), strides=(2, 2), padding='same', use_bias=False)(
          x)
  residual = BatchNormalization()(residual)

  x = Activation('relu', name='block3_sepconv1_act')(x)
  x = SeparableConv2D(
      256, (3, 3), padding='same', use_bias=False, name='block3_sepconv1')(
          x)
  x = BatchNormalization(name='block3_sepconv1_bn')(x)
  x = Activation('relu', name='block3_sepconv2_act')(x)
  x = SeparableConv2D(
      256, (3, 3), padding='same', use_bias=False, name='block3_sepconv2')(
          x)
  x = BatchNormalization(name='block3_sepconv2_bn')(x)

  x = MaxPooling2D(
      (3, 3), strides=(2, 2), padding='same', name='block3_pool')(
          x)
  x = layers.add([x, residual])

  residual = Conv2D(
      728, (1, 1), strides=(2, 2), padding='same', use_bias=False)(
          x)
  residual = BatchNormalization()(residual)

  x = Activation('relu', name='block4_sepconv1_act')(x)
  x = SeparableConv2D(
      728, (3, 3), padding='same', use_bias=False, name='block4_sepconv1')(
          x)
  x = BatchNormalization(name='block4_sepconv1_bn')(x)
  x = Activation('relu', name='block4_sepconv2_act')(x)
  x = SeparableConv2D(
      728, (3, 3), padding='same', use_bias=False, name='block4_sepconv2')(
          x)
  x = BatchNormalization(name='block4_sepconv2_bn')(x)

  x = MaxPooling2D(
      (3, 3), strides=(2, 2), padding='same', name='block4_pool')(
          x)
  x = layers.add([x, residual])

  for i in range(8):
    residual = x
    prefix = 'block' + str(i + 5)

    x = Activation('relu', name=prefix + '_sepconv1_act')(x)
    x = SeparableConv2D(
        728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv1')(
            x)
    x = BatchNormalization(name=prefix + '_sepconv1_bn')(x)
    x = Activation('relu', name=prefix + '_sepconv2_act')(x)
    x = SeparableConv2D(
        728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv2')(
            x)
    x = BatchNormalization(name=prefix + '_sepconv2_bn')(x)
    x = Activation('relu', name=prefix + '_sepconv3_act')(x)
    x = SeparableConv2D(
        728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv3')(
            x)
    x = BatchNormalization(name=prefix + '_sepconv3_bn')(x)

    x = layers.add([x, residual])

  residual = Conv2D(
      1024, (1, 1), strides=(2, 2), padding='same', use_bias=False)(
          x)
  residual = BatchNormalization()(residual)

  x = Activation('relu', name='block13_sepconv1_act')(x)
  x = SeparableConv2D(
      728, (3, 3), padding='same', use_bias=False, name='block13_sepconv1')(
          x)
  x = BatchNormalization(name='block13_sepconv1_bn')(x)
  x = Activation('relu', name='block13_sepconv2_act')(x)
  x = SeparableConv2D(
      1024, (3, 3), padding='same', use_bias=False, name='block13_sepconv2')(
          x)
  x = BatchNormalization(name='block13_sepconv2_bn')(x)

  x = MaxPooling2D(
      (3, 3), strides=(2, 2), padding='same', name='block13_pool')(
          x)
  x = layers.add([x, residual])

  x = SeparableConv2D(
      1536, (3, 3), padding='same', use_bias=False, name='block14_sepconv1')(
          x)
  x = BatchNormalization(name='block14_sepconv1_bn')(x)
  x = Activation('relu', name='block14_sepconv1_act')(x)

  x = SeparableConv2D(
      2048, (3, 3), padding='same', use_bias=False, name='block14_sepconv2')(
          x)
  x = BatchNormalization(name='block14_sepconv2_bn')(x)
  x = Activation('relu', name='block14_sepconv2_act')(x)

  if include_top:
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = get_source_inputs(input_tensor)
  else:
    inputs = img_input
  # Create model.
  model = Model(inputs, x, name='xception')

  # load weights
  if weights == 'imagenet':
    if include_top:
      weights_path = get_file(
          'xception_weights_tf_dim_ordering_tf_kernels.h5',
          TF_WEIGHTS_PATH,
          cache_subdir='models',
          file_hash='0a58e3b7378bc2990ea3b43d5981f1f6')
    else:
      weights_path = get_file(
          'xception_weights_tf_dim_ordering_tf_kernels_notop.h5',
          TF_WEIGHTS_PATH_NO_TOP,
          cache_subdir='models',
          file_hash='b0042744bf5b25fce3cb969f33bebb97')
    model.load_weights(weights_path)
  elif weights is not None:
    model.load_weights(weights)

  if old_data_format:
    K.set_image_data_format(old_data_format)
  return model
예제 #40
0
def ResNet(stack_fn,
           preact,
           use_bias,
           model_name='resnet',
           include_top=True,
           weights='imagenet',
           input_tensor=None,
           input_shape=None,
           pooling=None,
           classes=1000,
           classifier_activation='softmax',
           **kwargs):
    global layers
    if 'layers' in kwargs:
        layers = kwargs.pop('layers')
    else:
        layers = VersionAwareLayers()
    if kwargs:
        raise ValueError('Unknown argument(s): %s' % (kwargs, ))
    if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=224,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1

    x = layers.ZeroPadding2D(padding=1, name='conv1_pad')(img_input)
    x = layers.Conv2D(64,
                      3,
                      strides=1,
                      use_bias=use_bias,
                      kernel_initializer='glorot_normal',
                      name='conv1_conv')(x)

    if not preact:
        x = layers.BatchNormalization(axis=bn_axis,
                                      epsilon=2e-5,
                                      momentum=0.9,
                                      name='conv1_bn')(x)
        x = layers.PReLU(shared_axes=[1, 2], name='conv1_prelu')(x)

    # x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name='pool1_pad')(x)
    # x = layers.MaxPooling2D(3, strides=2, name='pool1_pool')(x)

    x = stack_fn(x)

    if preact:
        x = layers.BatchNormalization(axis=bn_axis,
                                      epsilon=2e-5,
                                      momentum=0.9,
                                      name='post_bn')(x)
        x = layers.PReLU(shared_axes=[1, 2], name='post_prelu')(x)

    if include_top:
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D(name='max_pool')(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs, x, name=model_name)

    # Load weights.
    if (weights == 'imagenet') and (model_name in WEIGHTS_HASHES):
        if include_top:
            file_name = model_name + '_weights_tf_dim_ordering_tf_kernels.h5'
            file_hash = WEIGHTS_HASHES[model_name][0]
        else:
            file_name = model_name + '_weights_tf_dim_ordering_tf_kernels_notop.h5'
            file_hash = WEIGHTS_HASHES[model_name][1]
        weights_path = data_utils.get_file(file_name,
                                           BASE_WEIGHTS_PATH + file_name,
                                           cache_subdir='models',
                                           file_hash=file_hash)
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
예제 #41
0
  def __call__(self, inputs, initial_state=None, constants=None, **kwargs):
    """`Bidirectional.__call__` implements the same API as the wrapped `RNN`."""
    inputs, initial_state, constants = _standardize_args(
        inputs, initial_state, constants, self._num_constants)

    if isinstance(inputs, list):
      if len(inputs) > 1:
        initial_state = inputs[1:]
      inputs = inputs[0]

    if initial_state is None and constants is None:
      return super(Bidirectional, self).__call__(inputs, **kwargs)

    # Applies the same workaround as in `RNN.__call__`
    additional_inputs = []
    additional_specs = []
    if initial_state is not None:
      # Check if `initial_state` can be splitted into half
      num_states = len(initial_state)
      if num_states % 2 > 0:
        raise ValueError(
            'When passing `initial_state` to a Bidirectional RNN, '
            'the state should be a list containing the states of '
            'the underlying RNNs. '
            'Found: ' + str(initial_state))

      kwargs['initial_state'] = initial_state
      additional_inputs += initial_state
      state_specs = [InputSpec(shape=K.int_shape(state))
                     for state in initial_state]
      self.forward_layer.state_spec = state_specs[:num_states // 2]
      self.backward_layer.state_spec = state_specs[num_states // 2:]
      additional_specs += state_specs
    if constants is not None:
      kwargs['constants'] = constants
      additional_inputs += constants
      constants_spec = [InputSpec(shape=K.int_shape(constant))
                        for constant in constants]
      self.forward_layer.constants_spec = constants_spec
      self.backward_layer.constants_spec = constants_spec
      additional_specs += constants_spec

      self._num_constants = len(constants)
      self.forward_layer._num_constants = self._num_constants
      self.backward_layer._num_constants = self._num_constants

    is_keras_tensor = K.is_keras_tensor(additional_inputs[0])
    for tensor in additional_inputs:
      if K.is_keras_tensor(tensor) != is_keras_tensor:
        raise ValueError('The initial state of a Bidirectional'
                         ' layer cannot be specified with a mix of'
                         ' Keras tensors and non-Keras tensors'
                         ' (a "Keras tensor" is a tensor that was'
                         ' returned by a Keras layer, or by `Input`)')

    if is_keras_tensor:
      # Compute the full input spec, including state
      full_input = [inputs] + additional_inputs
      # The original input_spec is None since there could be a nested tensor
      # input. Update the input_spec to match the inputs.
      full_input_spec = [None for _ in range(len(nest.flatten(inputs)))
                        ] + additional_specs

      # Perform the call with temporarily replaced input_spec
      original_input_spec = self.input_spec
      self.input_spec = full_input_spec
      output = super(Bidirectional, self).__call__(full_input, **kwargs)
      self.input_spec = original_input_spec
      return output
    else:
      return super(Bidirectional, self).__call__(inputs, **kwargs)
예제 #42
0
def Xception(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000):
    """Instantiates the Xception architecture.

  Optionally loads weights pre-trained on ImageNet.
  Note that the data format convention used by the model is
  the one specified in your Keras config at `~/.keras/keras.json`.
  Note that the default input image size for this model is 299x299.

  Arguments:
    include_top: whether to include the fully-connected
      layer at the top of the network.
    weights: one of `None` (random initialization),
      'imagenet' (pre-training on ImageNet),
      or the path to the weights file to be loaded.
    input_tensor: optional Keras tensor
      (i.e. output of `layers.Input()`)
      to use as image input for the model.
    input_shape: optional shape tuple, only to be specified
      if `include_top` is False (otherwise the input shape
      has to be `(299, 299, 3)`.
      It should have exactly 3 inputs channels,
      and width and height should be no smaller than 71.
      E.g. `(150, 150, 3)` would be one valid value.
    pooling: Optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` means that the output of the model will be
          the 4D tensor output of the
          last convolutional block.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a 2D tensor.
      - `max` means that global max pooling will
          be applied.
    classes: optional number of classes to classify images
      into, only to be specified if `include_top` is True,
      and if no `weights` argument is specified.

  Returns:
    A Keras model instance.

  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape.
  """
    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=299,
        min_size=71,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1

    x = layers.Conv2D(32, (3, 3),
                      strides=(2, 2),
                      use_bias=False,
                      name='block1_conv1')(img_input)
    x = layers.BatchNormalization(axis=channel_axis, name='block1_conv1_bn')(x)
    x = layers.Activation('relu', name='block1_conv1_act')(x)
    x = layers.Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x)
    x = layers.BatchNormalization(axis=channel_axis, name='block1_conv2_bn')(x)
    x = layers.Activation('relu', name='block1_conv2_act')(x)

    residual = layers.Conv2D(128, (1, 1),
                             strides=(2, 2),
                             padding='same',
                             use_bias=False)(x)
    residual = layers.BatchNormalization(axis=channel_axis)(residual)

    x = layers.SeparableConv2D(128, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block2_sepconv1')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block2_sepconv1_bn')(x)
    x = layers.Activation('relu', name='block2_sepconv2_act')(x)
    x = layers.SeparableConv2D(128, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block2_sepconv2')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block2_sepconv2_bn')(x)

    x = layers.MaxPooling2D((3, 3),
                            strides=(2, 2),
                            padding='same',
                            name='block2_pool')(x)
    x = layers.add([x, residual])

    residual = layers.Conv2D(256, (1, 1),
                             strides=(2, 2),
                             padding='same',
                             use_bias=False)(x)
    residual = layers.BatchNormalization(axis=channel_axis)(residual)

    x = layers.Activation('relu', name='block3_sepconv1_act')(x)
    x = layers.SeparableConv2D(256, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block3_sepconv1')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block3_sepconv1_bn')(x)
    x = layers.Activation('relu', name='block3_sepconv2_act')(x)
    x = layers.SeparableConv2D(256, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block3_sepconv2')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block3_sepconv2_bn')(x)

    x = layers.MaxPooling2D((3, 3),
                            strides=(2, 2),
                            padding='same',
                            name='block3_pool')(x)
    x = layers.add([x, residual])

    residual = layers.Conv2D(728, (1, 1),
                             strides=(2, 2),
                             padding='same',
                             use_bias=False)(x)
    residual = layers.BatchNormalization(axis=channel_axis)(residual)

    x = layers.Activation('relu', name='block4_sepconv1_act')(x)
    x = layers.SeparableConv2D(728, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block4_sepconv1')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block4_sepconv1_bn')(x)
    x = layers.Activation('relu', name='block4_sepconv2_act')(x)
    x = layers.SeparableConv2D(728, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block4_sepconv2')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block4_sepconv2_bn')(x)

    x = layers.MaxPooling2D((3, 3),
                            strides=(2, 2),
                            padding='same',
                            name='block4_pool')(x)
    x = layers.add([x, residual])

    for i in range(8):
        residual = x
        prefix = 'block' + str(i + 5)

        x = layers.Activation('relu', name=prefix + '_sepconv1_act')(x)
        x = layers.SeparableConv2D(728, (3, 3),
                                   padding='same',
                                   use_bias=False,
                                   name=prefix + '_sepconv1')(x)
        x = layers.BatchNormalization(axis=channel_axis,
                                      name=prefix + '_sepconv1_bn')(x)
        x = layers.Activation('relu', name=prefix + '_sepconv2_act')(x)
        x = layers.SeparableConv2D(728, (3, 3),
                                   padding='same',
                                   use_bias=False,
                                   name=prefix + '_sepconv2')(x)
        x = layers.BatchNormalization(axis=channel_axis,
                                      name=prefix + '_sepconv2_bn')(x)
        x = layers.Activation('relu', name=prefix + '_sepconv3_act')(x)
        x = layers.SeparableConv2D(728, (3, 3),
                                   padding='same',
                                   use_bias=False,
                                   name=prefix + '_sepconv3')(x)
        x = layers.BatchNormalization(axis=channel_axis,
                                      name=prefix + '_sepconv3_bn')(x)

        x = layers.add([x, residual])

    residual = layers.Conv2D(1024, (1, 1),
                             strides=(2, 2),
                             padding='same',
                             use_bias=False)(x)
    residual = layers.BatchNormalization(axis=channel_axis)(residual)

    x = layers.Activation('relu', name='block13_sepconv1_act')(x)
    x = layers.SeparableConv2D(728, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block13_sepconv1')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block13_sepconv1_bn')(x)
    x = layers.Activation('relu', name='block13_sepconv2_act')(x)
    x = layers.SeparableConv2D(1024, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block13_sepconv2')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block13_sepconv2_bn')(x)

    x = layers.MaxPooling2D((3, 3),
                            strides=(2, 2),
                            padding='same',
                            name='block13_pool')(x)
    x = layers.add([x, residual])

    x = layers.SeparableConv2D(1536, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block14_sepconv1')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block14_sepconv1_bn')(x)
    x = layers.Activation('relu', name='block14_sepconv1_act')(x)

    x = layers.SeparableConv2D(2048, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block14_sepconv2')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block14_sepconv2_bn')(x)
    x = layers.Activation('relu', name='block14_sepconv2_act')(x)

    if include_top:
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        x = layers.Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = training.Model(inputs, x, name='xception')

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            weights_path = data_utils.get_file(
                'xception_weights_tf_dim_ordering_tf_kernels.h5',
                TF_WEIGHTS_PATH,
                cache_subdir='models',
                file_hash='0a58e3b7378bc2990ea3b43d5981f1f6')
        else:
            weights_path = data_utils.get_file(
                'xception_weights_tf_dim_ordering_tf_kernels_notop.h5',
                TF_WEIGHTS_PATH_NO_TOP,
                cache_subdir='models',
                file_hash='b0042744bf5b25fce3cb969f33bebb97')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
예제 #43
0
def _clone_functional_model(model, input_tensors=None):
  """Clone a functional `Model` instance.

  Model cloning is similar to calling a model on new inputs,
  except that it creates new layers (and thus new weights) instead
  of sharing the weights of the existing layers.

  Arguments:
      model: Instance of `Model`.
      input_tensors: optional list of input tensors
          to build the model upon. If not provided,
          placeholders will be created.

  Returns:
      An instance of `Model` reproducing the behavior
      of the original model, on top of new inputs tensors,
      using newly instantiated weights.

  Raises:
      ValueError: in case of invalid `model` argument value.
  """
  if not isinstance(model, Model):
    raise ValueError('Expected `model` argument '
                     'to be a `Model` instance, got ', model)
  if isinstance(model, Sequential):
    raise ValueError('Expected `model` argument '
                     'to be a functional `Model` instance, '
                     'got a `Sequential` instance instead:', model)

  layer_map = {}  # Cache for created layers.
  tensor_map = {}  # Map {reference_tensor: corresponding_tensor}
  if input_tensors is None:
    # Create placeholders to build the model on top of.
    input_layers = []
    input_tensors = []
    for layer in model._input_layers:
      input_tensor = Input(
          batch_shape=layer._batch_input_shape,
          dtype=layer.dtype,
          sparse=layer.sparse,
          name=layer.name)
      input_tensors.append(input_tensor)
      # Cache newly created input layer.
      newly_created_input_layer = input_tensor._keras_history[0]
      layer_map[layer] = newly_created_input_layer
    for original_input_layer, cloned_input_layer in zip(model._input_layers,
                                                        input_layers):
      layer_map[original_input_layer] = cloned_input_layer
  else:
    # Make sure that all input tensors come from a Keras layer.
    # If tensor comes from an input layer: cache the input layer.
    if isinstance(input_tensors, tuple):
      input_tensors = list(input_tensors)
    input_tensors = generic_utils.to_list(input_tensors)
    input_tensors_ = []
    for i, x in enumerate(input_tensors):
      if not K.is_keras_tensor(x):
        name = model._input_layers[i].name
        input_tensor = Input(tensor=x, name='input_wrapper_for_' + name)
        input_tensors_.append(input_tensor)
        # Cache newly created input layer.
        original_input_layer = x._keras_history[0]
        newly_created_input_layer = input_tensor._keras_history[0]
        layer_map[original_input_layer] = newly_created_input_layer
      else:
        input_tensors_.append(x)
    input_tensors = input_tensors_

  for x, y in zip(model.inputs, input_tensors):
    tensor_map[x] = y

  # Iterated over every node in the reference model, in depth order.
  depth_keys = list(model._nodes_by_depth.keys())
  depth_keys.sort(reverse=True)
  for depth in depth_keys:
    nodes = model._nodes_by_depth[depth]
    for node in nodes:
      # Recover the corresponding layer.
      layer = node.outbound_layer

      # Get or create layer.
      if layer not in layer_map:
        # Clone layer.
        new_layer = layer.__class__.from_config(layer.get_config())
        layer_map[layer] = new_layer
        layer = new_layer
      else:
        # Reuse previously cloned layer.
        layer = layer_map[layer]
        # Don't call InputLayer multiple times.
        if isinstance(layer, InputLayer):
          continue

      # Gather inputs to call the new layer.
      reference_input_tensors = node.input_tensors
      reference_output_tensors = node.output_tensors

      # If all previous input tensors are available in tensor_map,
      # then call node.inbound_layer on them.
      computed_tensors = []
      for x in reference_input_tensors:
        if x in tensor_map:
          computed_tensors.append(tensor_map[x])

      if len(computed_tensors) == len(reference_input_tensors):
        # Call layer.
        if node.arguments:
          kwargs = node.arguments
        else:
          kwargs = {}
        if len(computed_tensors) == 1:
          computed_tensor = computed_tensors[0]
          output_tensors = generic_utils.to_list(layer(computed_tensor,
                                                       **kwargs))
          computed_tensors = [computed_tensor]
        else:
          computed_tensors = computed_tensors
          output_tensors = generic_utils.to_list(layer(computed_tensors,
                                                       **kwargs))

        for x, y in zip(reference_output_tensors, output_tensors):
          tensor_map[x] = y

  # Check that we did compute the model outputs,
  # then instantiate a new model from inputs and outputs.
  output_tensors = []
  for x in model.outputs:
    assert x in tensor_map, 'Could not compute output ' + str(x)
    output_tensors.append(tensor_map[x])
  return Model(input_tensors, output_tensors, name=model.name)
예제 #44
0
def _clone_functional_model(model, input_tensors=None, layer_fn=_clone_layer):
    """Clone a functional `Model` instance.

  Model cloning is similar to calling a model on new inputs,
  except that it creates new layers (and thus new weights) instead
  of sharing the weights of the existing layers.

  Input layers are always cloned.

  Arguments:
      model: Instance of `Model`.
      input_tensors: optional list of input tensors
          to build the model upon. If not provided,
          placeholders will be created.
      layer_fn: callable to be applied on non-input layers in the model. By
          default it clones the layer. Another example is to preserve the layer
          to share the weights. This is required when we create a per-replica
          copy of the model with distribution strategy; we want the weights to
          be shared but still feed inputs separately so we create new input
          layers.

  Returns:
      An instance of `Model` reproducing the behavior
      of the original model, on top of new inputs tensors,
      using newly instantiated weights.

  Raises:
      ValueError: in case of invalid `model` argument value or `layer_fn`
      argument value.
  """
    if not isinstance(model, Model):
        raise ValueError(
            'Expected `model` argument '
            'to be a `Model` instance, got ', model)
    if isinstance(model, Sequential):
        raise ValueError(
            'Expected `model` argument '
            'to be a functional `Model` instance, '
            'got a `Sequential` instance instead:', model)
    if not model._is_graph_network:
        raise ValueError('Expected `model` argument '
                         'to be a functional `Model` instance, '
                         'but got a subclass model instead.')

    new_input_layers = {}  # Cache for created layers.
    if input_tensors is not None:
        # Make sure that all input tensors come from a Keras layer.
        input_tensors = nest.flatten(input_tensors)
        for i, input_tensor in enumerate(input_tensors):
            original_input_layer = model._input_layers[i]

            # Cache input layer. Create a new layer if the tensor is originally not
            # from a Keras layer.
            if not K.is_keras_tensor(input_tensor):
                name = original_input_layer.name
                input_tensor = Input(tensor=input_tensor,
                                     name='input_wrapper_for_' + name)
                newly_created_input_layer = input_tensor._keras_history.layer
                new_input_layers[
                    original_input_layer] = newly_created_input_layer
            else:
                new_input_layers[original_input_layer] = original_input_layer

    if not callable(layer_fn):
        raise ValueError('Expected `layer_fn` argument to be a callable.')

    model_config, created_layers = _clone_layers_and_model_config(
        model, new_input_layers, layer_fn)
    # Reconstruct model from the config, using the cloned layers.
    input_tensors, output_tensors, created_layers = (
        network.reconstruct_from_config(model_config,
                                        created_layers=created_layers))
    metrics_names = model.metrics_names
    model = Model(input_tensors, output_tensors, name=model.name)
    # Layers not directly tied to outputs of the Model, such as loss layers
    # created in `add_loss` and `add_metric`.
    ancillary_layers = [
        layer for layer in created_layers.values() if layer not in model.layers
    ]
    if ancillary_layers:
        new_nodes = nest.flatten([
            layer.inbound_nodes[1:]
            if network._should_skip_first_node(layer) else layer.inbound_nodes
            for layer in created_layers.values()
        ])
        _insert_ancillary_layers(model, ancillary_layers, metrics_names,
                                 new_nodes)
    return model
예제 #45
0
def _clone_functional_model(model, input_tensors=None, layer_fn=_clone_layer):
  """Clone a functional `Model` instance.

  Model cloning is similar to calling a model on new inputs,
  except that it creates new layers (and thus new weights) instead
  of sharing the weights of the existing layers.

  Input layers are always cloned.

  Arguments:
      model: Instance of `Model`.
      input_tensors: optional list of input tensors
          to build the model upon. If not provided,
          placeholders will be created.
      layer_fn: callable to be applied on non-input layers in the model. By
          default it clones the layer. Another example is to preserve the layer
          to share the weights. This is required when we create a per-replica
          copy of the model with distribution strategy; we want the weights to
          be shared but still feed inputs separately so we create new input
          layers.

  Returns:
      An instance of `Model` reproducing the behavior
      of the original model, on top of new inputs tensors,
      using newly instantiated weights.

  Raises:
      ValueError: in case of invalid `model` argument value or `layer_fn`
      argument value.
  """
  if not isinstance(model, Model):
    raise ValueError('Expected `model` argument '
                     'to be a `Model` instance, got ', model)
  if isinstance(model, Sequential):
    raise ValueError('Expected `model` argument '
                     'to be a functional `Model` instance, '
                     'got a `Sequential` instance instead:', model)
  if not model._is_graph_network:
    raise ValueError('Expected `model` argument '
                     'to be a functional `Model` instance, '
                     'but got a subclass model instead.')

  layer_map = {}  # Cache for created layers.
  tensor_map = {}  # Map {reference_tensor: corresponding_tensor}
  if input_tensors is None:
    # Create placeholders to build the model on top of.
    input_tensors = []
    for layer in model._input_layers:
      input_tensor = Input(
          batch_shape=layer._batch_input_shape,
          dtype=layer.dtype,
          sparse=layer.sparse,
          name=layer.name)
      input_tensors.append(input_tensor)
      # Cache newly created input layer.
      newly_created_input_layer = input_tensor._keras_history[0]
      layer_map[layer] = newly_created_input_layer
  else:
    # Make sure that all input tensors come from a Keras layer.
    # If tensor comes from an input layer: cache the input layer.
    input_tensors = nest.flatten(input_tensors)
    input_tensors_ = []
    for i in range(len(input_tensors)):
      input_tensor = input_tensors[i]
      if not K.is_keras_tensor(input_tensor):
        original_input_layer = model._input_layers[i]
        name = original_input_layer.name
        input_tensor = Input(tensor=input_tensor,
                             name='input_wrapper_for_' + name)

        input_tensors_.append(input_tensor)
        # Cache newly created input layer.
        newly_created_input_layer = input_tensor._keras_history[0]
        layer_map[original_input_layer] = newly_created_input_layer
      else:
        input_tensors_.append(input_tensor)
    input_tensors = input_tensors_

  for x, y in zip(model.inputs, input_tensors):
    tensor_map[x] = y

  if not callable(layer_fn):
    raise ValueError('Expected `layer_fn` argument to be a callable.')

  new_nodes = set()

  # Iterated over every node in the reference model, in depth order.
  depth_keys = list(model._nodes_by_depth.keys())
  depth_keys.sort(reverse=True)
  for depth in depth_keys:
    nodes = model._nodes_by_depth[depth]
    for node in nodes:
      # Recover the corresponding layer.
      layer = node.outbound_layer

      # Get or create layer.
      if layer not in layer_map:
        new_layer = layer_fn(layer)
        layer_map[layer] = new_layer
        layer = new_layer
      else:
        # Reuse previously cloned layer.
        layer = layer_map[layer]
        # Don't call InputLayer multiple times.
        if isinstance(layer, InputLayer):
          continue

      # If all previous input tensors are available in tensor_map,
      # then call node.inbound_layer on them.
      if all(
          tensor in tensor_map for tensor in nest.flatten(node.input_tensors)):
        computed_tensors = nest.map_structure(lambda t: tensor_map[t],
                                              node.input_tensors)
        # Call layer.
        kwargs = node.arguments or {}
        output_tensors = layer(computed_tensors, **kwargs)

        # Thread-safe way to keep track of what node was created.
        first_output_tensor = nest.flatten(output_tensors)[0]
        new_nodes.add(
            layer._inbound_nodes[first_output_tensor._keras_history[1]])

        for x, y in zip(
            nest.flatten(node.output_tensors), nest.flatten(output_tensors)):
          tensor_map[x] = y

  # Check that we did compute the model outputs,
  # then instantiate a new model from inputs and outputs.
  output_tensors = []
  for x in model.outputs:
    assert x in tensor_map, 'Could not compute output ' + str(x)
    output_tensors.append(tensor_map[x])

  input_tensors = nest.pack_sequence_as(model._nested_inputs, input_tensors)
  output_tensors = nest.pack_sequence_as(model._nested_outputs, output_tensors)
  model = Model(input_tensors, output_tensors, name=model.name)
  # Layers not directly tied to outputs of the Model, such as loss layers
  # created in `add_loss`.
  ancillary_layers = [
      layer for layer in layer_map.values() if layer not in model.layers
  ]
  if ancillary_layers:
    nodes = set(
        nest.flatten([layer._inbound_nodes for layer in ancillary_layers]))
    relevant_nodes = list(nodes.intersection(new_nodes))
    model._insert_layers(ancillary_layers, relevant_nodes=relevant_nodes)
  return model
예제 #46
0
def _clone_sequential_model(model, input_tensors=None):
    """Clone a `Sequential` model instance.

  Model cloning is similar to calling a model on new inputs,
  except that it creates new layers (and thus new weights) instead
  of sharing the weights of the existing layers.

  Arguments:
      model: Instance of `Sequential`.
      input_tensors: optional list of input tensors
          to build the model upon. If not provided,
          placeholders will be created.

  Returns:
      An instance of `Sequential` reproducing the behavior
      of the original model, on top of new inputs tensors,
      using newly instantiated weights.

  Raises:
      ValueError: in case of invalid `model` argument value.
  """
    if not isinstance(model, Sequential):
        raise ValueError(
            'Expected `model` argument '
            'to be a `Sequential` model instance, '
            'but got:', model)

    def clone(layer):
        return layer.__class__.from_config(layer.get_config())

    # Use model._layers to ensure that all layers are cloned. The model's layers
    # property will exclude the initial InputLayer (if it exists) in the model,
    # resulting in a different Sequential model structure.
    layers = [clone(layer) for layer in model._layers]
    if input_tensors is None:
        return Sequential(layers=layers, name=model.name)
    else:
        # If input tensors are provided, the original model's InputLayer is
        # overwritten with a different InputLayer.
        if isinstance(layers[0], InputLayer):
            layers = layers[1:]
        if len(generic_utils.to_list(input_tensors)) != 1:
            raise ValueError('To clone a `Sequential` model, we expect '
                             ' at most one tensor '
                             'as part of `input_tensors`.')

        if isinstance(input_tensors, tuple):
            input_tensors = list(input_tensors)
        x = generic_utils.to_list(input_tensors)[0]
        if K.is_keras_tensor(x):
            origin_layer = x._keras_history[0]
            if isinstance(origin_layer, InputLayer):
                return Sequential(layers=[origin_layer] + layers,
                                  name=model.name)
            else:
                raise ValueError('Cannot clone a `Sequential` model on top '
                                 'of a tensor that comes from a Keras layer '
                                 'other than an `InputLayer`. '
                                 'Use the functional API instead.')
        input_tensor = Input(tensor=x, name='input_wrapper_for_' + str(x.name))
        input_layer = input_tensor._keras_history[0]
        return Sequential(layers=[input_layer] + layers, name=model.name)