예제 #1
0
def upsample(inp,
             factor,
             nchannels,
             bn=None,
             activation=None,
             bias=False,
             dilation_rate=1,
             prefix='unet_3d',
             idx=0,
             upsampling='copy',
             residual=False):

    if residual:
        resized = UpSampling3D(size=(1, factor, factor))(inp)
        resized = Conv3D(nchannels, (1, 1, 1), strides=1,
                         padding='same')(resized)

        resized2 = Conv3DTranspose(nchannels, (1, factor, factor),
                                   strides=(1, factor, factor),
                                   name=prefix + "_deconv3d_" + str(idx),
                                   kernel_initializer='he_normal',
                                   use_bias=bias,
                                   dilation_rate=dilation_rate)(inp)
    else:
        if upsampling == 'copy':
            resized = UpSampling3D(size=(1, factor, factor))(inp)
            resized = Conv3D(nchannels, (1, 1, 1), strides=1,
                             padding='same')(resized)
        else:
            resized = Conv3DTranspose(nchannels, (1, factor, factor),
                                      strides=(1, factor, factor),
                                      name=prefix + "_deconv3d_" + str(idx),
                                      kernel_initializer='he_normal',
                                      use_bias=bias,
                                      dilation_rate=dilation_rate)(inp)

    if bn == 'before':
        resized = BatchNormalization(axis=4,
                                     name=prefix + "_batchnorm_" +
                                     str(idx))(resized)

    resized = activation(resized)

    if bn == 'after':
        resized = BatchNormalization(axis=4,
                                     name=prefix + "_batchnorm_" +
                                     str(idx))(resized)

    if inp.get_shape().as_list()[-1] == nchannels and residual:
        x = inp + x

    return resized
예제 #2
0
def upsampling_module(layer, filters):
    upsample = UpSampling3D(size=(2, 2, 2),
                            data_format='channels_first')(layer)
    upsample_conv = convolution_module(upsample,
                                       filters,
                                       activation=LeakyReLU,
                                       instance_norm=True)
    return upsample_conv
예제 #3
0
def semantic_upsample(x, n_upsample, n_filters=64, ndim=2, target=None):
    """
    Performs iterative rounds of 2x upsampling and
    convolutions with a 3x3 filter to remove aliasing effects

    Args:
        x (tensor): The input tensor to be upsampled
        n_upsample (int): The number of 2x upsamplings
        n_filters (int, optional): Defaults to 256. The number of filters for
            the 3x3 convolution
        target (tensor, optional): Defaults to None. A tensor with the target
            shape. If included, then the final upsampling layer will reshape
            to the target tensor's size
        ndim: The spatial dimensions of the input data.
            Default is 2, but it also works with 3

    Returns:
        The upsampled tensor
    """

    acceptable_ndims = [2, 3]
    if ndim not in acceptable_ndims:
        raise ValueError('Only 2 and 3 dimensional networks are supported')

    for i in range(n_upsample):
        if ndim == 2:
            x = Conv2D(n_filters, (3, 3), strides=(1, 1),
                       padding='same', data_format='channels_last')(x)

            if i == n_upsample - 1 and target is not None:
                x = UpsampleLike()([x, target])
            else:
                x = UpSampling2D(size=(2, 2))(x)
        else:
            x = Conv3D(n_filters, (3, 3, 3), strides=(1, 1, 1),
                       padding='same', data_format='channels_last')(x)

            if i == n_upsample - 1 and target is not None:
                x = UpsampleLike()([x, target])
            else:
                x = UpSampling3D(size=(2, 2, 2))(x)

    if n_upsample == 0:
        if ndim == 2:
            x = Conv2D(n_filters, (3, 3), strides=(1, 1),
                       padding='same', data_format='channels_last')(x)
        else:
            x = Conv3D(n_filters, (3, 3, 3), strides=(1, 1, 1),
                       padding='same', data_format='channels_last')(x)

        if target is not None:
            x = UpsampleLike()([x, target])

    return x
예제 #4
0
def decoder_block_3(x,
                    nr_of_convolutions,
                    cross_over_connection=None,
                    use_bn=False,
                    spatial_dropout=None):

    x = UpSampling3D((2, 2, 2))(x)
    if cross_over_connection is not None:
        x = Concatenate()([cross_over_connection, x])
    x = convolution_block_3(x, nr_of_convolutions, use_bn, spatial_dropout)

    return x
예제 #5
0
def UNet3D_Isensee(input_shape=(4, 128, 128, 128),
                   nchannels=(16, 32, 64, 128, 256),
                   n_labels=3,
                   activation='sigmoid',
                   n_segmentation_level=3):
    inputs = Input(input_shape)
    current_layer = inputs
    downsample_level = []
    segmentation_level = []
    for idx, filters in enumerate(nchannels):
        if idx == 0:
            in_conv = convolution_module(current_layer,
                                         filters,
                                         activation=LeakyReLU,
                                         instance_norm=True)
        else:
            in_conv = convolution_module(current_layer,
                                         filters,
                                         activation=LeakyReLU,
                                         strides=(2, 2, 2),
                                         instance_norm=True)
        context_layer = context_module(in_conv, filters, dropout=0.3)
        add_layer = Add()([in_conv, context_layer])
        downsample_level.append(add_layer)
        current_layer = add_layer

    for idx, filters in reversed(list(enumerate(nchannels[:-1:]))):
        upsample_conv = upsampling_module(current_layer, filters)
        current_layer = concatenate([upsample_conv, downsample_level[idx]],
                                    axis=1)
        localization = localization_module(current_layer, filters)
        current_layer = localization
        if idx < n_segmentation_level:
            layer = Conv3D(n_labels,
                           kernel_size=(1, 1, 1),
                           data_format='channels_first')(localization)
            segmentation_level.append(layer)

    output_layer = None
    for idx in range(len(segmentation_level)):
        if output_layer is None:
            output_layer = segmentation_level[idx]
        else:
            output_layer = Add()([output_layer, segmentation_level[idx]])
        if idx != len(segmentation_level) - 1:
            output_layer = UpSampling3D(
                size=(2, 2, 2), data_format='channels_first')(output_layer)

    act = Activation(activation)(output_layer)
    model = Model(inputs=inputs, outputs=act)
    return model
예제 #6
0
def test_delete_channels_upsampling3d(channel_index, data_format):
    layer = UpSampling3D([2, 3, 2], data_format=data_format)
    layer_test_helper_flatten_3d(layer, channel_index, data_format=data_format)
예제 #7
0
def get_prediction_model(name, in_shape, include_top, algorithm_instance, num_classes, kwargs):
    if name == "big_fully":
        input_l = Input(in_shape)
        output_l = fully_connected_big(input_l, include_top=include_top, **kwargs)
        model = Model(input_l, output_l)
    elif name == "simple_multiclass":
        input_l = Input(in_shape)
        output_l = simple_multiclass(input_l, include_top=include_top, **kwargs)
        model = Model(input_l, output_l)
    elif name == "unet_2d_upconv":
        assert algorithm_instance is not None, "no algorithm instance for 2d skip connections found"
        assert algorithm_instance.layer_data is not None, "no layer data for 2d skip connections found"

        first_input = Input(in_shape)
        includes_pooling = algorithm_instance.layer_data[2]

        if includes_pooling:
            x = UpSampling2D((2, 2))(first_input)
        else:
            x = first_input

        inputs_skip = [Input(x.shape[1:]) for x in reversed(algorithm_instance.layer_data[0])]
        inputs_up = [x] + inputs_skip

        model_up_out = upconv_model(x.shape[1:], down_layers=algorithm_instance.layer_data[0],
                                       filters=algorithm_instance.layer_data[1], num_classes=num_classes)(inputs_up)

        return Model(inputs=[first_input, *inputs_skip], outputs=model_up_out)
    elif name == "unet_3d_upconv":
        assert algorithm_instance is not None, "no algorithm instance for 3d skip connections found"
        assert algorithm_instance.layer_data is not None, "no layer data for 3d skip connections found"

        first_input = Input(in_shape)
        includes_pooling = algorithm_instance.layer_data[2]

        if includes_pooling:
            x = UpSampling3D((2, 2, 2))(first_input)
        else:
            x = first_input

        inputs_skip = [Input(x.shape[1:]) for x in reversed(algorithm_instance.layer_data[0])]
        inputs_up = [x] + inputs_skip

        model_up_out = upconv_model_3d(x.shape[1:], down_layers=algorithm_instance.layer_data[0],
                                       filters=algorithm_instance.layer_data[1], num_classes=num_classes)(inputs_up)

        return Model(inputs=[first_input, *inputs_skip], outputs=model_up_out)
    elif name == "unet_3d_upconv_patches":
        # This version of the unet3d model creates a separate unet for each patch. Currently unused
        assert algorithm_instance is not None, "no algorithm instance for 3d skip connections found"
        assert algorithm_instance.layer_data is not None, "no layer data for 3d skip connections found"

        n_patches = in_shape[0]
        embed_dim = in_shape[1]

        # combine all predictions from encoders to one layer and split up again
        first_input = Input(in_shape)
        flat = Flatten()(first_input)
        processed_first_input = Dense(n_patches * embed_dim, activation="relu")(flat)
        processed_first_input = Reshape((n_patches, embed_dim))(processed_first_input)

        # get the first shape of the upconv from the encoder
        # get whether the last layer is a pooling layer
        first_l_shape = algorithm_instance.layer_data[2][0]
        includes_pooling = algorithm_instance.layer_data[2][1]
        units = np.prod(first_l_shape)

        # build small model that selects a small shape from the unified predictions
        model_first_up = Sequential()
        model_first_up.add(Input(embed_dim))
        model_first_up.add(Dense(units, activation="relu"))
        model_first_up.add(Reshape(first_l_shape))
        if includes_pooling:
            model_first_up.add(UpSampling3D((2, 2, 2)))

        # apply selection to get input for decoder models
        processed_first_input = TimeDistributed(model_first_up)(processed_first_input)

        # prepare decoder
        model_up = upconv_model_3d(processed_first_input.shape[2:], down_layers=algorithm_instance.layer_data[0],
                                   filters=algorithm_instance.layer_data[1], num_classes=num_classes)

        pred_patches = []
        large_inputs = [first_input]

        for s in reversed(algorithm_instance.layer_data[0]):
            large_inputs.append(Input(n_patches + s.shape[1:]))

        for p in range(n_patches):
            y = [Lambda(lambda x: x[:, p, :, :, :, :], output_shape=processed_first_input.shape[2:])]
            for s in reversed(algorithm_instance.layer_data[0]):
                y.append(Lambda(lambda x: x[:, p, :, :, :, :], output_shape=s.shape[1:]))

            small_inputs = [y[0](processed_first_input)]  # the first input has to be processed
            for i in range(1, len(large_inputs)):
                small_inputs.append(y[i](large_inputs[i]))  # we can take the rest as is

            pred_patches.append(model_up(small_inputs))

        last_out = Concatenate(axis=1)(pred_patches)
        last_out = Reshape((n_patches,) + model_up.layers[-1].output_shape[1:])(last_out)

        model = Model(inputs=large_inputs, outputs=[last_out])
    elif name == "none":
        return None
    else:
        raise ValueError("model " + name + " not found")

    return model
예제 #8
0
파일: model.py 프로젝트: zhwzhong/MANet-1
def manet(input_layer_names, input_shape, config=None, logger=None):
    output_layers = []

    # paras of multi-scales
    nb_pyr_levels = 3
    pyr_levels = list(range(nb_pyr_levels))
    ret_feat_levels = 2

    # paras of layers
    conv_type, ks, activ = "conv", 2, "relu"

    # paras of cost volume (cv)
    min_disp, max_disp, num_disp_labels = -4, 4, 80

    ########## input layers ##########
    input_layers = []
    for _, input_layer_name in enumerate(input_layer_names):
        x = Input(shape=input_shape, name=input_layer_name)
        input_layers.append(x)

    ########## Branch_2, 3: cv ##########
    pyr_outputs = []  # outputs of pyramid level 1, 2

    # 1. Feature extraction
    nb_filt1 = 8
    feature_s_paras = {
        'ks': ks,
        'stride': [2, 1],
        'padding': "zero",
        'filter': [nb_filt1, nb_filt1 * 2] * 1,
        'activation': activ,
        'conv_type': conv_type,
        'pyr': True,
        'layer_nums': 2,
        "ret_feat_levels": ret_feat_levels
    }
    feature_s_m = feature_extraction_m((input_shape[0], input_shape[1], 1),
                                       feat_paras=feature_s_paras)

    fs_ts_ids = []
    feature_streams = []
    for stream_id, x in enumerate(input_layers):
        if stream_id > 1:
            continue
        feature_stream = []
        for x_sid in range(input_shape[2]):
            x_sub = Lambda(slicing, arguments={'index': x_sid})(x)
            x_sub = feature_s_m(x_sub)
            feature_stream.append(x_sub)

        if stream_id == 0:
            t_ids = list(range(input_shape[2]))[::-1]
            s_ids = [int((input_shape[2] - 1) / 2)] * input_shape[2]
        elif stream_id == 1:
            t_ids = [int((input_shape[2] - 1) / 2)] * input_shape[2]
            s_ids = list(range(input_shape[2]))
        fs_ts_ids.append((t_ids, s_ids))
        feature_streams.append(feature_stream)

    # 2/3/4. Cost volume + 3D aggregation + Regression
    cv_ca_pyr_levels = pyr_levels[1:]
    for pyr_level in cv_ca_pyr_levels[::-1]:
        cv_streams = []
        scale_factor = math.pow(2, pyr_level)
        pyr_level_ndl = int(num_disp_labels / scale_factor)

        # 2. Cost volume
        for fs_id, feature_stream in enumerate(feature_streams):
            pyr_fs = [fs_ep[pyr_level - 1] for fs_ep in feature_stream]
            cost_volume = Lambda(compute_cost_volume,
                                 arguments={
                                     "t_s_ids": fs_ts_ids[fs_id],
                                     "min_disp": min_disp / scale_factor,
                                     "max_disp": max_disp / scale_factor,
                                     "labels": pyr_level_ndl,
                                     "move_path": "LT"
                                 })(pyr_fs)
            cv_streams.append(cost_volume)

        # Multiple streams
        if len(cv_streams) > 1:
            cost_volume = concatenate(cv_streams)

        # 3/4. 3D aggregation + Regression
        # 3. 3D aggregation
        if pyr_level == cv_ca_pyr_levels[0]:
            ca_paras = {
                'ks': 3,
                'stride': 2,
                'padding': "same",
                'filter': nb_filt1 * 2,
                'activation': activ,
                'conv_type': conv_type,
                'n_dc': 1
            }
            output = cost_aggregation(cost_volume, ca_paras=ca_paras)
        else:
            ca_paras = {
                'ks': 3,
                'stride': 2,
                'padding': "same",
                'filter': nb_filt1 * 4,
                'activation': activ,
                'conv_type': conv_type,
                'n_dc': 1
            }
            output = cost_aggregation(cost_volume, ca_paras=ca_paras)
            output = UpSampling3D(size=(2, 2, 2),
                                  name="u_s{}".format(pyr_level))(output)

        # 4. Regression
        logger.info("=> regression at scale level {}".format(pyr_level))
        output = Lambda(lambda op: tf.nn.softmax(op, axis=1))(output)
        pl_o = Lambda(soft_min_reg,
                      arguments={
                          "axis": 1,
                          "min_disp": min_disp,
                          "max_disp": max_disp,
                          "labels": num_disp_labels
                      },
                      name="sm_disp{}".format(pyr_level))(output)
        pyr_outputs.append(pl_o)
    d2 = Average()(pyr_outputs[:2])  # outputs at scale level 1 and 2

    ########## Branch_1: no_cv ##########
    block_n = 8  # blocks
    ifn = 40  # filter

    # Branch_1: 2D aggregation
    pl_features = []
    pl_feature_streams = []
    for x in input_layers:
        x = ReflectionPadding2D(padding=([4, 4], [4, 4]))(x)
        feature_paras = {
            'ks': ks,
            'stride': 1,
            'padding': "zero",
            'filter': 1 * [ifn],
            'activation': activ,
            'conv_type': conv_type,
            'layer_nums': 1
        }
        x = cna_m(x, feature_paras, layer_names='random')
        pl_feature_streams.append(x)
    x = concatenate(pl_feature_streams)  # merge layers
    pl_features.append(x)

    pyr_level = pyr_levels[0]  # = 0
    fn = [i for i in block_n * [ifn * len(input_layer_names)]]
    cna_paras = {
        'ks': ks,
        'stride': 1,
        'padding': "valid",
        'filter': fn,
        'activation': activ,
        'conv_type': conv_type,
        'layer_nums': block_n
    }
    x = cna_m(pl_features[pyr_level], cna_paras, layer_names='random')
    x = conv_2d(x, num_disp_labels, ks=ks, padding="zero")

    # Branch_1: Regression
    logger.info("=> regression at scale level {}".format(pyr_level))
    x = Lambda(lambda op: tf.nn.softmax(op, axis=-1))(x)
    d1 = Lambda(soft_min_reg,
                arguments={
                    "axis": -1,
                    "min_disp": min_disp,
                    "max_disp": max_disp,
                    "labels": num_disp_labels
                },
                name="sm_disp_{}".format(pyr_level))(x)

    ########## Output ##########
    d0 = Average()([d2, d1])
    output_layers.append(d2)
    output_layers.append(d1)
    output_layers.append(d0)

    manet_model = Model(inputs=input_layers, outputs=output_layers)
    if config.model_infovis:
        manet_model.summary()
    return manet_model
예제 #9
0
파일: unet.py 프로젝트: kthr/deep-learning
def UNet_3D(input_shape=(None, None, None, 1),
            depth=5,
            max_filters=256,
            kernel_size=(3, 3, 3),
            n_output_channels=1,
            activation='sigmoid',
            drop_out=0,
            dropout_at_prediction=False,
            batch_norm=False):
    '''U net architecture (down/up sampling with skip architecture)
    See: http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
    Keras implementatio:; https://github.com/jocicmarko/ultrasound-nerve-segmentation/blob/master/train.py
    '''
    def Conv3DReluBatchNorm(n_filters,
                            kernel_size,
                            strides,
                            inputs,
                            drop_out,
                            batch_norm,
                            name=None):
        c = Conv3D(n_filters,
                   kernel_size,
                   strides=strides,
                   padding='same',
                   kernel_initializer='glorot_normal',
                   activation='relu')(inputs)
        if batch_norm:
            c = BatchNormalization(scale=False)(c)
        if drop_out:
            if dropout_at_prediction:
                c = Dropout(rate=drop_out)(c, training=True)
            else:
                c = Dropout(rate=drop_out)(c)
        return c

    if max_filters % 2 != 0:
        raise Exception('max_filters must be divisible by 2!')

    layer_stack = []
    inputs = Input(input_shape)
    layer = Conv3DReluBatchNorm(int(max_filters / 2**depth), kernel_size,
                                (1, 1, 1), inputs, drop_out, batch_norm,
                                'conv3D_0')
    layer_stack.append(layer)

    for i in range(1, depth + 1):
        layer = Conv3DReluBatchNorm(int(max_filters / 2**(depth - i)),
                                    kernel_size, (2, 2, 2), layer, drop_out,
                                    batch_norm, 'conv3D_' + str(i))
        layer_stack.append(layer)

    layer_stack.pop()

    for i in range(depth - 1, -1, -1):
        layer = Concatenate(axis=-1)(
            [UpSampling3D(size=(2, 2, 2))(layer),
             layer_stack.pop()])
        layer = Conv3DReluBatchNorm(int(max_filters / 2**(depth - i)),
                                    kernel_size, (1, 1, 1), layer, drop_out,
                                    batch_norm,
                                    'conv3D_' + str(depth + (depth - i + 1)))

    outputs = Conv3D(n_output_channels, (1, 1, 1),
                     strides=(1, 1, 1),
                     activation=activation)(layer)
    model = Model(inputs=inputs, outputs=outputs)

    return model