def ResNet_prelu(stack_fn, preact, use_bias, model_name='resnet_prelu', include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation='softmax', **kwargs): """Instantiates the ResNet, ResNetV2, and ResNeXt architecture. Reference: - [Deep Residual Learning for Image Recognition]( https://arxiv.org/abs/1512.03385) (CVPR 2015) Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. Caution: Be sure to properly pre-process your inputs to the application. Please see `applications.resnet.preprocess_input` for an example. Arguments: stack_fn: a function that returns output tensor for the stacked residual blocks. preact: whether to use pre-activation or not (True for ResNetV2, False for ResNet and ResNeXt). use_bias: whether to use biases for convolutional layers or not (True for ResNet and ResNetV2, False for ResNeXt). model_name: string, model name. include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 224)` (with `channels_first` data format). It should have exactly 3 inputs channels. pooling: optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. **kwargs: For backwards compatibility only. Returns: A `keras.Model` instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. ValueError: if `classifier_activation` is not `softmax` or `None` when using a pretrained top layer. """ global layers if 'layers' in kwargs: layers = kwargs.pop('layers') else: layers = VersionAwareLayers() if kwargs: raise ValueError('Unknown argument(s): %s' % (kwargs, )) if not (weights in {'imagenet', None} or file_io.file_exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError( 'If using `weights` as `"imagenet"` with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=224, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1 x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)), name='conv1_pad')(img_input) x = layers.Conv2D(64, 7, strides=2, use_bias=use_bias, name='conv1_conv')(x) if not preact: x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='conv1_bn')(x) # x = layers.Activation('relu', name='conv1_relu')(x) x = layers.PReLU(name='conv1_prelu')(x) x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name='pool1_pad')(x) x = layers.MaxPooling2D(3, strides=2, name='pool1_pool')(x) x = stack_fn(x) if preact: x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='post_bn')(x) # x = layers.Activation('relu', name='post_relu')(x) x = layers.PReLU(name='post_prelu')(x) if include_top: x = layers.GlobalAveragePooling2D(name='avg_pool')(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Dense(classes, activation=classifier_activation, name='predictions')(x) else: if pooling == 'avg': x = layers.GlobalAveragePooling2D(name='avg_pool')(x) elif pooling == 'max': x = layers.GlobalMaxPooling2D(name='max_pool')(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = training.Model(inputs, x, name=model_name) # Load weights. if (weights == 'imagenet') and (model_name in WEIGHTS_HASHES): if include_top: file_name = model_name + '_weights_tf_dim_ordering_tf_kernels.h5' file_hash = WEIGHTS_HASHES[model_name][0] else: file_name = model_name + '_weights_tf_dim_ordering_tf_kernels_notop.h5' file_hash = WEIGHTS_HASHES[model_name][1] weights_path = data_utils.get_file(file_name, BASE_WEIGHTS_PATH + file_name, cache_subdir='models', file_hash=file_hash) model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model
def ResNet(stack_fn, preact, use_bias, model_name='resnet', include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation='softmax', **kwargs): global layers if 'layers' in kwargs: layers = kwargs.pop('layers') else: layers = VersionAwareLayers() if kwargs: raise ValueError('Unknown argument(s): %s' % (kwargs, )) if not (weights in {'imagenet', None} or file_io.file_exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError( 'If using `weights` as `"imagenet"` with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=224, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1 # x = layers.ZeroPadding2D( # padding=((3, 3), (3, 3)), name='conv1_pad')(img_input) x = layers.Conv2D(64, 3, strides=1, padding='SAME', use_bias=use_bias, kernel_initializer='glorot_normal', name='conv1_conv')(img_input) if not preact: x = layers.BatchNormalization(axis=bn_axis, epsilon=2.001e-5, momentum=0.9, name='conv1_bn')(x) x = layers.PReLU(shared_axes=[1, 2], alpha_initializer='glorot_normal', name='conv1_prelu')(x) # x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name='pool1_pad')(x) # x = layers.MaxPooling2D(3, strides=2, name='pool1_pool')(x) x = stack_fn(x) if preact: x = layers.BatchNormalization(axis=bn_axis, epsilon=2.001e-5, momentum=0.9, name='post_bn')(x) x = layers.PReLU(shared_axes=[1, 2], alpha_initializer='glorot_normal', name='post_prelu')(x) if include_top: x = layers.GlobalAveragePooling2D(name='avg_pool')(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Dense(classes, activation=classifier_activation, name='predictions')(x) else: if pooling == 'avg': x = layers.GlobalAveragePooling2D(name='avg_pool')(x) elif pooling == 'max': x = layers.GlobalMaxPooling2D(name='max_pool')(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = training.Model(inputs, x, name=model_name) # Load weights. if (weights == 'imagenet') and (model_name in WEIGHTS_HASHES): if include_top: file_name = model_name + '_weights_tf_dim_ordering_tf_kernels.h5' file_hash = WEIGHTS_HASHES[model_name][0] else: file_name = model_name + '_weights_tf_dim_ordering_tf_kernels_notop.h5' file_hash = WEIGHTS_HASHES[model_name][1] weights_path = data_utils.get_file(file_name, BASE_WEIGHTS_PATH + file_name, cache_subdir='models', file_hash=file_hash) model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model